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Abstract 

Background:  Adverse drug reactions (ADRs) are an important concern in the medication process and can pose a 
substantial economic burden for patients and hospitals. Because of the limitations of clinical trials, it is difficult to iden-
tify all possible ADRs of a drug before it is marketed. We developed a new model based on data mining technology to 
predict potential ADRs based on available drug data.

Method:  Based on the Word2Vec model in Nature Language Processing, we propose a new knowledge graph 
embedding method that embeds drugs and ADRs into their respective vectors and builds a logistic regression clas-
sification model to predict whether a given drug will have ADRs.

Result:  First, a new knowledge graph embedding method was proposed, and comparison with similar studies 
showed that our model not only had high prediction accuracy but also was simpler in model structure. In our experi-
ments, the AUC of the classification model reached a maximum of 0.87, and the mean AUC was 0.863.

Conclusion:  In this paper, we introduce a new method to embed knowledge graph to vectorize drugs and ADRs, 
then use a logistic regression classification model to predict whether there is a causal relationship between them. The 
experiment showed that the use of knowledge graph embedding can effectively encode drugs and ADRs. And the 
proposed ADRs prediction system is also very effective.
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Background
Adverse drug reactions (ADRs) refer to undesired reac-
tions during normal medication use [1], and they con-
tribute to more than 20% of clinical trial failures and are 
considered a major burden in the modern drug discovery 
process [2, 3]. Serious ADRs can cause severe disability 
and even death in patients. In Europe, approximately 
3.6% of all hospital admissions are caused by ADRs, and 

up to 10% of patients in European hospitals experience an 
ADR [3]. In the United States, it has been estimated that 
more than 2 million severe ADRs occur in hospitalized 
patients each year, resulting in more than 100,000 deaths 
[4, 5]. The annual financial cost of drug-related morbidity 
in the United States (US) was estimated at $528.4 billion 
in 2016, equivalent to 16% of total US healthcare expen-
ditures that year [6].

Drugs are tested on animals and large human cohorts 
before clinical application to identify possible ADRs; 
however, because of limited sample size and duration of 
premarket trials, lack of heterogeneity of trial subjects, 
and numerous potential side effects and drug combina-
tions, many adverse reactions may not be detected in the 
early stages of drug development [7]. ADRs therefore 
pose a significant risk to patient health and healthcare 
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costs, and they are considered a major global public 
health issue. Researchers have explored multiple methods 
to predict individual drugs and combinations of drugs 
that may result in ADRs. Modern computer technol-
ogy has aided this work, with methods such as machine 
learning being used to accelerate the prediction process 
and reduce the cost of drug development [8].

Machine learning for ADR prediction
The method based on knowledge base (KB) has great 
advantages in accuracy and interpretability, but it needs 
a large number of clinical trials to collect the related 
adverse drug reaction events and construct the adverse 
drug reaction database. It is impossible to foresee the 
adverse reactions not shown at present. Machine learn-
ing related methods can be used to predict the potential 
adverse events that do not appear in the adverse reaction 
database. There is a large body of research on ADR pre-
diction using machine learning methods. For example, 
Perez Nueno et al. [9] used canonical correlation analy-
sis to predict the possible ADRs of drugs based on their 
physico-chemical properties and target protein informa-
tion. Dey, et al. [10] used convolutional neural networks 
to extract chemical characteristics of drugs, encode dif-
ferent substructures of the drugs into feature vectors of 
the same length, and train a logistic regression classifier 
for each ADR. Acknowledging the importance of infor-
mation on protein-protein interactions and drug-drug 
interactions, Hu, et  al. [11] integrated these interac-
tions into the distributed expression of drugs through 
a stacked deep heterogeneous network and trained an 
encoder for each semantic type. For each drug, the out-
put of all the encoders were stitched together and used 
as the input of the second embedding model. The fully 
connected layer was then used for ADR prediction. Luo, 
et al. [12] used AutoDock Tools 1.5.6 and AutoDock Vina 
1.1.2 software to dock drug molecules to each of the pro-
tein structures and used information on the drug’s sub-
structure to vectorize the drug. The authors then trained 
a logistic regression classifier for each ADR.

Prior studies have been similar in their construction 
of ADR classifiers and use of traditional machine learn-
ing classification models. The key difference is how the 
drugs and ADRs were vectorized. In the aforementioned 
studies, the authors used only the information of a single 
drug when extracting the characteristics[10–12]. Using 
this approach, the associations between the drugs and 
other entities are not directly integrated into the vec-
tors, and useful information may be lost. The knowledge 
graph (KG) and its embedding process have emerged in 
recent years as a helpful tool to not only represent the 
rich relationships between entities but also to directly 
encode these complex relationships into vectors. Using 

KG embedding to vectorize drugs and other entities is 
there for expected to better characterize a drug and other 
nodes.

Bean, et  al. [13] constructed a KG containing four 
nodes (drug, indication, ADR, target), used the neigh-
boring matrix of the drug nodes for its vectorization, and 
designed a classifier similar to the logistic regression clas-
sifier to predict ADRs. Munoz, et  al. [14] also used KG 
to unify heterogeneous data from multiple databases. 
They treated ADR prediction as a multi-label classifica-
tion problem, comparing multiple classification mod-
els on different datasets. In these prior studies using 
KG methodology, a predictive model was built for each 
ADR. In the present study, however, we combined ADR 
prediction tasks with KG embedding to predict potential 
adverse reactions of marketed drugs through a unified 
predictive model.

Our work flow is shown in Fig. 1. First, we constructed 
a KG containing four types of nodes (drug, indication, 
target, side effect) (ADRs were labeled as side effects in 
the database used for our work) and developed a new 
KG embedding method to embed the complex relation-
ships between drugs, indications, targets, and side effects 
in the KG into a multidimensional vector. We then con-
structed a classification model for vectorized drugs and 
side effects to predict ADRs. Finally, we used liver injury 
as an example to predict the probability of drug-induced 
liver injury for all the drugs incorporated in the KG. For 
drugs with a higher probability of the ADR according to 
our model, we conducted a literature search to confirm 
our prediction.

Methods
Databases and KG construction
We constructed a KG with four types of nodes (drug, side 
effect, target, indication) and three relationships (has side 
effect, has target, has indication). The side effects, targets, 
and indications were regarded as characteristics of the 
drugs.

The drugs and their corresponding targets and anatom-
ical therapeutic chemical (ATC) codes were extracted 
from the DrugBank database (version 5.1.4) [15], which 
is an open and free drug database that provides a vari-
ety of information on drugs (e.g. target, chemical proper-
ties, pharmacology, toxicology) and is often used in drug 
discovery and ADR prediction research. The database 
includes 13,450 drugs, including 2616 approved small 
molecule drugs, 1349 approved biopharmaceuticals (pro-
teins, peptides, vaccines, and allergenics), 130 health-
care drugs, and more than 6340 experimental drugs. 
Drugs are represented in the database by their unique 
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code, Drugbank_ID, and targets are represented by their 
unique code from the Uniprot database, uniprot_ID.

Drug indications and side effects were extracted from 
the SIDER database (version 4.1) [16] using the ATC 
code. The data included in SIDER are mainly extracted 
from drug manuals and are coded according to the Medi-
cal Dictionary for Regulatory Affairs, which is a clinically 
validated standard medical terminology dictionary that 
is often used to report adverse drug events. The current 
version of the SIDER database contains 5868 adverse 
reactions to 1430 drugs, with 139,756 drug-side effect 
pairs.

We collected information on 3632 drugs (only drugs 
with at least one characteristic were included), 2598 indi-
cations, 4286 targets, 5589 side effects, and 154,239 rela-
tionships among the different entities. We constructed 
and visualized the KG using Neo4j, as shown in Fig. 1a. 
The number of entities in the KG and their relationships 
with the drugs are shown in Table 1.

KG embedding
Word2Vec is a classic word embedding method in Natu-
ral Language Processing. Using this method, a model 

to vectorize words can solve the problem of sparseness 
brought by atomic methods such as bag of words as well as 
embed the context information of words in sentences into 
word vectors [17]. Word2Vec can be implemented through 
the continuous bag-of-words (CBOW) and Skip-gram 
architectures. CBOW uses the context words of the center 
word to predict itself, and it is suitable when the dataset is 
small. Skip-gram is used to predict the context words of 
the center word, and it is generally applied to large datasets 
[17]. Rather than using Word2Vec for the prediction model 
itself, we used it to obtain the matrix of word vectors gener-
ated during model training. Because the word vector con-
tains the context information of the word, it is widely used 
in semantic analysis. In the KG, a triple is exactly a subject-
predicate-object sentence. In the context of ADRs, a triple 
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Fig. 1  Overview of the work flow of this study. a Knowledge graph composed of the drug, targets, indications, and side effects extracted from 
the DrugBank and SIDER databases; b The knowledge graph embedding process, (b-top) Word2Vec training corpus constructed based on the 
knowledge graph; (b-middle) Continuous bag-of-words (CBOW) implementation process of Word2Vec, where the input layer inputs any two 
elements in the triple, the other element is used as the output (represented by one-hot vector), and W is the vector matrix of the training elements 
(entities and relations); (b-bottom) vector matrix of the training elements, W; and c Binaryclassifier, with the vector difference of the drug and side 
effect pair as the input and the probability that the drug may cause the side effect as the output

Table 1  Number of  entities and  relationships 
in the knowledge graph

Drug Side effect Target Indication Total

Entities 3632 5589 4286 2598 12473

Drug – 126791 13851 13597 154239
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(drug 1, has side effect, side effect 1) indicates that drug 1 
has the side effect 1. Therefore, if the KG is considered as 
a corpus composed of triples and the two elements in the 
triple are considered as the context of the third element, the 
Word2Vec model can be used to vectorize the graph and 
simultaneously embed the head and tail entities and rela-
tionship in the triple into the vector. The work flow of the 
KG embedding process is shown in Fig. 2.

The KG embedding model is expressed by functions 
(1), (2), and (3):

In the functions, x2i , x
1
i  are the i − th sample of the model 

input, which are the one-hot vectors of any two elements 
in the triple; the dimensions of the vectors are both 1 · n , 
W1and W2 are the final required entity vector matrices. 
The matrix dimensions are n · size and size · n , randomly 
initialized. One vector matrix is selected as the enti-
ties’ vector (each row corresponds to an entity as shown 
in Fig.  1b). In the KG, n is the total number of entities 
and relations (after removing duplicates), and size is 
the dimension of the entity vector desired. Function (1) 
represents the probability of each entity as the output 
when the elements of the triple are used as input, and 

(1)f (x1i , x
2
i ) = softmax

(

(x1i + x2i ) ·W1 ·W2

)

(2)p(x3i |x
2
i , x

1
i ) = f (x1i , x

2
i ) · x

3
i

(3)Loss = −
∑

i

log
(

p(x3i |x
2
i , x

1
i )

)

as function (2), the product is multiplied by the one-hot 
vector of the remaining entity in the triple to obtain the 
probability of the third element in the triple. The train-
ing target is to maximize the probability, which involves 
minimizing the loss function (3). Using this method, all 
nodes and relationships in the KG can be embedded into 
a vector.

Prediction model
Predicting whether a certain drug will produce an 
adverse reaction involves predicting whether there is 
a has side effect relationship between the two entities, 
which is equivalent to performing KG completion. There-
fore, the ADR prediction problem can be converted into 
a binary classification problem to judge whether there is 
a has side effect relationship between the drug and ADR.

We used logistic regression to implement the binary 
classification model for ADRs as shown in Fig. 1c. Logis-
tic regression is the most basic and important method in 
the classification algorithm, and it provides a model that 
is simple and easy to implement. The difference between 
the vector of drugi and ADRj is used as the model input 
x, and whether there is a has side effect relationship 
between them is used as the output (1=yes, 0=no like 
function (4)) to train the model, the details of the training 
data for the classifier are described in section Datasets. 
The probability of a drugi causing an ADRj is calculated 
as function (5):

(4)yi(j) =

{

1 if drug i causes ADR j
0 other

(5)ȳi
(

j
)

= P(Y = 1|x;w, b) =
1

1+ exp
(

w ·

(

xADRj − xdrugi
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+ b
)
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Fig. 2  Overview of knowledge graph embedding
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The model parameters w and b are obtained by minimiz-
ing the loss J in function (6) using the training dataset, 
where yi represents the standard output (0 or 1) of the 
i − th sample and ȳi represents the output of the model 
when the input is xi (the difference between the vector of 
drug and ADR in i − th sample), m represents the total 
number of samples.

Model evaluation
We evaluated our model based on its prediction perfor-
mance on the test datasets and by comparison with the lit-
erature on ADR prediction. Specifically, the area under the 
receiver operating characteristic curve (AUC) was used to 
evaluate the model classification effect. The receiver oper-
ating characteristic (ROC) curve is obtained by using the 
false positive rate (FPR) and the true positive rate (TPR) 
corresponding to the classifier under different classification 
thresholds. AUC is determined by the area enclosed by the 
ROC curve and the FPR axis, with a higher AUC indicating 
better discrimination. The TPR and FPR are calculated as 
follows:

where FP indicates the number of incorrect predictions 
in the positive samples, TN indicates the number of cor-
rect identifications in the negative samples, TP indicates 
the number of correct predictions in the positive sam-
ples, and FN indicates the number of incorrect identifi-
cations in the negative samples. We also calculated the 
recall, precision, and F − score for the model to evaluate 
its classification performance:

(6)

J (w, b) = −
1

m

m
∑

i=1

[

yilog
(

ȳi
)

+
(

1− yi
)

log
(

1− ȳi
)

]

(7)
FPR = FP

FP+TN

TPR = TP
TP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F − score = 2∗Precision∗Recall
Precision+Recall

Results
Datasets
There were 3632 drugs and 4286 targets extracted from 
the DrugBank database that were matched by ATC code 
to 5589 types of side effects and 2598 types of indications 
in SIDER (Table  1). Using the extracted data, we noted 
that the side effects of some drugs are the indications 
of other drugs. Because the indication of a drug cannot 
be the side effect of itself, the drug-indication pairs can 
be regarded as a negative sample of the classifier, with 
the corresponding tag has no side effect labeled as 0. To 
ensure the maximum amount of indication information 
could be embedded in the drug vector during the KG 
embedding and classifier training phase, we randomly 
selected only 10% (1359) of the 13,597 drug-indication 
pairs to serve as the negative sample in the test dataset. 
An equal number of the drug-side effect pairs were ran-
domly selected as the positive sample of the test dataset. 
These two sets of data were reserved for model testing 
and were not included in the training of the KG embed-
ding model and the classifier, simulating the potential 
unknown ADRs that may occur in real-world practice.

The remaining triples (drug, has target, target), (drug, 
has indication, indication), and (drug, has side effect, side 
effect) together formed the corpus to train the KG embed-
ding model; the (drug, has indication, indication)(copied 
10 times to avoid sample imbalance) and (drug, has side 
effect, side effect) were then used to train the ADR predic-
tion classifier. The details of the final data split are shown 
in Table 2.

Evaluation of KG embedding and parameters of the ADR 
prediction model
The most important parameters of the Word2Vec model 
are iter and size. iter refers to the number of iterations 
the Word2Vec model trained, and size is the entity vec-
tor dimension obtained by the model. In general, the 
more iterations the KG embedding model trains, the bet-
ter the vector will fit to the KG. Accordingly, we assessed 
whether the KG embedding process helped to encode 
information on entities such as drugs and side effects 
into vectors by evaluating the prediction performance 
of the ADR classifier under different iterations of the KG 
embedding model.

Table 2  Data used for knowledge graph embedding and adverse drug reaction classifier training and testing

� To avoid sample imbalance, the drug-indication pairs used for the training of the ADR classification model were replicated and expanded 10 times

Triple Knowledge graph 
embedding

Classifier training Classifier testing Total

(drug, has target, target) 13851 0 0 13851

(drug, has indication, indication) 12238 12238*10� 1359 13597

(drug, has side effect, side effect) 125432 125432 1359 126791
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Parameter settings
When using the Word2Vec model to implement the KG 
embedding, we set min_count to 1 (indicating that the 
nodes that appeared less than once in the corpus should 
be deleted) to ensure all nodes could be vectorized. 
Because a sentence consists of three elements of a triple, 
the maximum sentence length was 3, the window set to 2 
and the implementation method set to CBOW. We used 
the Python Gensim package (3.8.1) to implement KG 
embedding.

The ADR prediction model used logistic regression, 
with the default L2 regularization term, the default C 
value of 1, and the loss function optimization algorithm 
set to stochastic average gradient (SAG; this sets the 
parameter solver to SAG). To ensure model convergence, 
the maximum number of iterations was set to 10,000. 
The classifier model was implemented using the Python 
sklearn package (0.21.3).

Analyses and results
We used the training and testing data split described in 
section  to train and evaluate our ADR prediction model 
under different iterations of KG embedding. Because our 
goal was to determine whether the KG embedding pro-
cess helped to encode information on entities, a separate 
verification dataset was not needed, and the test set was 
used to both evaluate the model and directly identify the 
best parameters.

For all sizes of the entity vector, the AUC of the ADR 
prediction model increased as the number of iterations 

of KG embedding increased (Fig.  3, left). The increase 
in prediction performance gradually slowed after 60 
iterations, indicating that the KG information could not 
be fully integrated into the vector when the number of 
iterations was too low. As the iterations increased, the 
vector was better able to represent each entity. Based 
on these results, the KG embedding process was able to 
sufficiently encode the graph information into the entity 
vector.

The classifier’s performance also increased as the vec-
tor size increased (Fig. 3, right). For the curves with high 
AUC, performance was maximized at 2500 iterations of 
KG embedding. Figure  3(right) shows the classification 
performance for different vector sizes at 2500 iterations. 
The increase in AUC slowed after the vector size reached 
500 and 800. Based on the KG embedding time, ADR 
classifier training time, and the ADR classifier perfor-
mance, iter = 2500 and size = 800 were selected as the 
optimal parameters for the prediction model.

Evaluation of ADR prediction model
We evaluated the ADR prediction model by identifying 
the drug-side effect and drug-indication pairs in the test-
ing dataset and comparing the AUC for the prediction 
model with results from similar research in the literature. 
To increase the credibility of the model evaluation, we 
shuffled the original data set and randomly divided it into 
new training and testing sets according to the method 
described in section Datasets. The KG embedding and 
ADR classifier training were repeated from scratch using 

Fig. 3  Parameter select. Area under the receiver operating characteristic curve (AUC) of the adverse drug reaction (ADR) classifier in the test set 
under different vector sizes and iterations of knowledge graph (KG) embedding (left), and AUC of the ADR classifier in the test set under different 
vector dimensions when iterations = 2500 (right). Dim indicates dimension; iters, iterations
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the new training set, and the model performance was 
evaluated using the new test set. As determined in sec-
tion Analyses and results, the number of iterations of KG 
embedding was set to 2500, the vector dimension to 800, 
the window size to 2, min_count to 1, and the implemen-
tation method to CBOW. We repeated this process six 
times to assess the stability of the results.

Results
In the testing dataset containing 1359 positive samples 
and 1359 negative samples, the AUC of the classifica-
tion model reached a maximum of 0.870, and the mean 
AUC was 0.863 (Table  3; Fig.  4). The precision, recall, 
and F − score are shown in Table  3. The ROC curve and 
other evaluation indicators were stable across the six 
repeated experiments without obvious fluctuations, indi-
cating a stable prediction model.

We compared our model with eight related ADR pre-
diction studies (Table  4) in two ways, average AUC over 
all ADRs and AUC on top 10 ADRs prediction models. 
The AUC of our model are higher than that reported for 
most of the ADR models in the literature, indicating that 
our model had better prediction performance. Besides, 
most prior prediction models were trained separately 
for each ADR, resulting in the training of a large num-
ber of models. In contrast, we first encoded the drug 
and side effect information into their own vectors and 
subsequently scored drug and side effect pairs directly 
through a unified logistic regression model to determine 
whether there was a relationship between the two enti-
ties, greatly reducing the number of models. One previ-
ous prediction model [13] also used the KG approach 
and reported a high AUC; however, this model included 
only a few specific ADRs and may not result in high AUC 
values for other ADRs. Additionally, the model only 

Table 3  Evaluation results of  the  adverse drug reaction 
prediction model on the test set

Precision Recall F-score AUC​

Experiment 1 0.779 0.819 0.799 0.87

Experiment 2 0.79 0.81 0.8 0.863

Experiment 3 0.775 0.799 0.787 0.855

Experiment 4 0.773 0.819 0.796 0.862

Experiment 5 0.779 0.804 0.791 0.867

Experiment 6 0.77 0.812 0.79 0.86

Mean 0.778 0.81 0.794 0.863

Fig. 4  Receiver operating characteristic curves for the six 
experiments

Table 4  Comparison of adverse drug prediction models in the literature

 A portion of the data were collected from Luo et al. [12];

ADR, adverse drug reaction; AUC, area under the receiver operating characteristic curve;

DDI, drug-drug interaction; PPI, protein-protein interaction;

EHR, Electronic Health Records

Study Drug Features ADRs Label Source AUC all AUC top10

Our work 3632 Drug targets, indications, and ADRs 5589 SIDER 0.86 0.934

Luo et al.[12] 655 Molecular docking (600 proteins) 1533 SIDER 0.84 –

LaBute et al.[24] 560 Molecular docking (409 proteins) 85 (10 groups) SIDER 0.60–0.69 –

Bean et al.[13] 524 Drug targets, indications, and ADRs 10 SIDER/EHR – 0.92

Cao et al.[25] 746 Structures, gene expressions, and multiple evidences sources 817 SIDER 0.57-0.88 –

Jamal et al.[26] 928 Chemical, biological, and phenotypic properties 22 SIDER 0.48–1.00 –

Hu et al.[11] 548 DDI, PPI, drug target and treatment information, chemical 
structures, and side effects

1318 SIDER 0.84 –

Dey et al.[10] 1430 Structure information and side effects 1766 SIDER – 0.919
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used the number of targets in the characterization pro-
cess for a drug and did not consider the specific content 
of the targets, resulting in the loss of potentially useful 
information.

Literature evidence
To further verify the feasibility of our prediction model, 
we collected reports on ADRs from the literature. We 
used our prediction model to score these drug-ADRs, 
which were not included in our KG. Using liver injury-
related ADRs as an example, we tested our model’s pre-
dictive ability in two ways.

In the first approach, we searched the liver injury-
related literature in PubMed. Ten of the first 20 articles 
reported on liver injury caused by drugs. Two papers 
reported on related drugs that did not appear in our 
KG  [18, 19], so we were unable to predict the ADRs for 
these drugs. We used our model to score the liver injury-
related ADRs for the drugs in the remaining seven arti-
cles. The studies, ADRs reported, and prediction results 
from our model are shown in Table  5.

In the second approach, we calculated the probabil-
ity of liver injury (UMLS ConceptID: C0160390) for all 
drugs in the KG and arranged them in descending order 
of probability. We searched the literature to verify the 
10 drugs with the highest probability for liver injury as 
an ADR. No published studies were identified for two of 
the drugs, and the literature indicated that two drugs did 
not cause liver injury. One drug was shown to cause liver 
damage when combined with other drugs (montelukast 
sodium) [20]. One drug did not harm the liver with nor-
mal use, but long-term use was associated with patho-
logical changes in the liver, including liver injury and liver 
fibrosis [21]. There was clear evidence of the remaining 

four drugs causing liver damage. The prediction results 
from our model are shown in Table  6.

Case study
In order to connect our model with the occurrences of 
the possible ADRs of some drugs in the real, we collected 
drugs from DILIrank dataset, and predicted the probabil-
ity they cause the Drug-induced liver injury (DILI, UMLS 
ConceptID: C0860207). DILIrank consists of 1,036 FDA-
approved drugs and divided into four classes according to 
their potential for causing DILI [22]. DILI classification 
is based on the analysis of hepatotoxicity descriptions in 
FDA-approved drug labeling documents and causal evi-
dence in the evaluation literature. Specifically, this largest 
publicly annotated DILI dataset consists of three groups 
(Most-, Less- and No-DILI concern) with strong causal 
evidence that drugs are associated with liver injury, 

Table 5  Adverse drug reactions obtained from PubMed and probability of their occurrence according to our model

 KG, knowledge graph;

The code in brackets after the drug is its Drugbank_ID;

The code in brackets after the Adverse Drug Reaction is its UMLS ConceptID

Study Drug Adverse Drug Reaction Probability

Kuniyosh et al. [27] Atorvastatin (DB01076) Liver injury (C0160390) 0.955

Brehm et al. [28] Acetaminophen (DBDB00316) Acute liver injury (C2242583) 0.62

Moon et al. [29] Albendazole (DB00518) Liver injury (C0160390) 0.919

Kopecky et al. [30] Nivolumab (DB09035) Liver injury (C0160390) 0.854

Gisi et al. [31] Azathioprine (DB00993) Hepatitis cholestatic (C0149904) 0.958

Carretero et al. [32] Osimertinib (DB09330; one of the tyrosine-kinase 
inhibitors)

Hepatotoxicity (C0235378) 0.797

Ota et al. [33] Crizotinib (DB08865) Liver injury (C0160390) 0.83

Kawaguchi et al. [18] Laninamivir octanoate (DB11888) Liver injury (C0160390) Drug not in KG

Kwan et al. [19] Pembrolizumab (DB09037) Hepatotoxicity (C0235378) Drug not in KG

Rajan et al. [34] Sevoflurane anaesthesia (DB01236) Hepatotoxicity (C0235378) 0.959

Table 6  Top 10 drugs predicted to  cause liver injury 
according to our model

Drug Cause of Liver Injury 
According to Literature

Study

Valganciclovir No Ganciclovir [35]

Reboxetine – No literature

Argatroban No Levine et al. [36]

Tibolone Yes Macedo et al. [37]

Dextroamphetamine Yes Vanga et al. [38]

Trovafloxacin Yes Giustarin et al. [39]

Tamsulosin Yes Fremond et al. [20]

Iopromide Yes Bolado Concejo et al. 
[40]

Naltrexone Yes (long-term use) Zheng [21]

Frovatriptan – No literature
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while the causal relationship of another group (Ambigu-
ous-DILI-concern) is unknown.

The average prediction probabilities of 862 drugs which 
can be found in KG and DILIrank were calculated (Table  
7). The results show that our model has good discrimina-
tion in predicting whether the drug will lead to DILI or 
not, but it can not predict the severity. That is due to the 
original data, which only contains the information about 
whether the drug will cause ADRs or not, but without 
the severity. It is worth noting that the prediction prob-
ability of “Ambiguous-DILI-concern drug” category is 
0.578, which is higher than that of “No-DILI-concern 
drug” (0.470). The results accord with the real situation of 
the DILIrank dataset, because the drugs that may lead to 
DILI are in the group of “Ambiguous-DILI-concern drug”.

Discussion
Drug safety is an important component of medical care 
and the process of drug development. Because it is not 
possible to test all combinations of drugs by screening of 
ADRs through experiments and clinical trials [7], data 
mining technology has emerged as a promising approach 
to predict drugs that result in ADRs. This approach can 
both guide the drug development process as well as pro-
vide a reference for doctors when prescribing.

Many studies have used computer-aided detection of 
ADRs. These studies have generally followed the same 
steps [23]:

•	 Vectorize the drug
•	 Train an ADR classifier based on the drug’s vector

Traditionally, vectorization methods have characterized 
drugs by their surrounding properties, such as the chemi-
cal structure and target, and vectorization of each drug 
was performed separately. The connection between drugs 
is not generally considered, potentially resulting in loss 
of information. The KG approach provides an effective 
means to represent the correlation between data. When 
a drug and its surrounding attributes are represented by a 
KG, drugs can be connected through a common structure 
or property, and attributes can be connected through a 

common drug. When embedding the KG (vectorizing the 
nodes in the graph), the complex relationships between 
the nodes can be embedded into the vector at the same 
time, resulting in a drug vector with more information.

Our experimental results showed that an increase in 
the degree of KG embedding increased the model pre-
diction performance, indicating that the process of KG 
embedding can effectively embed information into the 
vector. While vectorizing drugs, the ADR and target were 
also vectorized. Therefore, we may also be able to rep-
licate the process for the prediction of drug targets and 
drug indications. By classifying the difference between 
drug and ADR vectors, a unified prediction model can 
be obtained without having to build individual prediction 
models for each ADR, greatly increasing the versatility of 
the model.

Conclusion
In this paper, we introduce a new knowledge graph 
embedding method to represent drugs and ADRs, then 
use a logistic regression classification model to predict 
whether there is a causal relationship between them. 
The experiment showed that the use of knowledge graph 
embedding can effectively encode drugs and ADRs. And 
the proposed ADRs prediction system is also very effec-
tive. We believe combined with knowledge graph, the 
information of drugs, ADRs and target proteins can be 
better represented, which is of great significance for the 
study of ADRs prediction. In future research, we will add 
the structure information of drugs and protein target 
to the knowledge graph, and use the longer path in the 
knowledge graph as the input of Word2Vec model, which 
may make the scope of information perceived by entities 
wider.
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