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Abstract
This cohort analysis investigated the prevalence of nonalcoholic fatty liver dis-
ease (NAFLD) and NAFLD with fibrosis at different stages, associated clini-
cal characteristics, and comorbidities in the general United States population 
and a subpopulation with type 2 diabetes mellitus (T2DM), using the National 
Health and Nutrition Examination Survey (NHANES) database (2017–2018). 
Machine learning was explored to predict NAFLD identified by transient  
elastography (FibroScan®). Adults ≥20 years of age with valid transient  
elastography measurements were included; those with high alcohol con-
sumption, viral hepatitis, or human immunodeficiency virus were excluded. 
Controlled attenuation parameter ≥302 dB/m using Youden’s index defined 
NAFLD; vibration-controlled transient elastography liver stiffness cutoffs were 
≤8.2, ≤9.7, ≤13.6, and >13.6 kPa for F0–F1, F2, F3, and F4, respectively. 
Predictive modeling, using six different machine-learning approaches with 
demographic and clinical data from NHANES, was applied. Age-adjusted 
prevalence of NAFLD and of NAFLD with F0–F1 and F2–F4 fibrosis was 
25.3%, 18.9%, and 4.4%, respectively, in the overall population and 54.6%, 
32.6%, and 18.3% in those with T2DM. The highest prevalence was among 
Mexican American participants. Test performance for all six machine-learning 
models was similar (area under the receiver operating characteristic curve, 
0.79–0.84). Machine learning using logistic regression identified male sex, 
hemoglobin A1c, age, and body mass index among significant predictors of 
NAFLD (P ≤ 0.01). Conclusion: Data show a high prevalence of NAFLD with 
significant fibrosis (≥F2) in the general United States population, with greater 
prevalence in participants with T2DM. Using readily available, standard  
demographic and clinical data, machine-learning models could identify  
subjects with NAFLD across large data sets.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is a common 
condition, with global prevalence in adults estimated 
at 25.2%.[1] Prevalence in the United States popula-
tion is estimated at ≥34.0%,[2] with the more severe,  
progressive phenotype, nonalcoholic steatohepatitis 
(NASH), estimated to affect approximately 3%–5%.[3,4] 
An increased prevalence of NAFLD/NASH in recent 
years is associated with increases in obesity, type 2 
diabetes mellitus (T2DM), and metabolic syndrome.[5–7] 
T2DM is a major risk factor for NAFLD,[6,8] with global 
prevalence of NAFLD and NASH estimated at 55.5% 
and 37.3%, respectively, among patients with T2DM 
and a reported prevalence of comorbid NAFLD in the 
United States of 51.8%.[8] However, there is hetero-
geneity within the United States, as suggested by a  
recent prospective study in Texas that reported NAFLD 
in 37.5% of participants overall and in 69.7% of partici-
pants with diabetes.[9]

Previous studies have investigated the prevalence 
of NAFLD in the United States population, using the 
National Health and Nutrition Examination Survey 
(NHANES),[1,2] and relied on diagnostic techniques with 
inherent limitations, such as standard ultrasound and 
noninvasive biomarkers.[10] Liver ultrasound transient 
elastography (FibroScan®) is an accurate and nonin-
vasive method to determine the level of steatosis and 
fibrosis in patients with NAFLD; it is based on controlled 
attenuation parameter (CAP) and liver stiffness mea-
sures, using vibration-controlled transient elastography 
(VCTE).[11] Transient elastography data are now available 
in the NHANES database (2017–2018),[12] enabling real-
world analysis of the prevalence of NAFLD and fibrosis 
in a representative sample of the United States popula-
tion. Two recent analyses of these data demonstrated 
prevalence of fatty liver disease as 35.1%–47.8%[13] and 
prevalence of NAFLD in participants with diabetes as 
73.2%–84.5%.[14] These studies were limited by a lack 
of accurate alcohol consumption data and low cutoffs 
for CAP[11] that may have led to misclassification of par-
ticipants and high prevalence estimates. Therefore, the 
true prevalence of NAFLD in the general United States 
population and those with T2DM remains uncertain.

Despite the high prevalence, screening for NAFLD 
is not currently recommended, even in high-risk 
groups such as those with T2DM.[15] Although liver 
biopsy is the gold standard for NASH diagnosis,  
because of its invasiveness[16] it is not without risk; addi-
tionally, sampling and interobserver and intraobserver  
variability[17,18] make it impractical for use in a broad 
population. Furthermore, limitations in current non-
invasive diagnostic techniques hamper diagnosis,[10] 
with a reliance on ultrasound data and epidemiological 
modeling to project the scale of the problem.[19] A better 
understanding of patients with NAFLD who are at risk 
of progressing will help to identify the population with 

the greatest need for intervention and may help reduce 
disease-related complications and mortality driven by 
NASH with significant fibrosis.[20] Noninvasive tools 
to effectively identify and monitor this population are 
a major unmet need.[21] Machine-learning models may 
be an effective method to identify patients. Although 
still in its infancy, machine learning is a promising tool 
in the NASH field, with applications in the assess-
ment of electronic medical records, liver imaging, or  
histology assessment to improve diagnosis and to  
identify patients at risk of progression.[22] In the cur-
rent cohort analysis, we investigated the prevalence of 
NAFLD with fibrosis and the associated clinical charac-
teristics and comorbidities in the general United States 
population and a subpopulation with T2DM assessed 
by transient elastography (FibroScan®) in the NHANES 
database (2017–2018).[23] Using demographic and  
clinical data from NHANES, we explored machine 
learning as a means to predict NAFLD in participants 
at high risk, identified by CAP (FibroScan®).

MATERIALS AND METHODS

Study design and participants

NHANES is a continuous nationally representative sur-
vey of around 5000 United States citizens a year that is 
conducted by the National Center for Health Statistics 
at the Centers for Disease Control and Prevention 
(CDC).[24] The survey was approved by the National 
Center for Health Statistics Research Ethics Review 
Board at the CDC, and consent was documented from 
all participants. The current cohort study used an-
onymized data extracted from the NHANES 2017–2018 
database, which included liver ultrasound transient 
elastography (FibroScan®) data.[12]

We included adult participants ≥20 years of age at 
the date of transient elastography scan, with or with-
out NAFLD, for whom valid reproducible FibroScan® 
measurements (>10 measurements with an interquar-
tile range of <30% from the median) were available. 
Participants were excluded if they were pregnant or 
unsure if they were pregnant at the time of their ex-
amination or if they did not have a FibroScan® CAP 
or fibrosis score. Participants were excluded from the 
NAFLD analysis population if they were considered high  
alcohol consumers (defined as an average daily con-
sumption of ≥20 g/day and ≥30 g/day for women and 
men, respectively,[25] based on the NHANES alcohol 
use survey[26]) or if they had other potential causes of 
liver disease, including viral hepatitis (defined as pos-
itive for serum hepatitis B surface antigen or hepatitis  
C antibody or if hepatitis B or C was reported) or human 
immunodeficiency virus (HIV) (reported or serology).

NAFLD was defined as CAP ≥302 dB/m, which was 
previously identified as the optimal cutoff for accurate 
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diagnosis of hepatic steatosis ≥5% using Youden’s 
index, with a sensitivity and specificity of 0.80 (95% 
confidence interval [CI], 0.75–0.84) and 0.83 (95% CI, 
0.69–0.92), respectively.[11] Higher or lower cutoffs, 
respectively, improved specificity and sensitivity 
but resulted in underestimation or overestimation of 
the prevalence of steatosis.[11] Fibrosis grades were 
determined by liver stiffness, using VCTE with cutoffs of 
8.2 kPa, 9.7 kPa, and 13.6 kPa for fibrosis grades ≥F2, 
≥F3, and F4, respectively, optimized using Youden’s 
index.[11] Participants without NAFLD were defined as 
CAP <302  dB/m and VCTE <8.2  kPa. Those falling  
into an intermediary range with marginal steatosis 
(274–302  dB/m) and fibrosis (VCTE  8.2–13.6  kPa) 
were defined as borderline steatosis. CAP and VCTE 
criteria for stratification are shown in Table 1. Patients 
with T2DM were defined as those with a diagnosis of or 
receiving treatment for diabetes.

NHANES analyses

Participants were analyzed as the overall population 
with transient elastography data or categorized based 
on age, ethnicity, or whether they had previously been 
diagnosed with T2DM. Participants were stratified 
based on the presence of steatosis and fibrosis stage, 
as described above.

After participants with heavy alcohol use, viral  
hepatitis, or HIV were excluded, the age-adjusted prev-
alence of NAFLD and its fibrosis stages was expressed 
as a percentage of the overall population and of the 
T2DM subpopulation. The prevalence of fibrosis in the 
subpopulations with NAFLD and NAFLD with T2DM 
was assessed. The prevalence of NAFLD was also 
assessed in the following subpopulations: within age 
groups 20–39, 40–59, 60–74, and 75+ years of age in 
the overall population and in those with T2DM; within 

ethnic groups in the overall population. Demographics, 
clinical characteristics, and metabolic comorbidities of 
participants with and without NAFLD and with NAFLD 
with mild (stage F0–F1) versus significant (stage  
F2–F3) fibrosis, based on CAP and VCTE cutoffs 
(Table 1), were compared in the overall population and 
in those with T2DM to identify any imbalances among 
the subgroups. Participants with fibrosis stage F4 were 
excluded from this analysis due to the small sample size.

Age-adjusted measures corresponding to the pro-
portion of adults 20–39, 40–59, and ≥60 years of age 
in the United States 2010 population[27] were calculated 
for all analyses except prevalence of NAFLD by age, for 
which weighted prevalence was calculated. Data are 
presented descriptively.

NAFLD prediction using machine learning

Predictive modeling using different machine-learning 
approaches with demographic and clinical data from 
NHANES was applied to test the ability to predict NAFLD 
in participants identified by transient elastography. The 
analysis population included participants ≥20 years of 
age with valid transient elastography measurements 
with or without NAFLD and excluded those with high  
alcohol consumption, viral hepatitis, and HIV, as de-
scribed above. Using a supervised learning approach, 
data were split randomly between training and validation 
sets (75% training, 25% validation) to tune and test model 
parameters. Six different machine-learning models were 
fit to the training set: two interpretable models (logistic 
regression and elastic net), two tree-based methods 
(conditional single-classification tree and random forest 
[RF]), and two nonlinear, noninterpretable approaches 
(support vector machine [SVM] and neural network).

Over 100 features were input to the models, including 
demographic characteristics (e.g., age, race/ethnicity, 

TA B L E  1   NAFLD populations and definitions

Population CAP (dB/m)
Fibrosis score,  
VCTE (kPa)

Overall  
population, na

T2DM 
subpopulation, na

Non-NAFLD (simple steatosis) <302 <8.2 2605 353

NAFLD ≥302 – 1226 468

NAFLD F0–F1 ≥302 ≤8.2 875 310

NAFLD F2 ≥302 8.2–9.7 78 40

NAFLD F3 ≥302 9.7–13.6 84 42

NAFLD F4 (cirrhosis) ≥302 >13.6 57 38

Cryptogenic cirrhosis <302 >13.6 33 11

Borderline steatosisb 274–<302 8.2–13.6 33 11

Control <274 8.2–13.6 66 16

Abbreviations: CAP, controlled attenuation parameter; NAFLD, nonalcoholic fatty liver disease; T2DM, type 2 diabetes mellitus; VCTE, vibration-controlled 
transient elastography.
aUnweighted.
bDid not meet criteria for NAFLD using CAP but met criteria for fibrosis using VCTE.
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sex, marital status, and education), clinical character-
istics (e.g., body mass index [BMI]), clinical character-
istics based on laboratory parameters (e.g., glycated 
hemoglobin [HbA1c], aspartate aminotransferase 
[AST], alanine aminotransferase [ALT], and bilirubin), 
and comorbidities (e.g., diabetes and hypertension). 
Ten-fold cross-validation with five replications was 
used to tune and select the optimal parameters in each 
model. Covariates for which less than 10% of data were 
missing were imputed using an RF approach. The most 
appropriate models were selected using area under the 
receiver operating characteristic curve (AUROC), and 
sensitivity, specificity, and predictive values were used 
to evaluate model performance using the test data.

RESULTS

Participants

The survey data set included 5494 participants who had 
a completed transient elastography assessment.[23] Of 
these, 4471 participants ≥20 years of age with valid re-
producible transient elastography measurements were 
included in the overall population in this cohort study. 

After 640 participants with high alcohol consumption, 
hepatitis, and HIV were excluded, 1226 participants 
were classified as NAFLD, as determined by CAP and 
VCTE, while the remaining 2605 were non-NAFLD 
based on CAP score. In total, 908 of the 4471 partici-
pants in the overall population had a diagnosis of T2DM 
(T2DM subpopulation), of whom 468 had NAFLD 
(Figure 1).

In participants with NAFLD in the overall population 
and in the T2DM subpopulation, respectively, the un-
weighted mean (SD) age was 54.8 (15.8) and 61.0 (12.3) 
years, and a slight majority (55.6% and 54.1%) were 
men. A sizable proportion of participants in the overall 
population and in the T2DM subpopulation was of non-
Hispanic White ethnicity (36.2% and 32.7%, respec-
tively), followed by Mexican American (18.2% each) and 
non-Hispanic Black (18.1% and 19.4%, respectively).

NHANES analyses

Prevalence of NAFLD and fibrosis

The age-adjusted prevalence of NAFLD in the overall 
United States population ≥20 years of age was 25.3% 

F I G U R E  1   Participant disposition. aComplete transient elastography (FibroScan®) examination was defined as a fasting time of ≥3 
hours, ≥10 complete stiffness (E) measures, and a liver stiffness interquartile range/median E < 30%. bHeavy drinker was defined as 
drinking an average of ≥20 g/day and ≥30 g/day for women or men, respectively, based on the NHANES alcohol use survey. cNAFLD 
was defined as CAP ≥302 and VCTE ≥8.2, including cryptogenic cirrhosis (CAP <302, VCTE >13.6), borderline steatosis (CAP 274–302, 
VCTE 8.2–13.6), and control (CAP <274, VCTE 8.2–13.6). dNon-NAFLD was defined as simple steatosis, CAP <302, and VCTE <8.2. 
Abbreviations: CAP, controlled attenuation parameter; E, ≥10 complete stiffness measures; HIV, human immunodeficiency virus; NAFLD, 
nonalcoholic fatty liver disease; NHANES, National Health and Nutrition Examination Survey; T2DM, type 2 diabetes mellitus; VCTE, 
vibration-controlled transient elastography

Subjects from NHANES 2017–2018
with completea FibroScan® examination

(N = 5494)

Viral hepatitis and HIV (n = 145)

NAFLDc

(n = 2605)
Non-NAFLDd

T2DM subpopulation
(n = 908)

(n = 1226)

NAFLDc

(n = 353)
Non-NAFLDd

(n = 468)

Heavy drinkersb (n = 495)
Excluded:

Viral hepatitis and HIV (n = 41)
Heavy drinkersb (n = 46)

Excluded:

(n = 4471)
aged ≥20 years with FibroScan® data

Overall analysis population
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(95% CI, 23.2%–27.4%), based on transient elastogra-
phy data. The age-adjusted prevalence of NAFLD with 
mild fibrosis F0–F1 and with significant fibrosis F2–F4 
was 18.9% (95% CI, 17.0%–20.7%) and 4.4% (F2, 
1.5% [95% CI, 0.9%–2.1%]; F3, 1.5% [95% CI, 0.9%–
2.2%]; F4, 1.4% [95% CI, 0.8%–1.9%]), respectively 

(Figure 2A). In the T2DM subpopulation, the age-
adjusted prevalence of NAFLD was considerably 
higher at 54.6% (95% CI, 47.5%–61.7%), with a higher 
prevalence of mild F0–F1, 32.6% (95% CI, 27.2%–
38.0%), and significant F2–F4, 18.3% (F2, 6.0% [95% 
CI, 2.2%–9.9%]; F3, 4.5% [95% CI, 1.8%–7.3%]; F4, 

F I G U R E  2   Age-adjusted prevalence of NAFLD and fibrosis. (A) NAFLD and fibrosis stages in the overall population and 
(B) participants with T2DM. (C) Fibrosis among participants with NAFLD in the overall population and (D) participants with T2DM. 
(E) NAFLD by ethnicity. Abbreviations: CI, confidence interval; NAFLD, nonalcoholic fatty liver disease; T2DM, type 2 diabetes mellitus
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7.7% [95% CI, 2.1%–13.3%]), fibrosis noted in these 
participants compared with the overall population 
(Figure 2B). When the age-adjusted prevalence of fi-
brosis was assessed as a percentage of the NAFLD 
populations (Figure 2C,D), a higher prevalence of sig-
nificant fibrosis (33.5%; grade F2–F4) was observed in 
the T2DM subpopulation with NAFLD (F2, 11.1% [95% 
CI, 4.8%–17.5%]; F3, 8.3% [95% CI, 3.6%–12.5%]; F4, 
14.1% [95% CI, 4.4%–24.4%]; Figure 2D) compared 
with the overall NAFLD population (17.4%; F2, 5.9% 
[95% CI, 3.4%–8.3%]; F3, 6.1% [95% CI, 3.5%–8.2%]; 
F4, 5.4% [95% CI, 3.0%–7.6%]; Figure 2C).

In the overall population, the weighted prevalence of 
NAFLD was lowest at 21.3% (95% CI, 18.3%–24.2%) 
in the 20–39-year-old age group compared with a 
prevalence of approximately 36.0% in the 40–59, 
60–74, and ≥75 age groups. Conversely, among partic-
ipants with T2DM, the highest prevalence (70.5%; 95% 
CI, 56.3%–84.7%) was noted in the 20–39-year-old age 
group. Prevalence in participants with T2DM who were 
40–59, 60–74, and ≥75 years of age was 68.0% (95% 
CI, 59.2%–76.8%), 62.4% (95% CI, 55.6%–69.1%), and 
52.4% (95% CI, 40.5%–64.3%), respectively.

The age-adjusted prevalence of NAFLD was also 
assessed within individual ethnic groups in the overall 
population. Prevalence ranged from 20.0% to 36.0%, 
with the highest prevalence among Mexican American 
participants (Figure 2E).

Demographics, clinical characteristics, and 
metabolic comorbidities associated with 
NAFLD with/without fibrosis

Age-adjusted demographics, clinical characteristics, 
and metabolic comorbidities in participants with and 
without NAFLD, and with NAFLD with F0–F1 and F2–
F3 fibrosis, in the overall population and in those with 
T2DM are shown in Table 2. Across all groups, the mean 
age was similar, and the greatest proportion of partici-
pants was of non-Hispanic White ethnicity. NAFLD was 
more prevalent in male individuals in the overall popula-
tion, and the proportion increased with fibrosis stage. 
In the T2DM subpopulation, a slight majority of partici-
pants with NAFLD and NAFLD with mild fibrosis were 
female participants; however, significant fibrosis (≥F2) 
was more prevalent in the male participants.

In the NAFLD group, 73.9% of participants had a 
BMI ≥30 kg/m2 and a mean (standard error [SE]) waist 
circumference of 113.5 (1.05) cm. The mean (SE) 
CAP measurement was 333.5 (2.3) dB/m, the fibro-
sis-4 index (Fib-4) was 0.9 (0.02), the NAFLD fibrosis 
score was −1.3 (0.05), the liver stiffness measurement 
on FibroScan® was 7.9 (0.3) kPa, and the FibroScan®-
aspartate aminotransferase (FAST) score was 0.21 
(0.01). Participants in this group had a history of (or had 
received treatment for) hypertension (44.6%), diabetes 

(29.6%), or hypercholesterolemia (43.1%). Compared 
with participants without NAFLD, those with NAFLD 
generally had elevated levels of ALT, AST, alkaline 
phosphatase, gamma-glutamyl transpeptidase (GGT), 
HbA1c, and triglycerides, and reduced high-density 
lipoprotein (HDL) cholesterol. Clinical characteristics 
were generally more pronounced in the subpopulation 
with F2–F3 fibrosis compared with F0–F1 fibrosis, as 
expected. Most participants with F2–F3 fibrosis (93.7%) 
had a BMI ≥30 kg/m2, and this group also had elevated 
ALT, AST, GGT, and HbA1c, a greater mean FAST 
score, and a generally greater prevalence of metabolic 
comorbidities compared with those with mild fibrosis 
(Table 2).

Clinical characteristics were also generally more 
pronounced in the T2DM subpopulation compared with 
the overall population. In the T2DM subpopulation with 
NAFLD, 81.9% of participants had a BMI ≥30 kg/m2 and 
a mean (SE) waist circumference of 121.2 (1.67) cm. 
Among liver disease features, the mean (SE) CAP mea-
surement was 347.8 (2.74) dB/m, the Fib-4 index was 
0.97 (0.04), the NAFLD fibrosis score was −0.22 (0.13), 
the liver stiffness measurement on FibroScan® was 
10.3 (1.74) kPa, and the FAST score was 0.28 (0.02). In 
addition to diabetes, a high proportion of participants in 
this group had a history of (or had received treatment 
for) hypertension (50.6%) or hypercholesterolemia 
(52.6%). Similar to the comparison of participants with 
and without NAFLD in the overall population, those 
with T2DM and NAFLD generally had elevated levels 
of ALT, AST, alkaline phosphatase, GGT, HbA1c, and 
triglycerides, and reduced HDL cholesterol compared 
with participants with T2DM without NAFLD. These 
clinical characteristics were generally seen at the high-
est levels in the subpopulation with T2DM and F2–F3 
fibrosis compared with other groups. Most participants 
with T2DM and F2–F3 fibrosis (91.6%) had a BMI ≥30 
kg/m2, and this group also had the highest levels of 
liver-related laboratory parameters, with elevated ALT, 
AST, and GGT compared with those with T2DM and 
F0–F1 fibrosis, a greater mean FAST score, and a 
greater prevalence of hypercholesterolemia and isch-
emic heart disease compared with any other group 
(Table 2).

Machine learning

Predictive modeling using six different machine-
learning approaches was applied to data from 3831 
participants with and without NAFLD to test the abil-
ity to predict NAFLD using demographic and clini-
cal data from NHANES in participants identified by 
transient elastography. The training set included 
data from 2874 participants, and the remaining 957 
were included in the test set. The test performance 
of the six machine-learning models was very similar 
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with respect to predictive ability. AUROC for test per-
formance ranged between 0.79 and 0.84 (Figure 3; 
Table 3), with sensitivity and specificity for predictive 
performance ranging between 0.52 and 0.71 and 0.78 
and 0.90, respectively (Table 3). Logistic regression 
was selected as the model of choice to predict NAFLD 
in the general population due to its simplicity, ease 
of interpretation, and similar performance compared 
with the other models.

Using logistic regression, the risk of having NAFLD 
was increased by 33% in men versus women (odds ratio 
[OR], 1.33; 95% CI, 1.07–1.66; P = 0.010) and with a  
1-point increase in HbA1c (OR, 1.33; 95% CI, 1.21–1.46; 
P < 0.001). Other variables that were statistically signifi-
cant predictors of NAFLD using logistic regression were 
a ≥1-point increase in age, BMI, waist circumference, 
AST, alkaline phosphatase, diastolic blood pressure, 
HDL, and triglycerides (all P < 0.05; Table 4).

F I G U R E  3   Test performance by AUROC for the six machine-learning methods. Abbreviations: AUC, area under the curve; AUROC, 
area under the receiver operating characteristic curve; Ctree, classification tree; ElasticNet, elastic network; LogReg, logistic regression; 
NeuralNet, neural network; RF, random forest; SVM, support vector machine

TA B L E  3   Predictive performance of the six machine-learning models

Model AUROC (95% CI) Accuracy Sensitivity Specificity

Predictive value

Positive Negative

LogReg 0.83 (0.81, 0.86) 0.78 0.55 0.89 0.70 0.81

Ctree 0.79 (0.76, 0.82) 0.75 0.53 0.85 0.63 0.80

ElasticNet 0.84 (0.81, 0.86) 0.78 0.56 0.89 0.70 0.81

RF 0.83 (0.80, 0.86) 0.79 0.61 0.88 0.70 0.83

SVM 0.83 (0.80, 0.85) 0.78 0.52 0.90 0.72 0.80

NeuralNet 0.83 (0.80, 0.85) 0.75 0.71 0.78 0.60 0.85

Abbreviations: AUROC, area under the receiver operating characteristic curve; CI, confidence interval; Ctree, classification tree; ElasticNet, elastic network; 
LogReg, logistic regression; NeuralNet, neural network; RF, random forest; SVM, support vector machines.
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DISCUSSION

In this real-world cohort study of the NHANES 2017–
2018 data set, we found that NAFLD is highly preva-
lent in the United States adult population, excluding 
high alcohol consumers. The prevalence of NAFLD by 
transient elastography was estimated at 25.3%, with a 
greater prevalence of 54.6% among participants with 
T2DM. The NAFLD group at risk of progression with 
significant fibrosis (≥F2) that may require pharmaco-
logic treatment[15,28] was estimated to be 17.4% in the 
entire NAFLD population and 33.5% among those 
with NAFLD and T2DM. Of note, although non-White 
Hispanics formed the largest ethnic group among par-
ticipants with NAFLD, the greatest prevalence of NAFLD 
(35.5%) was observed among Mexican Americans 
in our analysis, with the lowest prevalence among 
non-Hispanic Black participants, as reported.[29–31] 
Analyses also highlighted clinical characteristics as-
sociated with NAFLD with fibrosis, which were gen-
erally more pronounced in the T2DM subpopulation 
and included higher FAST score, increased BMI, and 
elevated ALT, AST, GGT, and HbA1c. Using a logistic 
regression machine-learning model, several clinical 
characteristics were identified as significant predictors 
of NAFLD. These results may inform screening strate-
gies, health regulators, and access to treatment as they 
provide real-world size estimates of the NAFLD popu-
lation and a potential means of identifying this popula-
tion using noninvasive methods and readily available, 
standard demographic and clinical data.

The results presented are consistent with docu-
mented estimates for global prevalence of NAFLD in 
the general population[1] and in those with T2DM[8] 
but are slightly lower than previously documented es-
timates for the United States population,[2,13,14] which 
may be due to methodologic differences in diagnostic 

modalities,[2] participant stratification, and CAP cut-
offs.[13,14] One study using transient elastography data 
from the NHANES 2017–2018 data set did not take 
alcohol consumption data into account[13] as it was 
not published by NHANES at the time of this publica-
tion. In a second study, alcohol use was determined 
using 24-hour dietary recall with cutoffs of >28 g/day 
for women and >42 g/day for men; this may have led to 
inaccuracies and misclassification of participants with 
NAFLD.[14] In the current study, alcohol consumption 
was determined from the recently published NHANES 
alcohol use questionnaire,[26] which provides more 
complete information than dietary recall, enabling ex-
clusion of participants with high alcohol consumption 
as a potential cause of liver disease based on cutoffs 
of ≥20 g/day and ≥30 g/day for women and men, re-
spectively, defined from epidemiologic studies.[25,32] 
In addition, both previous analyses of NHANES  
2017–2018 data used CAP cutoffs of ≥263 and ≥285 dB/m  
to define NAFLD in order to optimize for sensitivity and 
specificity, respectively.[13,14] This may have led to es-
timations of NAFLD prevalence being disproportion-
ally higher than any previous reports and indicates the 
potential pitfalls of considering CAP cutoffs based on 
published data in the absence of defined limits. In con-
trast, in the current study we used a CAP cutoff of ≥302 
dB/m, which was previously identified as the optimal 
cutoff for accurate diagnosis of hepatic steatosis ≥5% 
using Youden’s index, with a sensitivity and specificity 
of 0.80 (95% CI, 0.75–0.84) and 0.83 (95% CI, 0.69–
0.92), respectively.[11] Compared with other studies,[13,14] 
our study also provided further data on clinical char-
acteristics, including FAST score, in addition to age-
related distribution differences in NAFLD prevalence in 
this most recent NHANES cycle. Of note, in contrast 
to the overall population where the lowest prevalence 
was among the younger age group, the highest prev-
alence (70.5%) in participants with T2DM was in the 
20–39-year-old age group. Further studies are needed 
to investigate this observation; however, this trend con-
firms the seriousness of this coexisting condition at an 
early age and supports the evidence for early screen-
ing for NAFLD in patients with T2DM.[33]

The stage of liver fibrosis is an important predictor of 
outcome in patients with NAFLD, and the risk of liver-
related mortality has been shown to increase with in-
creasing fibrosis stage.[20] Our age-adjusted analysis 
highlighted a prevalence of significant fibrosis (≥F2) 
of 17.4% among participants with NAFLD, which is 
higher than previous estimates based on the NAFLD 
fibrosis score (3.2%)[2] or transient elastography 
value ≥8 kPa (13.8%).[13] Prior epidemiological mod-
eling suggested that the NASH subgroup within the 
NAFLD cohort had mostly early stages of fibrosis.[19] 
However, the cutoffs used in the current study sug-
gest a relatively consistent distribution of fibrosis 
severity among prevalent cases, which implies that 

TA B L E  4   Machine-learning predictors of NAFLD using logistic 
regression

Clinical characteristic ORb 95% CI P value

Sex; male versus female 1.33 1.07–1.66 0.010

HbA1c 1.33 1.21–1.46 <0.001

BMI 1.06 1.03–1.09 <0.001

Waist circumference 1.05 1.03–1.06 <0.001

AST 1.03 1.02–1.04 <0.001

Age 1.01 1.01–1.02 <0.001

Diastolic blood pressure 1.01 1.00–1.02 0.010

Alkaline phosphatase 1.00 1.00–1.01 0.018

Triglycerides 1.00 1.00–1.00 <0.001

HDL 0.99 0.98–1.00 0.008

Abbreviations: AST, aspartate aminotransferase; BMI, body mass index; 
CI, confidence interval; HbA1c, hemoglobin A1C; HDL, high-density 
lipoprotein; NAFLD, nonalcoholic fatty liver disease; OR, odds ratio.
aBased on a 1-point increase for all numeric covariates.
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many more patients could be at short-term risk of 
progression to cirrhosis than previously thought. The 
reasons for this difference are unknown but may re-
flect the difficulties of modeling the epidemiology of 
a disease with limited available information. Among 
participants with NAFLD and T2DM in our analysis, 
the prevalence of significant fibrosis was higher at 
33.5% compared with 15.7%–24.6% in another study 
using the same data set.[14] The high prevalence of 
significant fibrosis in the general United States popu-
lation and in patients with T2DM highlights the need 
for efficient noninvasive tools to improve diagnosis 
rates and for earlier detection of patients that would 
benefit from further assessment.[34]

Leveraging the wealth of standard demographic 
and clinical data available in the NHANES data set, 
we applied machine learning to predict NAFLD in par-
ticipants at high risk as identified by transient elas-
tography CAP (FibroScan®). The test and predictive 
performance of six different models were noticeably 
similar in terms of their ability to identify NAFLD. 
Using logistic regression as the most simple and ap-
propriate model, several clinical characteristics were 
identified as significant predictors of NAFLD, including 
male sex, as noted previously,[9,13,15] and increases in 
age, diastolic blood pressure, BMI, waist circumfer-
ence, HbA1c, and liver-related metabolic parameters, 
including AST, alkaline phosphatase, HDL, and tri-
glycerides, consistent with the associated increased 
prevalence of obesity, T2DM, and metabolic syn-
drome.[5–7] Although an increase in HDL in relation to 
the presence of NAFLD may appear counterintuitive, 
it is possible to see such an outcome with machine-
learning models in the presence of multiple covariates 
with potential collinearity. We used elastic net with 
cross-validation as an approach to incorporate vari-
ables with possible colinear variables, with the aim 
of increasing predictive power and performance, and 
HDL was still retained by the model. These results add 
to the growing body of evidence supporting the use 
of machine learning for diagnosis, staging, and risk 
stratification of patients with NAFLD,[22] with potential 
to replace more costly, invasive, or less accurate di-
agnostic tools to identify patients requiring further as-
sessment and treatment. Further studies are required 
to investigate the use of machine-learning models for 
screening and staging of subjects with NASH to iden-
tify the best models for future use and to integrate 
these into standard patient care.

This study had several limitations. Due to the 
nature of NHANES and limitations in the data, no 
patient had biopsy confirmation of NAFLD/NASH, 
and other potential causes of liver disease, including 
less common causes of metabolic and genetic liver 
disease, such as autoimmune hepatitis, primary bili-
ary cholangitis, and hemochromatosis, could not be 
ruled out. Furthermore, serial measurements over 

time were not possible. Sample sizes for some groups 
were small; because of this, machine-learning pre-
dictive models were not investigated for NASH and 
fibrosis stages. In relation to machine learning, the 
predictive accuracy of all six models tested was in the 
range of 0.75 to 0.79, which may be considered low. 
However, using AUROC as a more precise predictive 
measure,[35] the test performance of all six models was 
similarly accurate (range, 0.79–0.84). Self-reported 
alcohol consumption, as documented in the NHANES 
alcohol use survey,[26] may have underestimated true 
alcohol consumption. However, these data are more 
comprehensive than those considered in an earlier 
study.[14] Further limitations include representation of 
the United States population over a short time frame 
between 2017 and 2018, which is now several years 
out of date and has an overrepresentation of partici-
pants ≥60 years of age and of African American and 
Hispanic participants,[24] the latter being a population 
with a high prevalence of NAFLD.[9,13,31] To account for 
this, we analyzed the prevalence of NAFLD within indi-
vidual ethnic groups, showing the highest prevalence 
in Mexican Americans. A lack of defined guidelines on 
cutoffs for CAP and VCTE may also be a limitation of 
this analysis; however, we used cutoffs defined using 
Youden’s index as optimal for detection of hepatic ste-
atosis and fibrosis.[11] These cutoffs are considered 
one of the most accurate in the literature, with tran-
sient elastography and liver biopsies performed in a 
prospective approach within 2 weeks of each other, 
demonstrating consistency in testing diagnostic preci-
sion.[11] We also investigated data in the cutoff range 
of 274 to 302 dB/m, which we termed borderline ste-
atosis, representing the lowest cutoff and the optimal 
cutoff determined by Youden’s index, respectively.[11] 
This group was very small (0.6% of the age-adjusted 
population with NAFLD) and would not have impacted 
the overall prevalence of NAFLD with or without fi-
brosis. It should also be noted that individual fibro-
sis scores were interpreted based on differences in 
subpopulations defined by these cutoffs. The large 
real-world cohort is a strength of this study, with the 
recent FibroScan® data enabling a true determination 
of the prevalence of NAFLD in the United States. A 
further strength is the analysis of clinical character-
istics, including FAST score in participants with and 
without T2DM and with NAFLD with mild and signifi-
cant fibrosis.

In conclusion, data show a high prevalence of 
NAFLD with significant fibrosis (≥F2) in the general 
United States  population, with a greater prevalence 
in participants with T2DM. In addition to an increased 
risk of all-cause and liver-related mortality,[20] patients 
with significant fibrosis are at high risk of progress-
ing to end-stage liver disease, with NASH noted as 
one of the leading causes of liver transplant in the 
United States.[36] Despite the prevalence, screening 
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for NAFLD with or without fibrosis is not currently rec-
ommended in clinical practice. Transient elastography 
(FibroScan®) is a noninvasive tool used to identify 
subjects at risk of NASH with fibrosis. Using readily 
available, standard demographic and clinical data, 
machine-learning models may be used to identify sub-
jects with NAFLD across large data sets in computer-
ized health care systems, with the potential to replace 
more costly, less accurate, or invasive diagnostic 
tools. Accurate identification of subjects at high risk 
of developing NASH may help to mitigate the growing 
epidemic, reducing the burden on public health, health 
care systems, and payers.
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