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ABSTRACT

The driver genetic aberrations collectively regulate
core cellular processes underlying cancer develop-
ment. However, identifying the modules of driver ge-
netic alterations and characterizing their functional
mechanisms are still major challenges for cancer
studies. Here, we developed an integrative multi-
omics method CMDD to identify the driver modules
and their affecting dysregulated genes through char-
acterizing genetic alteration-induced dysregulated
networks. Applied to glioblastoma (GBM), the CMDD
identified a core gene module of 17 genes, including
seven known GBM drivers, and their dysregulated
genes. The module showed significant association
with shorter survival of GBM. When classifying driver
genes in the module into two gene sets according to
their genetic alteration patterns, we found that one
gene set directly participated in the glioma pathway,
while the other indirectly regulated the glioma path-
way, mostly, via their dysregulated genes. Both of
the two gene sets were significant contributors to
survival and helpful for classifying GBM subtypes,
suggesting their critical roles in GBM pathogenesis.
Also, by applying the CMDD to other six cancers,
we identified some novel core modules associated
with overall survival of patients. Together, these re-
sults demonstrate integrative multi-omics data can
identify driver modules and uncover their dysregu-
lated genes, which is useful for interpreting cancer
genome.

INTRODUCTION

Genetic alteration was a major mechanism underlying the
transformation of normal cells to cancerous cells (1,2).
Driver alterations can cooperatively disrupt a cascade of
crucial biological pathways and thus provide cells with sig-
nificant growth advantages (3,4). However, due to the ex-
tensive complexity of genetic alterations in cancer genome,
how to identify the driver modules and characterize their
functional mechanism during carcinogenesis is still a major
challenge.

Initially, multiple computational methods were proposed
to identify driver genes based on somatic mutation rates in
cancer patient populations (5–7). With the whole-genome
measurements of somatic mutations and copy number vari-
ants in the mass of cancer samples, several cancer studies
revealed that driver genetic alterations involved in the same
biological pathways showed mutual exclusivity (8,9). Based
on the observation of mutual exclusivity, some computa-
tional methods were developed to identify causal gene mod-
ules in which genomic alterations of their member genes
cover the majority of cancer samples and exhibit significant
mutual exclusivity (10–13). Similarly, there are also some
computational methods based on co-occurrence alteration
events for identifying driver genes (14,15). Recently, com-
bination of DNA copy number/mutation profiles and gene
expression profiles were used to find driver genes by quanti-
fying the effect of genetic alterations on the transcriptional
changes (16,17). For instance, Masica et al. (18) proposed a
fisher-based method to identify driver genes by calculating
the correlations between somatic mutations and expression
of outlying genes. DriverNet was developed to find the min-
imum number of driver genes whose genetic alterations can
explain transcriptional changes of all genes across cancer
samples, to the largest extent, by integrating the matched
genome and transcriptome data (19). Although many com-
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putational methods have been proposed to identify poten-
tial driver genetic alterations, it is very limited to understand
how driver genes result in extensive transcriptional changes
and in turn contribute to malignant phenotypes (20,21).

In general, gene expression can be regulated by multi-
layer factors such as copy number, methylation, transcrip-
tion factors (TFs) and miRNAs (22–24). Recurrent copy
number alterations of ∼76% genes exhibited significant cor-
relations with gene expression in glioblastoma (24). The
promoter methylation of genes can repress their own gene
expression, such as the methylation of O-6-methylguanine-
DNA methyltransferase (MGMT) in glioblastoma (25). In
addition, TFs like oncogenic v-myc avian myelocytomato-
sis viral oncogene homolog (MYC) were capable of shap-
ing tumor-specific gene expression profile (26). Also, most
miRNAs predominantly decrease the mRNA levels of their
targets by binding to 3′ untranslated region (UTR) (27).
These factors constitute a regulatory system for maintain-
ing homeostasis of normal cells (28–31). Diverse genetic al-
terations may coordinately disrupt the delicate balance by
perturbing different types of regulatory relationships (32),
which can finally lead to the transition from normal cell to
cancer cell (33,34). Based on the principle, Jornsten et al.
combined mRNA transcription regulation and turnover in
a steady-state condition and constructed a CNA-driven net-
work using lasso regression to identify driver copy num-
ber alterations (CNAs) and detect their effect on transcrip-
tion in glioblastoma (GBM) (35). Subsequently, an inte-
grative regression model further combined regulatory se-
quence information of TFs and miRNAs to explain the ex-
pression changes in each tumor sample, aiming to inferring
transcriptional and miRNA-mediated regulatory program
in GBM (36). However, little is known about the effect of
driver alterations on the complex regulatory mechanisms of
gene expression. Therefore, characterizing dysregulated net-
work induced by genetic alterations in cancer will not only
help us discover causal genes but also provide the details for
understanding the molecular mechanism of causal genes.

In this work, we proposed a systematic method, called
CMDD (Core Modules Driving Dysregulation in cancer)
to identify driver modules and their dysregulated genes
based on multilayer factor-mediated dysregulated networks
through integrating multi-dimensional genomic data in-
cluding DNA mutation, copy number, methylation, gene
expression and miRNA expression profiles, as well as reg-
ulatory networks and protein interaction network. We ap-
plied our method to GBM and identified a core module con-
sisting of 17 genes and their dysregulated genes. Seven well-
known GBM-associated genes were included in the module.
Moreover, we found that the module was significantly in-
volved in many cancer-related pathways and was associated
with survival. We further explored the dysregulated genes
associated with the module, and revealed that two genes
subsets participated in GBM-related important pathways
with different ways. Also, we applied CMDD to other types
of cancer and identified some novel cancer-associated mod-
ules.

MATERIALS AND METHODS

Multi-dimensional genomic data

The multi-dimensional GBM-associated data sets con-
taining DNA mutation, copy number, DNA methylation,
mRNA and miRNA expression data were collected from
TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). We
extracted a somatic mutation data (level 2) involving 291
GBM samples directly from TCGA. Through removing
silent mutations, a total of 8299 mutation genes were ob-
tained. For a CNV array data (SNP6.0) referring to 530
GBM samples, the segmentations were identified using the
circular binary segmentation method-based copy numbers
estimated by calculation of normalized log2-tranformed ra-
tios (level 3) (7). The level 3 data of DNA methylation data
of 296 samples detected by JHU-USC HumanMenthyla-
tion27 were downloaded and the average methylation value
for a given gene was calculated. The gene expression pro-
file of 12042 genes in 538 samples and the miRNA expres-
sion profile of 470 human miRNAs in 500 samples were ob-
tained. We also obtained clinical information of 465 GBM
samples. Finally, 121 GBM samples having all of these ge-
nomic data were determined.

MiRNA target interactions between 1909 miRNAs and
16708 genes were downloaded from the database miRecords
(37), which was an integrated miRNA-target resource. We
obtained experimentally validated TF-gene regulatory rela-
tionships from the TRANSFAC (38) and predicted novel
regulatory relationships using conserved TF binding sites
from UCSC genome browser. The protein interaction net-
work was obtained from the Human Protein Reference
Database (HPRD) (39).

Overview of the method CMDD

We proposed a systematic method CMDD to identify can-
cer core gene modules and their affecting dysregulated genes
through multilayer factor-mediated dysregulated networks
(Figure 1). The detailed description of the method is as fol-
lows.

Construction of genetic alteration profiles of candidate genes

We combined the DNA copy number data and DNA mu-
tation data to construct the genetic alteration profile. The
GISTIC (version 2) was applied to the DNA copy num-
ber data, and five types of discretized copy number calls
(homozygous deletion, heterozygous deletion, diploid, gain
and amplification) for each gene in all cancer samples were
determined. Only the amplification and homozygous dele-
tions were considered as copy number alterations. Combin-
ing with DNA mutation data, we generated a binary pro-
file D of genetic alteration, in which dij was scored as 1 if
the ith gene in the jth sample shows genetic alteration (i.e.
amplification/homozygous deletion/mutation), and 0 oth-
erwise.

Next, we used two criteria to select the candidate genes
(CGs) through integrating the binary profile of genetic al-
teration and gene expression profile across cancer samples:
(i) CGs should alter in at least 10 samples; ii) for a given
CG, it should be differentially expressed between patients

https://tcga-data.nci.nih.gov/tcga/
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Figure 1. The workflow of the systematic method for identifying cancer
core gene modules through integrating multi-dimensional genomic data.

with and without genetic alterations of this CG using t-test
at false discovery rate (FDR) ≤ 0.05. Then, the binary pro-
file of the selected CGs was obtained.

Identification of dysregulated gene sets affected by CGs

To identify the dysregulated gene sets of CGs, we built
CG-associated regulatory networks under the conditions
with/without genetic alterations of CGs and constructed
corresponding dysregulated networks by network compar-
isons.

Construction of regulatory networks under the conditions
with and without genetic alterations. For every CG, we
grouped the cancer samples into two groups according to
its alteration status (one group with genetic alteration and
the other without). Then, we constructed linear regression
models for each gene Gi (i = 1,2,. . . ,n) separately in the two
groups of samples to explain gene expression changes using
multi-layer regulatory factors including DNA copy number,
methylation, TF and miRNA regulations as covariates.

Given a gene i (Gi) in a specific condi-
tion containing N samples, there are J TFs
(TF1, TF2, . . . , TF j , . . . , TFJ) and K miRNAs
(miRNA1, miRNA2, · · · , miRNAk, · · · , miRNAK ) bind-
ing Gi. A linear regression model was trained as

expGi
≈ βCNCNGi + βmethmethGi +

J∑

j

βTF j expTF j
+

K∑

k

βmiRNAkexpmiRNAk
,

where the expGi
is the expression levels of Gi in N samples,

CNGi is the copy number calls of Gi, methGi is the methy-
lation values of Gi, expTF j

is the expression levels of the jth
TF regulating Gi and expmiRNAk

is the expression levels of
the kth miRNA targeting Gi. βCN,βmeth, βTF j and βmiRNAk

represent regression coefficients of CNGi , methGi , expTFj

and expmiRNA j
, respectively. Only the genes that were dif-

ferentially expressed between cancer samples and normal
samples and showed high expression variability (within the
top 70%) across cancer samples (see Supplementary Mate-
rials for details) were used to train regression models. As the
large number of variables and their possible high collinear-
ity, we used the partial least squares (40) model to train
the linear regression model (see Supplementary Materials).
Then, using the functions (‘plsr’, ‘RMSEP’ and ‘jack.test’)
in R package ‘pls’, the significance of the effect of input vari-
ables on gene expression variation was estimated using 10-
fold cross-validation. Subsequently, we determined the reg-
ulatory factors (including copy number, methylation, TFs
and miRNAs) with significant coefficients (FDR ≤ 0.001)
for each gene and two regulatory networks corresponding
to different cancer groups were formed.

Construction of dysregulated networks affected by CGs.
For each CG, we compared the two regulatory networks in
the groups with/without genetic alterations. The relation-
ships that were only presented in one of the two regulatory
networks were identified and defined as the dysregulated
regulatory relationships. To determine the significance of
the dysregulated relationships, the genetic alteration profile
was permuted 1000 times, preserving alteration frequency
of CGs. We re-built 1000 random dysregulated networks
and calculated the frequencies of the real dysregulated re-
lationships in the 1000 random networks. Only the dysreg-
ulated relationships with less than 10% of frequency were
used to form the dysregulated network.

Extraction of dysregulated genes affected by CGs. Next,
in order to obtain dysregulated genes affected by CGs,
the genes in the dysregulated network of a given CG were
mapped onto the protein–protein interaction network. The
genes within two-step distance from this CG in the protein
interaction network were selected as the dysregulated genes
of the CG.

Inferring core gene modules based on the functional coher-
ence of CGs

We assumed that different cancer-associated genes dis-
turbed the same or similar functions during tumorigenesis.
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Based on the hypothesis, for each CG, we determined the
GO biological functions significantly enriched by its dys-
regulated genes using hypergeometric distribution test (P <
0.001). Then, we calculated a functional coherence score for
each pair of CGs as follows:

Functional coherencei j = |Fi ∩ Fj |
|Fi ∪ Fj | ,

where Fi and Fj represent significantly enriched function
sets associated with the ith and jth CGs, respectively, |Fi ∩
Fj | represents the number of their common functions and
|Fi ∪ Fj | represents the total number of unique functions
associated with them. Finally, the CG pairs with coherence
scores larger than a threshold that was determined through
analyzing the distribution of coherence scores were selected
to constitute cancer core gene modules.

Survival analysis

We used the survival analysis to test the association of the
genetic alteration of single genes or modules with cancer
overall survivals. Survival analysis was performed using the
R package ‘survival’.

Survival analysis for single genes. For a given single gene,
we divided the cancer samples into two groups according
to the genetic alteration status of the gene: the alteration
group containing the samples with genetic alteration of
this gene and the non-alteration group without. The sig-
nificance of survival difference between the alteration and
non-alteration groups was estimated using Kaplan–Meier
analysis and log-rank test.

Survival analysis for core modules. For a given module,
we divided the cancer samples into two groups according
to the genetic alteration status of all genes in the module:
the alteration group containing the samples with genetic al-
teration in at least one gene of the module and the non-
alteration group without any alterations in the genes of the
module. Likewise, the significance of survival difference be-
tween alteration and non-alteration groups was estimated
using Kaplan–Meier analysis and log-rank test.

RESULTS

Identifying the core gene module in GBM

Identifying cancer-associated core module of genetic al-
terations was a key step for understanding fundamental
mechanisms of carcinogenesis. We developed a system-
atic method CMDD based on dysregulated genes affected
by genetic alterations. By applying CMDD to the multi-
dimensional data sets of 121 GBM samples including DNA
mutation, copy number, methylation, gene expression and
miRNA expression profiles, we identified the dysregulated
genes for each CG (see the Materials and Methods section
for details) and determined the GO biological processes sig-
nificantly enriched by the dysregulated genes of each CG
(P = 0.001, hypergeometric distribution test). Notably, their
functional coherence scores showed a bimodal distribution.
We set the threshold of 0.4 that can distinguish the two

Figure 2. Identification of the core module in GBM. (A) The distribution
of functional coherence scores of pairwise candidate genes.The arrow rep-
resents the position of the selected threshold for determining core func-
tional modules. (B) The GBM core gene module composed of 17 highly
interconnected genes. (C) The distribution of the numbers of known GBM
associated genes in randomly selected gene sets. The arrow represents the
real number of known GBM associated in the module. (D) The heatmaps of
dysregulated genes (left), and their enriched functions (middle) and path-
ways (right) across the 17 genes in the module. (E) Comparisons of three
topological features including degree (right), betweenness (middle) and
closeness (right) of the 17 genes in module with the rest candidate genes
not in the module. (F) The biological functions (left) and pathways (right)
significantly enriched by the 17 genes in the module. (G) Kaplan–Meier
estimates of overall survival for GBM patients in TCGA data set, with pa-
tients stratified into two groups according to the alteration status of mem-
ber genes in the module.

peaks to find CGs with highly consistent functions (Fig-
ure 2A). Then, a core gene module composed of 17 genes in-
cluding EGFR, PDGFRA, RB1, CDKN2A, PTEN, MDM4,
CDK4, PIK3C2B, KIT, PHKG1, DDIT3, DCTN2, KIF5A,
OS9, METTL1, AVIL and CTDSP2 was identified (Fig-
ure 2B).

Among the 17 genes, seven (including EGFR, PDGFRA,
RB1, CDKN2A, PTEN, MDM4 and CDK4) have been re-
ported to be associated with GBM (P = 0.0014, hypergeo-
metric distribution test). PDGFRA and EGFR are the gene
signatures for proneural and classical GBM subclass, re-
spectively (41). The dysfunctions of EGFR and PDGFRA
could lead to glioma formation in mouse model. (42,43).
Mutation of RB1 disturbs its interaction with E2F, thus
leading to cell cycle disorder and affecting therapeutic effi-
cacy in GBM (44,45). Meanwhile, we randomly selected 17
genes from the original CGs 1000 times and found that the
core module identified has more known GBM genes (P =
0.008; Figure 2C). In addition to known GBM-associated
genes, two novel genes including METTL1 and CTDSP2
showing the highest degree in the core module were identi-
fied (Supplementary Figure S1). We found that the dysreg-
ulated genes of both METTL1 and CTDSP2 were signifi-
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cantly enriched in many cancer-related functions and path-
ways. Moreover, the survival analyses based on their ge-
netic alteration profiles and expression profiles consistently
showed that METTL1 and CTDSP2 were associated with
shorter survival in GBM (Supplementary Figures S2 and
S3; see Supplementary Materials for details). These findings
suggested that METTL1 and CTDSP2 were the potential
novel genes whose genetic alterations may contribute to the
development of GBM.

In addition, we found that three topological features (in-
cluding degree, betweenness and closeness) of the 17 genes
in the protein interaction network were significantly higher
than those of the rest CGs (Wilcoxon–Wilcox test, P =
0.002 for degree, P = 0.0019 for betweenness and P =
0.00027 for closeness; Figure 2E), highlighting their close
functional associations. Then, we performed function and
pathway enrichment analyses directly using the 17 genes
in the module. We found that the module participated in
cancer-associated functions and pathways such as ‘Glioma’,
‘G1 phase of mitotic cell cycle’ and ‘regulation of pro-
tein kinase activity’ (Figure 2F). Also, the prognostic ef-
fect of the module on GBM clinical outcomes was ana-
lyzed. We classified GBM samples into two groups: the al-
teration group contained patients harboring the alteration
of at least one member gene in the module and the non-
alteration group containing patients without any alterations
of member genes. We found the alteration of the module was
associated with shorter survival (P = 0.02, log-rank test;
Figure 2G). Together, the GBM-associated core gene mod-
ule identified by our method not only identified the known
and novel GBM-associated genes but also determined their
functional relationships in GBM, which could be an effec-
tive prognostic indicator of GBM.

Characterization of dysregulated genes of the core module

Next, we characterized different property of the dysregu-
lated genes of the core module. Through the expression
correlation analysis of dysregulated genes, we found that
dysregulated genes induced by member genes in the mod-
ule tend to show significantly higher expression correla-
tions compared to randomly selected genes (P < 0.05,
Kolmogorov–Smirnov test, Supplementary Figure S4; see
Supplementary Materials for details). Enrichment analyses
showed that the dysregulated genes can significantly cap-
ture the functions of their corresponding member genes
(P < 0.05, hypergeometric test; Supplementary Figure S5).
Moreover, after knockdown of CDK4 (GSE8866) (46) and
RB1 (GSE31534) (47), both of their dysregulated genes
showed significant enrichments in the differentially ex-
pressed genes (P = 0.089 for CDK4 and P = 0.02 for
RB1). Notably, despite the high overlapping of functions
and pathways between these 17 genes, only a few common
dysregulated genes were observed (Figure 2D), suggesting
that these genes in the module influenced similar biologi-
cal processes through different dysregulated genes. In sum-
mary, our results showed that dysregulated genes could ef-
fectively reflect the abnormal molecular events associated
with genetic alteration of CGs.

Figure 3. Comprehensive dysregulated network induced by the core mod-
ule. Two types of nodes represent the member genes and dysregulated gens,
respectively. The node size for member genes is proportion to the number
of member genes connecting to the dysregulated genes.

GBM-associated dysregulated network mediated by multi-
factors

To further characterize how the genetic alterations of mem-
ber genes in the core module affected the regulatory rela-
tionships of their dysregulated genes, we constructed a net-
work by connecting the 17 member genes in the module
to their dysregulated genes (Figure 3). In this network, we
found that most dysregulated genes linked with only one or
two member genes. Among the dysregulated genes, genes
affected by multiple member genes were more likely to be
cancer-associated genes reported in OMIM (48), CGC (49)
or GAD (50) such as ESR1, AKT1 and BRCA1 (Supple-
mentary Figure S6). Especially, ESR1 was found to be con-
nected by the largest number of member genes (15/17 mem-
ber genes; Figure 3). Previous studies have demonstrated
that the encoded protein of ESR1 was involved in patho-
logical processes of multiple cancers (51,52). And Uhlmann
et al. discovered a putative association between ESR1 and
gliomagenesis (53). Furthermore, we also found high ex-
pression of ESR1 was associated with favorable survival in
TCGA GBM data set (P = 0.007, log-rank test; Supplemen-
tary Figure S7). These findings further support the impor-
tance of the member genes in GBM.

In addition, we observed that the dysregulated genes of
the module were consistently implicated in many cancer-
related biological processes (such as ‘epidermal growth fac-
tor receptor signaling pathway’, ‘glial cell differentiation’,
‘apoptotic signaling pathway’ and ‘MAPK cascade’) and
pathways (such as Glioma, ‘p53 signaling pathway’ and
‘Notch signaling pathway’) (Figure 4A). For each mem-
ber gene, the regulatory factors of its dysregulated genes
were analyzed. We found that TFs accounted for most dys-
regulated genes (Figure 4B), suggesting that disturbance
of these cancer-related pathways is primarily dependent on
dysfunction of TF-mediated regulations. We further ana-
lyzed a well-known GBM-associated pathway ‘epidermal
growth factor receptor signaling pathway’. Nine of the 17
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Figure 4. Estimation of multi-factor mediated dysregulations affected by
the module. (A) The cancer associated biological processes (top) and path-
ways (bottom) enriched by the dysregulated genes of 17 member genes. (B)
The transcription factors account for most of dysfunctions of dysregulated
genes. (C) Nine member genes affect ‘epidermal growth factor receptor sig-
naling pathway’ through distinct dysregulation of their dysregulated genes.
The dysregulation of dysregulated genes is arranged in order: copy number,
methylation, miRNA, TF. The genes mentioned in the text are labeled by
arrows. (D) The literature-curated dysregulated relationships linked with
EGFR.

genes influenced dysregulated genes by distinct regulatory
relationships and in turn regulated this pathway. For ex-
ample, the TF-mediated dysregulation of AKT was consis-
tently observed in dysregulated networks of eight member
genes. The copy number-mediated dysregulation of PLCG1
was observed for DDIT3 and RB1, while additional TF-
mediated dysregulation occurred in PIK3C2B and KIT.
MiRNA-mediated dysregulation of ADAM12 and DNA
methylation-mediated dysregulation of ADCY7 appeared
in RB1 and EGFR, respectively (Figure 4C). Another three
cancer-associated biological processes including ‘glial cell
differentiation’, ‘apoptotic signaling pathway’ and ‘MAPK
cascade’ showed similar multi-factor-mediated dysregula-
tion (Supplementary Figure S8).

Furthermore, by literature searching, we confirmed that
many dysregulated relationships linked with EGFR had
been demonstrated (Figure 4D). For example, genetic al-
teration of EGFR disturbed the expression of STAT1 and
IRF1 (54). Also, the TF STAT1-mediated dysregulation
of IRF1 has been confirmed in the proliferation- and
apoptosis-associated signaling pathway (55). SHC1, regu-
lated by TF FOSL1, was reported to specifically co-purified
with mutated EGFR, and inhibition of SHC1 showed signif-
icant association with drug resistance in EGFR mutant cells
(56). The overexpression of Numb induced by genetic al-
teration of EGFR may depend on methylation dysfunction
(57). In addition, in the condition of EGFR mutation, miR-
563-mediated dysfunction of PRKACB, a subunit of PKA,
was found to promote glioma cell growth and invasion (58).
CDK5 with copy number-mediated dysregulation is a down-
stream gene in the EGFR-family signaling (59). Taken to-
gether, the genetic alterations of member genes in the core

Figure 5. The disturbance of Glioma pathway affected by two gene sets in
the core module contributing to GBM survival. (A) Two gene sets (I and II)
in the core module characterized two subgroups using unsupervised hierar-
chical clustering of GBM patients with genomic alterations in the module.
The ‘subtype’ bar represents four subtypes (including classical, proneural,
mesenchymal and neural) identified using expression of genes determined
in a previous study. (B) The gene set I including EGFR, PTEN, PDGFRA,
CDKN2A, MDM4, KIT, PIK3C2B, RB1 and PHKG1 directly partici-
pates in Glioma pathway. (C) The gene set II including CDK4, METTL1,
OS9, AVIL, CTDSP2, KIF5A, DCTN2 and DDIT3 indirectly regulates
the Glioma pathway through dysregulated genes. The digits within the four
rectangles represent the frequency of copy number, methylation, miRNA
and TF-mediated dysregulations of dysregulated genes. The different reg-
ulatory factors are affiliated to the dysregulated genes. (D) Both of the two
gene sets (I and II) contribute to the GBM survival.

modules could induce the multifactor-mediated regulation
of dysregulated genes, especially TF-mediated regulation,
and in turn disturb the cancer associated functions and
pathways.

Dysregulated Glioma pathway induced by the core module
contributing to survival

We investigated how the core module and their dysregulated
genes participated in Glioma pathway, and contributed to
survival. The patients with at least one altered member gene
were divided into two subgroups using unsupervised hier-
archical clustering based on the genetic alteration profiles
of the core gene module (Figure 5A). We found that one
subgroup (b1) showed frequent genetic alterations of one
gene set (I) including nine genes (EGFR, PTEN, PDGFRA,
CDKN2A, MDM4, KIT, PIK3C2B, RB1 and PHKG1),
while the other (b2) had the frequent genetic alterations
of another gene set (II) including eight genes (CDK4,
METTL1, OS9, AVIL, CTDSP2, KIF5A, DCTN2 and
DDIT3). Investigation of the dysregulated genes showed
that both of these two gene sets were associated with the
‘Glioma’ pathway. Notably, among the gene set I, five genes
including PDGFRA, RB1, PTEN, EGFR and CDKN2A
were directly involved in the ‘Glioma’ pathway (Figure 5B).
In contrast, the gene set II seemed to indirectly regulate the
pathway through influencing their dysregulated genes (Fig-
ure 5C). Meanwhile, these two gene sets showed local dif-
ferences in the pathway. MAPK1 dysregulation was only
observed in the pathway indirectly influenced by the gene
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set II. MAPK1 is the convergence point in pathway cross-
talk (60), which has been widely validated to be involved
in cell cycle (61), angiogenesis (62), invasiveness (63) and
other cancer-associated behaviors (64). The dysfunction of
MAPK1 can lead to acquired drug resistance (65) and worse
survival (66).

In addition, through survival analysis, we found the two
subgroups with distinct alteration patterns (subgroup b1
and subgroup b2 in Figure 5A) showed shorter survival
compared to the group without any alterations of member
genes (group a in Figure 2G). Interestingly, these two sub-
groups also had different survival risks (Figure 5D), and the
subgroup b2 had the shortest survival. A possible explana-
tion is the local differences in Glioma pathway between the
two subgroups, such as the dysregulation of MAPK1. Fur-
thermore, this poor-prognosis subgroup was not correlated
with any GBM subtypes determined by the expression of
840 genes reported in (41), which suggested a potential new
subtype of GBM. These findings indicated that these two
mutual exclusive gene sets can induce similar changes of
common pathways in different ways and the dysregulated
genes identified can provide novel clues for explaining ma-
lignant phenotypes in GBM.

Applying CMDD to other cancer types

To reveal gene modules in other cancer types, we ap-
plied the CMDD to other six types of cancer, including
Ovarian serous cystadenocarcinoma (OV), Head and Neck
squamous cell carcinoma (HNSC), Lung adenocarcinoma
(LUAD), Cervical squamous cell carcinoma and endocer-
vical adenocarcinoma (CESC), Breast invasive carcinoma
(BRCA) and Prostate adenocarcinoma (PRAD) (Supple-
mentary Table S2). Like GBM, we performed similar analy-
ses for each type of cancer (Supplementary Figures S9–S14
and Supplementary Tables S3–S8).

For example, in OV, 31 core modules including 212 genes
were identified. The function and pathway enrichment anal-
ysis showed that the genes in these core modules were sig-
nificantly involved in cancer-associated functions and path-
ways, such as ‘mitotic cell cycle’, ‘p53 signaling pathway’
and ‘Apoptosis’ (Supplementary Figure S9B). A global dys-
regulated network connecting the genes in modules with
their affecting dysregulated genes showed that most dys-
regulated genes linked with only one or two member genes
(Supplementary Figure S9C) and that most genes in mod-
ules dysregulated TF-mediated regulations (Supplementary
Figure S9D). Also, we found five modules showing signif-
icant associations with OV survival. For example, a core
module including five completely connected genes (PUF60,
SOX18, CCDC88A, MED4 and THOC7) was significantly
associated with longer survival (P = 0.0059, log-rank test;
Supplementary Figure S15A), suggesting that the module
functioned as a protective role in the OV survival. Further,
we found that the module showed better prognostic effect
than any single gene in the module. By analyzing the al-
teration profiles of these five genes across OV samples, we
found that the genetic alterations of these genes exhibited
mutually exclusive patterns (Supplementary Figure S15B),
indicating that different genes in the module can dysreg-
ulate the same or similar important functions and path-

ways in cancer. Similarly, another core module including
LDHB, MRPS22 and ATP5C1 was also observed. The al-
terations of the three genes were mutually exclusive, and
none of these genes showed significantly association with
OV survival, while the prognostic effect of the whole mod-
ule was significant (P = 0.007, log-rank test; Supplemen-
tary Figure S15B). We also found the survival-associated
modules in other cancers, such as a clique module including
NCL, DVL3, TRRAP, KDM5A, KLF5, HES1 and BARD1
(P = 0.007, log-rank test; Supplementary Figure S10E) in
HNSC and a module including CSPG4, NDUFS6, SATB2
and TRIO in LUAD (P = 0.037, log-rank test; Supplemen-
tary Figure S11E).

In addition, we found that genes in some modules showed
different roles in prognosis. For instance, using a clique
module in HNSC including ARNT, NFE2L2, BARD1,
SUB1, ATF2, PTEN and TOPBP1, the HNSC samples
with the alteration of the module were divided into two sub-
groups. We found that these two subgroups showed signif-
icantly different prognosis (P = 0.0004, log-rank test; Sup-
plementary Figure S16). Compared with samples without
the alteration of the clique module, the subgroup with fre-
quent alterations of ATF2, BARD1 and NFE2L2 showed
significantly shorter survival time, while the other subgroup
harboring frequent alterations of ARNT, SUB1, PTEN and
TOPBP1 exhibited the significantly longer survival times.
Similar results were also found for other clique modules,
such as a module including TAF9, HOXB7, EEF1D and
RXRB in OV (Supplementary Figure S17) and a module
including MED21, MYC, ZHX1, KPNA2 and USF2 in
LUAD (Supplementary Figure S18).

Finally, we compared the genes in the core modules
among the seven types of cancer and observed that the genes
in different types of cancer were obviously different. Also,
the dysregulated genes affected by the core modules were
mostly different, while the functions and pathways signif-
icantly enriched by the dysregulated genes exhibited high
coherence (Supplementary Figure S19).

Performance evaluation of the method

We compared our method with two other methods: a
frequency-based and a fisher-based method (18). Based on
the frequency method, only five of the nine known GBM-
associated genes were found (Figure 6A). We also applied
the fisher-based method to obtain outlying genes associated
with each CG based on the correlation between genetic al-
teration of CGs and expression of differential genes (P <
0.05). Then we ranked the CGs according to the number of
outlying genes. In the top 17 genes, only two known GBM-
associated genes were identified (Figure 6B). Furthermore,
using differentially expressed genes between altered samples
and non-altered samples (SAM, fold change ≥1.5 and FDR
< 0.05) to replace dysregulated genes, we obtained three
modules using the same threshold according to functional
coherence of differential genes. These modules derived from
distinct chromosome regions did not exhibit functional con-
nection and contained only four known GBM-associated
genes (Figure 6C), suggesting that multi-factor-mediated
dysregulated networks can capture intrinsic functional as-
sociations among distinct genomic alterations.
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Figure 6. Comparison with other methods. (A) Gene list identified
by the frequency-based method, which was ranked based on alter-
ation frequency. (B) Gene list identified by the fisher-based method,
which was ranked by the number of related genes. Dashed lines in-
dicate the threshold for top 17 genes. (C) The gene modules identi-
fied using the differentially expressed genes. Genes in the same black
circle are located in the same chromosomal region. EGFR, CDKN2A,
CDKN2B, PTEN, CDK4, PDGFRA, RB1, NF1, MDM4 were known
GBM associated genes.

DISCUSSION

In this paper, we proposed a systematic method called
CMDD to identify cancer-related core gene modules and
their affecting dysregulated genes through characterizing
genetic alteration-induced dysregulated networks that are
constructed using multi-dimensional genomic data includ-
ing DNA copy number, methylation, gene expression and
miRNA expression profiles, as well as protein interaction
network. When applied CMDD to GBM, a core mod-
ule composed of 17 genes was identified. The core mod-
ule includes several well-known oncogenes and tumor sup-
pressors associated with GBM, such as EGFR, PTEN,
PDGFRA and CDKN2A, which partially provided an im-
portant validation of our method. These genes were found
to influence numerous regulatory relationships, such as loss
(or gain) of gene regulations by transcriptional factors,
which in turn affect downstream key genes with impor-
tant roles in tumorigenesis. Dysregulated genes induced by
the genes in the module show significantly functional con-
nections and are commonly involved in some important
cancer-related pathways. In addition, we found novel CGs
METTL1 and CTDSP2 that showed strong functional as-
sociations with known GBM-related genes. Dysregulated
genes induced by METTL1 or CTDSP2 share similar
functions as some known GBM-associated genes, and the
amplification/high expression of METTL1 or CTDSP2 is
associated with poor prognosis in GBM, suggesting that
METTL1 and CTDSP2 may play an important role in the
tumorigenesis and progression of GBM.

Recent studies focusing on somatic tumor genome and
exome sequences revealed that most human cancers are re-
sulted from two to eight sequential alterations (2). An in-
teresting problem is how the small number of genetic alter-
ations can destroy key signaling pathways associated with
genome maintenance, cell fate and cell survival to cause

selective growth advantage and in turn initiate cancer cell
transformations. A general explanation is that genes har-
boring these genetic alterations are directly involved in these
key signaling pathways. For example, EGFR and PDGFRA
identified in the core module of GBM are the key mem-
bers of RTK/Ras/PI3K/AKT signaling pathway, and their
alterations can directly prompt activation of this path-
way contributing to cell growth, proliferation and motility
(67). Our method combined multiple layers of information
(CNA, methylation, TFs and miRNAs) to infer dysregu-
lated networks relevant to specific genetic alterations. It not
only can identify the core module of genetic alterations with
the direct effect on the key pathways but also can find the in-
direct destroy effect of these genetic alterations, which were
propagated to downstream key signaling molecules via the
dysregulated network. Genes in the dysregulated network
of a given genetic alternation can comprehensively charac-
terize the direct and indirect influence of this alteration. In-
deed, our results showed that some key pathways, whose im-
portant member genes do not exhibit recurrent genetic al-
terations in certain cancer patient groups, are disturbed by
indirect effects of genes harboring genetic alterations. For
example, the majority of member genes in the DNA replica-
tion pathway and nod-like receptor signaling pathway were
the dysregulated genes without obvious recurrent genetic
alterations. Such indirect relationships between genetic al-
teration and downstream dysregulated genes are hard to be
captured only with mutation data.

Interestingly, the core module contained two gene sets
(I and II), both of which can characterize a GBM sub-
group identified using unsupervised hierarchical cluster-
ing, respectively. The gene set I (including EGFR, PTEN,
PDGFRA, CDKN2A, MDM4, KIT, PIK3C2B, RB1 and
PHKG1) exerts important roles in the glioma signaling
pathway, such as PTEN, RB1 and EGFR (9), whereas most
of the gene set II (including CDK4, METTL1, OS9, AVIL,
CTDSP2, KIF5A, DCTN2, DDIT3) is not the members
of this pathway. Notably, our results of dysregulated genes
showed that both of these two gene sets can target the
glioma signaling pathway by their dysregulated genes. Fur-
thermore, the genetic alterations of both of two gene sets
were significantly associated with survival risk in GBM pa-
tients. The GBM subgroup characterized by the gene set II
showed significantly shorter survival, without obvious over-
lap with the four expression-based subtypes of GBM previ-
ously reported. These findings suggest that the core module
identified by our method is predictive for survival in GBM
patients, probably characterizing new GBM subtypes.

In addition, we investigated whether integration of multi-
omics data could provide more comprehensive information
than using only two or three types of data. We applied our
method to GBM by integrating only two or three types of
data, including nine different combinations. We found that
integration of multi-omics data could capture more regu-
latory relationships than using two or three types of data,
such as regulatory relationships constructed under EGFR
alteration (Supplementary Figure S20). Almost all of the
regulated genes identified by different combinations were
included in those identified by multi-omics data (Supple-
mentary Figure S20C, CT: P = 1.95e-21; CMT: P = 1.4e-19;
MT: P = 4.0e-18 CHT: P = 0; CH: P = 0, hypergeometric
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test). We further identified the core modules for different
combinations. The results showed that no modules were
identified in five combinations. In the rest four combina-
tions, we identified only small modules with two to four
genes, which were completely contained in the core mod-
ules identified by multi-omics data (Supplementary Figure
S21A). For example, by integrating copy number and TF,
we identified a module including RB1, CDK4, PTEN and
DDIT3 (Supplementary Figure S21B), all of which formed
a completely connected graph in the core module iden-
tified by integrating multi-omics data. It is worth noting
that integration of multi-omics data could identify more
known GBM-associated genes (such as PDGFRA, MDM4
and CDKN2A) and some potentially novel genes (such as
METTL1 and CTDSP2) when compared with those iden-
tified by integrating two or three types of data. These results
suggested that integrating multiple omics data can capture
more useful information which was crucial for identifying
core modules and further characterizing their downstream
mechanisms.

In summary, we offered an integrative method to identify
cancer-related core gene modules and their affecting dys-
regulated genes through inferring dysregulated regulatory
networks induced by genetic alterations. Also, our approach
also was applied to other cancer types for identifying causal
gene modules and providing the causal gene-induced dys-
regulated genes, which will give a better interpretation for
molecular mechanisms of cancer.
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