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A B S T R A C T   

SARS-CoV-2 infection intrigued medicine with diverse outcomes ranging from asymptomatic to severe acute 
respiratory syndrome (SARS) and death. After more than two years of pandemic, reports of reinfection concern 
researchers and physicists. Here, we will discuss potential mechanisms that can explain reinfections, including 
the aggravated ones. The major topics of this hypothesis paper are the disbalance between interferon and an-
tibodies responses, HLA heterogeneity among the affected population, and increased proportion of cytotoxic 
CD4+ T cells polarization in relation to T follicular cells (Tfh) subtypes. These features affect antibody levels and 
hamper the humoral immunity necessary to prevent or minimize the viral burden in the case of reinfections.   

Hypotheses 

Introduction 

SARS-CoV-2 infection is associated with exceptionally multiple 
outcomes, varying from asymptomatic to severe acute respiratory syn-
drome (SARS) development and death [1]. The factors that lead to these 
differences can be very diverse, but certainly is influenced by the viral 
load in the moment of infection [2], the replicative and infectivity of the 
virus within host cells [3,4], the anti-viral immune response [4], host 
genetic variability and age [5,6] and comorbidities of the infected 
population [6]. As an airborne pathogen the SARS-CoV-2 viral load will 
be influenced by different factors, like masks, wind speed, and other 
environmental factors that will impact the amount of infective virus 
reaching the upper airways of susceptible individuals. 

Reinfection cannot be considered a rare phenomenon affecting ver-
tebrates. Several pathogens possess escape mechanisms from the host 
immune response that allow multiple reinfections, like Plasmodium sp. 
the etiologic agent of malaria and influenza virus [7,8]. Usually, re-
infections are associated with antigenic changes [9]. Memory responses 
are faster and more robust than the primary immune response and are 
usually associated with a milder infection [10]. In the case of viral 

diseases, infected cells death mediated by memory CD8+ cytotoxic T 
cells and NK cells plays a crucial role in eradicating virus reservoirs and 
producing machines [11]. Neutralizing antibodies, produced by mem-
ory B cells, and their effects, such as antibody dependent cytotoxicity 
mediated by phagocytes and IFNγ-primed NK cells, are also a crucial 
part of the memory response against viruses [12]. At the center stage of 
the memory response, CD4+ T cells mediate early secretion of cytokines, 
such as TNFα and IFNγ, and provide the appropriate support and coor-
dination of adaptive immunity, being important, for example, to anti-
body class-switch [13]. Thus, reinfections are not usually observed in 
infectious viral diseases, unless an antigenic change occurs. Aggravated 
reinfections can also be considered an unusual event. Dengue virus and 
other flaviviruses can cause aggravated reinfections associated with 
antibody dependent enhancement (ADE) due to antigenic differences 
between different serotypes of the viruses. Interestingly, both dengue 
virus and SARS-CoV-2 pathogenesis include a phenom known as cyto-
kine storm, which refers to an exacerbated and life-threatening systemic 
inflammatory reaction to infectious agents [14]. Cytokine storm is 
associated with increased levels of cytokines, such as TNFα and IL-6 
(possibly exacerbated in memory responses), tissue damage and shock 
[14]. In relation to respiratory viral diseases, memory immune re-
sponses, after vaccination, were associated with enhanced disease in 
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infants infected with respiratory syncytial virus [15]. The mechanisms 
behind the disease enhancement were a Th2/Th17 mediated immuno-
pathology, with eosinophilic, neutrophilic and monocytic lung infiltra-
tion [16]. Importantly, eosinophilic immunopathology was also 
observed in early vaccine studies in mice against SARS-CoV, a corona-
virus that possesses several similarities with SARS-CoV-2, although the 
immunized mice were protected from lethal virus challenge [17,18]. 
Fortunately, later formulations and studies did not support an important 
role of vaccine enhanced respiratory disease (VAERD) in relation to 
SARS-CoV-2 [19]. Nevertheless, reported cases of aggravated reinfec-
tion are being described and are interesting and emerging topics of 
discussion between researchers in the field of immunology and virology 
[20]. 

The hypothesis 

We believe that the aggravated reinfections occur, in part, due to 
unsustainable neutralizing antibody levels triggered by combined 
mechanistic elements. In particular, an atypical disbalance of antibody- 
interferons interplay may display key roles in establishing aggravated 
reinfections. Furthermore, an increased proportion of memory CD4+ T 
cells polarized into cytotoxic CD4+ T cells can antagonize T follicular 
helper cells (Tfh) sub-type, and also contribute to aggravated re-
infections. The cytotoxic CD4+ T cells polarization can be influenced by 
the viral species and the initial induction of adaptive immune responses, 
especially governed by HLA polymorphisms. Therefore, aggravated 
reinjection is present but uncommon among SARS-CoV-2 affected in-
dividuals, since it requires a conjunction of intrinsic and unique factors. 

Lack of antibody development after the first infection: 
Importance to reinfection 

Antibody development is crucial to control viral infections [21]. As 
such, specific antibodies, observed after vaccination, are considered 
good predictors of vaccine effectivity [22]. Antibodies are produced by 
plasma cells (activated B cells), including long lasting plasma cells 
(LLPCs), and memory B cells, generated after activation [23]. Memory B 
cells and LLPCs are related to long-lasting protective immunity against 
reinfections, similar to the antibody levels produced by them. There are 
5 classes of antibodies, also called immunoglobulins (Ig). Antibody class 
switch occurs in a T cell dependent manner, driving the constitutive IgM 
and IgD to switch to IgG, IgE and IgA, based on the cytokines expressed 
by T follicular helper cells (Tfh) during interaction with B cells, in B cell 
follicles on the draining lymph nodes [24]. IgG possesses the longest 
half-life among the different antibody’s isotypes (about 25 days) [25], 
with important functions in order to restrain viral infections, such as 
neutralization, opsonization, activation of NK cells leading antibody 
dependent cytotoxicity (ADCC) and complement activation [26]. 
Neutralization can be associated with both destabilization of viral 
structure (also performed by complement activation) or blockage of 
viral entry, through inhibition of cell receptor interaction, or exit [26]. 
Furthermore, IgG can cross the placental barrier, being an important 
mechanism for fetus protection against pathogens [26]. While IgE does 
not seem to exert anti-viral effects, with little or no neutralization ability 
[27], IgA is the most prevalent class of antibodies in mucosal surfaces 
and is also responsible for neutralization of pathogens and toxins [28]. 
Thus, IgA is an important barrier to be overcome by viruses in which 
mucosal surfaces are the entry site, such as SARS-CoV-2 and HIV. Hence, 
it would be interesting to quantify IgA antibodies against epitopes from 
SARS-CoV-2 in studies evaluating reinfection or vaccine efficacy 
[29–31]. IgM and IgD are expressed on B cell surface, as receptors of 
antigens. Secreted IgM can reach mucosal surfaces and may restrain 
SARS-CoV-2 infection, especially cross-reactive neutralizing IgM from 
natural repertoire in uninfected individuals, at least in theory [32]. IgD 
functions have now been unraveled and its role in viral infections needs 
further evaluation (reviewed by [33]). Secreted IgD seems to enhance 

protection to vesicular stomatitis virus (VSV) in IgM deficient mice, 
establishing a possible compensatory and redundant role of IgD in 
relation to IgM [33]. In addition, IgD, as a receptor of B cells, is 
important to attenuate self-reactive B cells response, tuning antibody 
production [33]. Thus, IgD allows B cells accumulation, without path-
ogenic self-reactivity. Secreted IgD also seems to be important to “arm” 
mast cells and basophils, promoting their activation after antigen 
binding [34]. 

Interestingly, some people do not develop antibodies after the first 
infection with SARS-CoV-2, which usually correlates with mild- 
symptomatic disease [35]. Several reasons can be pointed out to 
explain the lack of antibodies in some individuals (Fig. 1): 

(i)Effective innate immune response: the innate immune response was 
sufficient to eradicate the infection without activation of adaptive im-
munity and memory, due to low viral load or high expression of type I 
interferons (IFN-I). This is observed in the case of some viral models in 
mice, in which type I interferons are sufficient to control infection even 
in the absence of T and B lymphocytes [36]. 

(ii) Excessive activation of PRRs from innate immune cells and increased 
levels of type I interferons: High doses of IFN-I and pattern recognition 
receptors (PRRs) activation prior to antigen presentation by dendritic 
cells (DCs) [37,38] can reduce antibody production by plasma cells. IFN- 
I and PRRs are important players of the inflammatory immune response 
and must be properly regulated in order to prevent excessive inflam-
mation. Excessive inflammation can not only lead to tissue destruction, 
but also restrain antibody responses, as already mentioned. Accordingly, 
phospholipase A2G2D (PLA2G2D), which possess anti-inflammatory 
activity, is important to antibody development and memory responses, 
as assessed in genetic deficient mice compared to wild type (WT) [39]. 
After sub-lethal infection with Middle East respiratory syndrome coro-
navirus (MERS-CoV), followed by lethal challenge, WT mice were fully 
protected to the challenge [39]. Curiously, PLA2G2D genetic deficient 
mice were more resistant to primary sub-lethal infection, but were not 
protected to the lethal challenge. This study demonstrated two inter-
esting facts: the importance of inflammatory mediators to control MERS- 
CoV primary infection; and the impact of these inflammatory mediators 
in adaptive immunity development, restraining antibodies release. 
Excessive pro-inflammatory cytokines expression by DCs, like IL-1β, 
were associated with increased cell death in lymph nodes and impaired 
polarization of follicular CD4+ T cells (Tfh) in this infection model [39]. 
Thus, the innate immune response can influence antibody development 
if not properly regulated to optimal levels. 

(iii) Activation and polarization of CD4+ T helper cells into cytotoxic 
CD4+ cells: The adaptive immunity of the individuals with low anti-
bodies levels after the first infection was based primarily on cytotoxic 
CD4+ T cells, instead of Tfh that support B cell activation and antibody 
class-switch [40]. The antagonism of CD4+ cytotoxic T cells and Tfh is 
governed by the bcl-6 transcription factor, crucial to Tfh polarization. 
After single cell transcriptomic analysis, Donnaruma et al. [40] identi-
fied that granzyme B+ CD4+ Cytotoxic T cells (CTL) had an opposing 
gene signature compared to follicular T cells. The transcription factors 
bcl-6 and Tcf-1, and the inhibitory receptors PD-1 and LAG3 jointly 
favored the balance into Tfh polarization, instead of CTL CD4+ T cells. 
This balance was greatly dependent on the type of infecting virus used in 
the study, with adenovirus driving CD4+ T cells with CTL potentials and 
retrovirus driving Tfh. Cytotoxic T cells (especially CD8+ T cells, but also 
CD4+ T cells with CTL potential) are crucial to control several viral 
infections, but they are not sufficient to drive full resistance, and anti-
bodies are important mediators of viral replication containment, espe-
cially through viral neutralization [41]. This cytotoxic T cell based 
adaptive immunity would still be important to restrain infection, but can 
also contribute to direct tissue damage, especially if the secondary 
exposure occurs with high viral loads, at least in the case of experimental 
infection with respiratory syncytial virus [42]. In addition, as memory 
CD4+ T cells exert superior responses over naïve T cells [43], memory 
cytotoxic T CD4+ may restrain follicular T cell polarization, similar to 
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what is observed in relation to Th2 antagonism against Th1 cells po-
larization in a delayed hypersensitivity model [44]. This would cause an 
important delay in the generation of T CD4+ follicular cells, a feature 
that might also contribute to aggravated reinfection. Intriguingly, 
cytotoxic CD4+ T cells are increased in severe SARS-CoV-2 infections, 
along with a decrease in the number of CD4+ T regulatory follicular 
cells (Tfr) [45]. Tfr cells support antibody diversity, restraining Tfh cell 
survival stimuli to B cells, fine-tuning antibody affinity, after somatic 
hypermutation of these cells [46]. 

(iv) Presence of regulatory T cells (Treg) specific to SARS-CoV-2 anti-
gens: Generation of Treg cells specific to SARS-CoV-2 antigens after 
primary infection can possibly lead to ablated antibody production [47]. 
Induced Treg (iTreg) can develop in intestinal lymph nodes against 
foreign antigens, especially in the presence of TGF-β at the time of an-
tigen presentation [48]. Thus, the entry site or the organs affected by 
SARS-CoV-2 in primary infection can be determinant to the type of 
adaptive immunity unleashed by it [49]. Since SARS-CoV-2 is known to 
infect intestinal epithelial cells, it wouldn’t be surprising to observe 
iTregs against SARS-CoV-2 antigens in severe cases. Thus, secondary 
infections can also be aggravated in people who acquired iTregs, 
restraining disease resistance governed by immune responses [50]. 

Aggravated reinfection: What else drives these exceptional 
cases? 

The majority of case reports describing reinfection were associated 
with a less dramatic coronavirus disease, probably due to combined T 
and B cell memory responses [53]. However, reports of a higher path-
ogenesis and even death in the secondary infections are presents 
[20,54]. The mechanisms associated with the aggravated reinfection are 
not completely understood, but some considerations can be made 
(Fig. 2). First, immune dysfunction, a feature similar to anergy, gov-
erned by epigenetic changes after highly inflammatory infections, from 

viral or bacterial etiologies [55,56] can let individuals susceptible to 
secondary infections. It is not determined if immune dysfunction is 
present in the case of SARS-CoV-2 aggravated reinfections, but it is a 
possibility, especially in the presence of an inefficient adaptive immu-
nity memory. Second, antibody-dependent enhancement (ADE) is a 
process under discussion for other coronaviruses, especially after 
vaccination [57]. ADE happens in the presence of non-neutralizing an-
tibodies that will enhance viral entry and replication inside host cells, 
mediated by Fc receptors and complement proteins, especially inside 
macrophages and neutrophils [58]. In this sense, it is expected that non- 
neutralizing antibodies, including cross-reactive antibodies from sea-
sonal coronaviruses, might contribute to both infectivity and increased 
inflammation [59]. Thus, if the affected person develops memory B cells 
that produce non-neutralizing antibodies, the boosted response after 
reinfection is potentially harmful and might lead to systemic inflam-
mation and possibly cytokine storm, both pathogenic features present in 
SARS-CoV-2 infection. In addition, it had been shown that antibodies 
against SARS-CoV Spike (S) proteins (crucial for virus-host cell receptor 
interaction and viral internalization), conserved among all coronavirus, 
can increase the infectivity of SARS-CoV in host cells, when S proteins 
are mutated [60–62]. However, in relation to a possible role of ADE in 
SARS-CoV-2 infections, we must highlight that ADE is not an important 
issue for other viruses that affect the respiratory tract, like influenza 
virus [63]. Furthermore, antibody levels seem to be inversely correlated 
with the possibility of reinfection for seasonal coronaviruses [64], and 
the benefits related to the presence of antibodies after vaccination [65] 
do not support ADE as a hypothesis for aggravated reinfections or the 
genesis of SARS-CoV-2-mediated cytokine storm. Compellingly, even in 
the presence of antibodies against S proteins associated with increased 
viral infectivity in B cells, a stronger protection was observed in ham-
sters infected with SARS-CoV [60]. 

It is important to highlight that reinfection with distinct variants of 
SARS-CoV-2 might recapitulate the original antigenic sin phenom, 

Fig. 1. Mechanisms involved in low antibody levels after the first infection: In the draining lymph nodes, professional antigen presenting cells (APCs) interact, 
in T cell zones, with naive T cells. This interaction is a crucial step in the activation and polarization of CD4+ T cells into distinct sub-types, depending on 3 signals 
derived from molecular interactions between (i) MHC-II-peptide complex and TCR; (ii) co-stimulatory molecules (CD80, CD86) from APCs and CD28 receptors in T 
cells; (iii) cytokines secreted by APCs and cytokine receptors in T cells [51]. Tfh and cytotoxic CD4+ T cells antagonize each other polarization [40]. Thus, cytotoxic 
CD4+ T cells polarization can possibly be associated with a reduction in antibody responses, because Tfh cells support antibody class-switch in B cell follicles and 
affinity maturation in germinal centers [52]. Treg cells polarization can also restrain Tfh activity and humoral responses [47], contributing to low antibody levels 
after primary infections. Finally, during antigen presentation by APCs, increased IL-1β levels correlates with cell death in lymph nodes and hampered polarization of 
CD4+ T cells to Tfh [39]. 
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already observed for influenza virus. This phenom refers to the preva-
lence of antibodies response against antigens derived from the virus 
variant from the first infection [66]. Once more, if these antibodies do 
not neutralize new virus variants, they will not drive host resistance, 
potentially contributing to viral pathogenesis. Though somatic hyper-
mutation can increase the affinity of cross-reactive antibodies [67], if a 
huge modification is needed in order to convert non-neutralizing anti-
bodies into neutralizing ones, it is much probable that the random 
events of somatic hypermutation will not properly lead to neutraliza-
tion. Furthermore, in theory, polymorphisms in the genes responsible 
for the process of somatic hypermutation, especially the one that codes 
for activation induced deaminase (AID) enzyme, can potentially be 
associated with distinct efficacy of the affinity maturation process. 
However, to our knowledge, no studies have correlated AID poly-
morphisms, somatic hypermutation and antibody affinity maturation, 
though AID polymorphisms have been associated with antibody class- 
switch to IgE [68]. 

Antibodies might also be responsible for attenuated IFN-I responses, 
through stimulation of FCγRIIb in severe cases [69]. Type I IFNs are 
crucial to control SARS-CoV-2 infection as showed by different studies 
examining genetic differences associated with severe SARS-CoV-2 dis-
ease. Furthermore, it might explain the increased susceptibility of older 
adults that possess reduced ability to secrete type I IFNs [70–72]. On the 
other hand, IFN-I can contribute to cytokine storm [73], TNF-mediated 
inflammation [74] and delayed antibody development [75], which are 
associated with disease severity. Thus, the kinetics of neutralizing 
antibody production and IFN-I responses might hold the key to the 
outcome. In this sense, early exacerbated IFN-I secretion can impair 
antibodies production, leading to an inappropriate viral control and 

subsequent increased late antibodies levels. At this stage, excessive an-
tibodies levels can impair IFN-I cellular immunity, after stimulation of 
FCγRIIB. Altogether, these would lead to inappropriate immune 
response kinetics, driving increased viral load initially, and late 
impaired type I interferons signaling. Anyway, it is important to note 
that conclusions based on correlation between antibody levels and dis-
ease severity might be misleading. High viral load and persistence will 
greatly impact on antibodies levels and might be the actual player in the 
pathogenesis. 

It is crucial to mention the well-recognized Human Leukocyte Anti-
gens (HLAs) as a central molecule associated with genetic susceptibility/ 
resistance to infections, including SARS-CoV-2 [76]. HLAs, the human 
ortholog of MHCs, are polymorphic and polygenic glycoproteins, 
expressed on cell surface, that will bind peptide epitopes from self and 
non-self-proteins (microorganism’s derived ones) within the cells. HLAs- 
peptides complex will be involved in antigen presentation to T cells, 
after interaction with T cell receptors (TCRs). Different epitopes will 
bind to specific HLAs, which means that each individual will generate a 
unique and specific repertoire of cellular and humoral adaptive immu-
nity at the molecular level to the same microorganisms. As already 
discussed, T cells will orchestrate adaptive immunity, depending on its 
sub-types, including antibody class-switch by plasma cells (activated B 
cells). Thus, HLA types are linked to broadly neutralizing antibodies 
production and can greatly impact both primary and secondary immune 
responses to SARS-CoV-2. This issue is well explored by others [77]. 

Discussion 

All the features here discussed may explain such diverse outcomes 

Fig. 2. IFN-I and antibody-mediated protective or detrimental mechanisms associated with SARS-CoV-2 infections: A) IFN-I mediate autocrine and paracrine 
signaling through its receptor (IFNAR), present in almost all nucleated cells in physiologic conditions. IFNAR drives signaling cascades dependent on protein kinases 
(tyrosine kinase 2-Tyk2- and Janus kinase 1-Jak1) leading to the formation of different signal transducer and activator of transcription (STAT) complexes (including 
STAT1 homodimers and STAT1/2 heterodimers) and nuclear translocation [78]. In the nucleus STATs act as transcription factors, promoting the expression of several 
genes, such as protein kinase R (PKR) and Mxl that restrain viral proteins translation and assembly to form infective particles, respectively [79,80]. On the other side, 
IFN-I can significantly contribute to inflammatory damage, enhancing TNF-mediated inflammation [73], which depends on TNF receptors (TNFR) and signaling 
molecules, such as the E3 ubiquitin ligase TNFR associated factor 2 (TRAF2) and the serine/threonine kinase receptor interacting protein 1 (RIP1). IFN-I can also 
restrain antibody responses [36]. B) Neutralizing antibodies are crucial to anti-viral immunity, leading to ADCC by NK cells and monocytes, and hampering viral 
dissemination to susceptible and permissive cells. However, non-neutralizing antibodies can increase viral dissemination to permissive cells, through Fc receptors 
[81], possibly contributing to tissue damage due to excessive inflammation and viral titers. Furthermore, antibodies-mediated FcγRIIb activation can hamper IFN-I- 
mediated viral control [68] and a fine regulation of both IFN-I and antibodies levels are crucial for appropriate control of viral infections. The development of auto- 
antibodies that reacts and neutralize IFN-I can also be associated with a poorer control of SARS-CoV-2 infection and disease severity, as reviewed elsewhere [82]. 
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after SARS-CoV-2 reinfection. The development of other infectious dis-
ease is known to be influenced by the entry site of the etiological agent, 
impacting in both disease resistance and tolerance of the host, and 
virulence of the microorganism [83,84]. In addition, the viral load in 
airborne infections, the genetic variation of the population and the 
comorbidities presented by the individuals will combine themselves and 
be crucial to the diverse outcomes [85,86]. As already cited, epigenetic 
changes in myeloid cells, after exacerbated inflammation, seem to 
modulate susceptibility to infections, through inflammation-induced 
anergy of myeloid cells, a feature that can lead to aggravated re-
infections [87,88]. In this sense, exacerbated inflammation can lead to 
increased immunopathology and dysregulated effective immune re-
sponses in older adults and obese individuals, as both groups possess 
chronic low-grade inflammation, which will be amplified after infection 
[89,90]. Older adults and obese individuals also possess important dis-
parities in cellular and humoral immunity compared to younger and 
non-obese individuals, for example, both groups possess qualitative 
differences in antibodies repertoires and neutralization ability, and 
increased circulating myeloid derived suppressor cells [91–94]. In the 
case of older adults, it seems that many factors contribute to these fea-
tures, associated or not with chronic low-grade inflammation, including 
lymph nodes stromal cells changes during ageing [95]. 

Polymorphisms and mutations in genes associated with antibody 
development and type I interferons’ pathways can predict COVID-19 
severity [69,96]. Here, we highlight studies that show the complex 
interplay between these two predictors of severity and how dysregulated 
antibody production and type I interferons’ responses can impact each 
other. In a simplistic way, both antibodies and IFN-I are complementary 
key mediators of anti-viral immunity, driving extracellular virus 
neutralization and hampering intracellular virus replication, respec-
tively. However, as already discussed, both can also lead to excessive 
inflammation and tissue damage, and a negative counter-regulation 
between these two key mediators is not surprising. In this sense, exac-
erbated expression of IFN-I, due to (i) high viral load infection, (ii) in-
dividual polymorphisms, (iii) trisomy of chromose 21[97], (iv) 
abnormal regulation of innate immunity or previously established in-
flammatory processes, can be associated with delayed development of 
antibodies [36,37,89,98]. Inappropriate control of virus infectivity due 
to delayed antibody development will generate increased (late) titers of 
antibodies that can contribute to inflammatory damage governed by Fc 
receptors and restrain IFN-I mediated viral control, through FcγRIIb 
signaling [68]. These features combined can lead to an inappropriate 
cascade of events that are associated with irreversible tissue damage and 
death. On the other side, sub-optimal expression of IFN-I responses, due 
to polymorphisms, old age or obesity [99,69,87], can lead to uncon-
trolled viral replication followed by increased levels of antibodies and 
viral and inflammatory tissue damage, mediated by viral PAMPs and Fc 
receptors activation. However, in the majority of SARS-CoV-2 in-
fections, IFN-I will be expressed in optimal levels, leading to early 
control of infection, with no impairment on antibody development. 

Genomic studies are very important to identify possible polymorphic 
players and pathways associated with pathogenesis [5], but well- 
controlled research in suited animal models is fundamental for specific 
therapies development [100]. One interesting possibility is to revisit 
literature against more virulent coronaviruses, such as MERS-CoV and 
SARS-CoV, or use animal models suited for these, in order to better 
understand and identify therapeutic compounds in a well-controlled 
fashion [101,102], while animal models to SARS-CoV-2 are not avail-
able to the majority of researchers [103]. 

Finally, we believe that a better understanding of what drives cyto-
toxic CD4+ T cells can point out promising molecular targets to prevent 
aggravated reinfections and drive vaccination to viral diseases, as 
cytotoxic CD4+ T cells can potentially hamper Tfh polarization and 
antibodies production. All the features discussed in this text highlight 
that SARS-CoV-2 cause a multifactorial disease. Thus, the combination 
of targeted therapies, as already made for other viral diseases, like 

acquired immunodeficiency syndrome (AIDS) and hepatitis, might be 
crucial to better outcomes. 
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[32] Vollmers HP, Brändlein S. Natural IgM antibodies: The orphaned molecules in 
immune surveillance. Adv Drug Deliv Rev 2006;58(5–6):755–65. https://doi.org/ 
10.1016/j.addr.2005.08.007. 

[33] Gutzeit C, Chen K, Cerutti A. The enigmatic function of IgD: some answers at last. 
Eur J Immunol 2018;48(7):1101–13. https://doi.org/10.1002/eji.201646547. 

[34] Zhai G-T, Wang H, Li J-X, Cao P-P, Jiang W-X, Song J, et al. IgD-activated mast 
cells induce IgE synthesis in B cells in nasal polyps. J Allergy Clin Immunol 2018; 
142(5):1489–1499.e23. https://doi.org/10.1016/j.jaci.2018.07.025. 

[35] Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and 
immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 
2020;26(8):1200–4. https://doi.org/10.1038/s41591-020-0965-6. 

[36] Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E. Interferon- 
dependent immunity is essential for resistance to primary dengue virus infection 
in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 2004; 
78(6):2701–10. https://doi.org/10.1128/jvi.78.6.2701-2710.2004. 

[37] Hensley SE, Cun AS, Giles-Davis W, Li Y, Xiang Z, Lasaro MO, et al. Type I 
interferon inhibits antibody responses induced by a chimpanzee adenovirus 
vector. Mol Ther 2007;15(2):393–403. https://doi.org/10.1038/sj.mt.6300024. 

[38] Rachmawati NM, Fukudome K, Tsuneyoshi N, et al. Inhibition of antibody 
production in vivo by pre-stimulation of toll-like receptor 4 before antigen 
priming is caused by defective B-cell priming and not impairment in antigen 
presentation. Int Immunol 2013;25(2). https://doi.org/10.1093/intimm/dxs096. 

[39] Zheng J, Meyerholz D, Wong LYR, Gelb M, Murakami M, Perlman S. Coronavirus- 
specific antibody production in middle-aged mice requires phospholipase A2G2D. 
J Clin Invest 2021;131(11). https://doi.org/10.1172/JCI147201. 

[40] Donnarumma T, Young GR, Merkenschlager J, Eksmond U, Bongard N, Nutt SL, 
et al. Opposing development of cytotoxic and follicular helper CD4 T cells 
controlled by the TCF-1-Bcl6 nexus. Cell Reports 2016;17(6):1571–83. https:// 
doi.org/10.1016/j.celrep.2016.10.013. 

[41] Fang M, Sigal LJ. Antibodies and CD8 + T cells are complementary and essential 
for natural resistance to a highly lethal cytopathic virus. J Immunol 2005;175 
(10):6829–36. https://doi.org/10.4049/jimmunol.175.10.6829. 

[42] Schmidt ME, Knudson CJ, Hartwig SM, Pewe LL, Meyerholz DK, Langlois RA, 
et al. Memory CD8 T cells mediate severe immunopathology following respiratory 
syncytial virus infection. PLoS Pathog 2018;14(1). https://doi.org/10.1371/ 
journal.ppat.1006810. 

[43] Jaigirdar SA, MacLeod MK. Development and function of protective and 
pathologic memory CD4 T Cells. Front Immunol 2015;6:456. https://doi.org/ 
10.3389/fimmu.2015.00456. 

[44] Jacysyn JF, Abrahamsohn IA, Macedo MS. IL-4 from Th2-type cells suppresses 
induction of delayed-type hypersensitivity elicited shortly after immunization. 
Immunol Cell Biol 2003;81(6):424–30. https://doi.org/10.1046/j.1440- 
1711.2003.01194.x. 
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