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Abstract mRNA transcription in dsRNA viruses is a highly regulated process but the mechanism

of this regulation is not known. Here, by nucleoside triphosphatase (NTPase) assay and comparisons

of six high-resolution (2.9–3.1 Å) cryo-electron microscopy structures of cytoplasmic polyhedrosis

virus with bound ligands, we show that the large sub-domain of the guanylyltransferase (GTase)

domain of the turret protein (TP) also has an ATP-binding site and is likely an ATPase. S-adenosyl-L-

methionine (SAM) acts as a signal and binds the methylase-2 domain of TP to induce conformational

change of the viral capsid, which in turn activates the putative ATPase. ATP binding/hydrolysis leads

to an enlarged capsid for efficient mRNA synthesis, an open GTase domain for His217-mediated

guanylyl transfer, and an open methylase-1 domain for SAM binding and methyl transfer. Taken

together, our data support a role of the putative ATPase in mediating the activation of mRNA

transcription and capping within the confines of the virus.

DOI: 10.7554/eLife.07901.001

Introduction
Viral transcription is highly regulated, as demonstrated biochemically in viruses of the Reoviridae

(Shatkin and Sipe, 1968; Furuichi, 1974, 1978; Borsa et al., 1981; Farsetta et al., 2000). mRNA

transcription in these viruses is activated by external actions, for example, removal of their outer shell

in multi-shelled reoviruses (Shatkin and Sipe, 1968; Borsa et al., 1981; Farsetta et al., 2000)

and binding of S-adenosyl-L-methionine (SAM) in the single-shelled cytoplasmic polyhedrosis

virus (CPV) (Furuichi, 1974, 1978). The outer shell and the binding sites of SAM are far away from

the RNA-dependent RNA polymerases (RdRPs) inside the virus. How these external actions regulate

viral mRNA transcription has been a mystery.

Viruses in the Reoviridae contain 9–12 segments of dsRNA enclosed within an inner core that is

a self-competent molecular machine fully capable of RNA transcription and processing (Mertens

et al., 2004; Zhou, 2008). Each of the 9–12 dsRNA segments wraps around an RdRP located

underneath an icosahedral vertex and can undergo independent and simultaneous RNA transcription

within an intact core (i.e., endogenous RNA transcription) (Smith and Furuichi, 1982). The simplest of

these, the single-shelled CPV (Zhou, 2008) has been used as a model system for viral RNA

transcription and high-resolution cryo-electron microscopy (cryoEM) studies, as highlighted by the

discovery of mRNA cap structures (Furuichi, 1974; Furuichi and Miura, 1975) and the demonstration

of near atomic resolution cryoEM (Yu et al., 2008).

To find out how viral mRNA transcription is regulated, we set out to determine a series of

structures of CPV in complex with different ligands at resolutions ranging from 2.9 to 3.1 Å. We
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discovered that the large sub-domain of guanylyltransferase (GTase) domain of CPV turret protein

(TP) also has an ATP-binding site and is likely an ATPase that mediates the activation process of viral

RNA transcription and capping. This process involves sensing the presence of the signal molecule

SAM by methylase −2 (MT-2) domain of CPV TP, activating the putative viral ATPase, enlarging the

viral capsid for efficient mRNA syntheses, and opening the GTase and MT-1 to enable guanylyl and

methyl transfer.

Results

CryoEM structures at up to 2.9 Å and visualization of ligands
To reveal the mechanisms of transcriptional regulation of viruses within the Reoviridae family, we

determined the cryoEM structures of six CPV/ligand complexes in the presence of magnesium ion:

CPV+SAM (i.e., ‘S-CPV’), CPV+SAM+4 nucleoside triphosphates (NTPs) (i.e., transcribing, or ‘t-CPV’),

CPV+SAM+GTP+ATP (i.e., ‘SGA-CPV’), CPV+SAM +GTP (i.e., ‘SG-CPV’), CPV+GTP (i.e., ‘G-CPV’),

and CPV+ATP (i.e., ‘A-CPV’) at resolutions ranging from 2.9 to 3.1 Å (Figure 1A–C, Table 1, Video 1

and Figure 1—figure supplement 1). This range of resolutions has permitted us to identify side

chains of amino acid residues and to define conformations of bound ligands to build atomic models.

Like the atomic model of unliganded CPV (Yu et al., 2011), the atomic models of these liganded CPV

all contain two conformers of the capsid shell proteins (CSP-A and CSP-B), two conformers of the

large protrusion proteins (LPP-3 and LPP-5), and one conformer of TP in each asymmetrical unit (e.g.,

Figure 1B). We show below that the large sub-domain of GTase domain of TP (Zhou et al., 2003; Yu

et al., 2008) also has an additional ATP-binding site and is likely an ATPase (Figure 1D,E). Except for

A-CPV, these atomic models also contain ligands revealed in our cryoEM maps (Table 1). In S-CPV,

one SAM binds to the MT-2 domain of each TP. In G-CPV, one GTP binds to the GTase site of GTase

domain. In SG-CPV, two SAM molecules bind to the MT-1 and MT-2 domains, one Mg2+-GTP to the

GTase site and one GTP to the putative ATPase site. In t-CPV and SGA-CPV, two SAM molecules bind

to the MT-1 and MT-2 domains (Zhu et al., 2014), one Mg2+-GTP to the GTase site and one ATP to

the putative ATPase site. As we will report in detail below, a comparison of these structures and

their correlation with the accompanying biochemical results have led to our discovery of a putative

ATPase-mediated regulation process for activating viral RNA transcription and capping.

eLife digest Viruses can only replicate by invading the cells of other organisms, such as plants

and animals. Each virus carries genetic material in the form of molecules of DNA or ribonucleic acid

(RNA), which are packaged in a shell made of proteins.

The cytoplasmic polyhedrosis virus has a genome made of a type of RNA called double-stranded

RNA. Once inside a host cell, sections of the virus genome are copied to make molecules of

‘messenger RNA’ in a process called transcription. Small chemical groups called guanylyl and methyl

groups are added to the messenger RNAs before they are used as templates to make the virus

proteins.

A small molecule called S-adenosyl-L-methionine (SAM) can activate transcription of the virus

genome by binding to a protein called turret in the shell of the virus. The turret protein is involved in

adding the guanylyl and methyl groups to the messenger RNA molecules, but it is not clear how the

protein activates transcription.

Here, Yu et al. used a technique called cryo electron microscopy to study how the virus binds SAM

to activate transcription. The experiments show that the binding of SAM to one region or ‘domain’ of

the turret protein leads to changes in the virus shell. This enables another domain of the turret

protein to bind a small molecule called ATP and break it down. The energy released from breaking

down ATP causes further changes of the shell of the virus to activate transcription and the addition of

guanylyl and methyl groups to the newly made messenger RNAs.

In the future, experiments that directly observe the RNA inside each virus shall offer fresh insights

as to how the genomes of cytoplasmic polyhedrosis virus and other similar viruses are transcribed.

DOI: 10.7554/eLife.07901.002
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Figure 1. Structural overviews of cytoplasmic polyhedrosis virus (CPV) bound with different ligands involved in regulation and capping for viral RNA

transcription. (A) Radially colored G-CPV reconstruction at 2.9 Å resolution as viewed along a fivefold axis. (B) Density map of an asymmetric unit of G-CPV

is colored by protein subunit. (C) Density map (mesh) and atomic model (stick) of a selected region from CSP-A of G-CPV, showing characteristic side

Figure 1. continued on next page
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SAM alone triggers slight global protein movements
Because SAM is required for efficient mRNA synthesis in CPV in addition to being the methyl donor

for mRNA methylation (Furuichi, 1974, 1978), we first asked whether the presence of SAM would

have any effect on the structure of CPV. Superposition of the structures (both at 3.1 Å resolution) of

S-CPV and the unliganded CPV (Yu et al., 2011) shows that the capsid shell of S-CPV is slightly

expanded with a non-uniform outwards movement of all structure proteins (Figure 2A,B, Video 2 and

Figure 2—figure supplement 1A–C). (In contrast, the A-CPV structure reported here does not have

such capsid expansion and protein movements, see below.) For example, the apical domain of CSP-A,

located next to the fivefold axis, has the largest movement of ∼1 Å (RMSD: 0.97 Å); the dimerization

domain, located near the twofold axis, has the smallest movement of ∼0.5 Å (RMSD: 0.49 Å); the

CPV-unique small protrusion domain, which is located between the apical and the dimerization

domain, moves outwards ∼0.8 Å (RMSD: 0.83 Å) (Figure 2A and Video 3). TP, residing on the apical

domain of CSP-A, moves outwards ∼1 Å (RMSD: 0.99 Å), which is the same as the displacement of the

apical domain of CSP-A (Figure 2B). In CSP-B, located around the threefold axis, the outwards

movements of the apical, small protrusion, and dimerization domains are ∼0.85 Å (RMSD: 0.85 Å),

0.6 Å (RMSD: 0.57 Å), and 0.5 Å (RMSD: 0.49 Å), respectively (Figure 2—figure supplement 1A).

Accordingly, the movement (RMSD: 0.67 Å) of LPP-5 is slightly larger than that of LPP-3 (RMSD:

0.43 Å) (Figure 2—figure supplement 1B,C).

Both MT-1 and MT-2 domains of TP have the typical structural motif of SAM-dependent

methyltransferases with a seven-stranded β-sheet sandwiched by α-helices (Schluckebier et al., 1995;
Hodel et al., 1996; Reinisch et al., 2000; Sutton et al., 2007). Unexpectedly, only the MT-2 domain

Figure 1. Continued

chains. (D) Structures of turret protein (TP) and ligands in t-CPV. TP is colored by domain. The Mg2+ and GTP in the guanylyltransferase (GTase) site are in

green and orange, respectively; ATP in the putative ATPase site is in magenta; the two S-adenosyl-L-methionines (SAMs) in MT-1 and MT-2 are in green.

(E) Schematic illustration of t-CPV TP structure. Secondary elements involved in hydrogen bonding or stacking interactions with GTP and ATP are

highlighted in orange red and magenta, respectively. Secondary elements involved in interactions with SAM are highlighted in green.

DOI: 10.7554/eLife.07901.003

The following figure supplement is available for figure 1:

Figure supplement 1. Resolution assessment of CPV particle reconstructions.

DOI: 10.7554/eLife.07901.004

Table 1. CryoEM imaging and model refinement statistics

Sample name S-CPV t-CPV SGA-CPV SG-CPV G-CPV A-CPV

CryoEM reconstruction

Particles included
in the final
reconstruction

44,908 41,624 40,898 46,147 71,946 19,447

Resolution (Å) 3.1 3 3.1 3.1 2.9 3.1

Bound ligands One SAM
bound to MT-2

SAMs bound to MT-1
and MT-2;
one Mg-GTP and
one ATP bound to
GTase domain

Identical to
those of t-CPV

SAMs bound to MT-1
and MT-2; one Mg-GTP
bound to GTase site;
one GTP to ATPase site

One GTP bound
to the GTase site
of GTase domain

No ATP bound

Structural changes Structure protein
movements
outwards

Structure protein
movements outwards
and local conformational
changes

Identical to
those of t-CPV

Identical local
conformational changes;
different global protein
movements

No changes No changes

Model refinement

Resolution range (Å) 40–3.1 40–3.0 40–3.1 40–3.1 40–2.9 40–3.1

R-factor (%) 19.85 19.74 19.78 18.25 19.93 19.51

DOI: 10.7554/eLife.07901.005
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in S-CPV bound SAM (Figure 2C,D and

Figure 2—figure supplement 1D). Except for

slight displacement due to the outwards move-

ment of TP as described above, the MT-2 domain

structure of S-CPV is indistinguishable from that

of the unliganded CPV at the current resolution

of 3.1 Å (Figure 2E).

Structure changes in t-CPV and
discovery of an ATP-binding site
in TP
The above observed SAM-triggered conforma-

tional change correlates with previous biochemi-

cal data establishing a role of SAM in inducing

mRNA synthesis (Furuichi, 1974, 1978). In order

to find out how SAM does this, we obtained

a structure of t-CPV at 3.0 Å resolution, that is,

virions incubated with SAM, 4 NTPs, and Mg2+. In

contrast to that of S-CPV (Figure 3A), the

cryoEM image of t-CPV shows string-like densi-

ties emanating from the viral particles, which we

attribute to newly synthesized mRNA molecules

in the process of release from the actively transcribing virions (arrows in Figure 3B). However, no

mRNA densities are visible in our icosahedral reconstruction because these RNA molecules are

transcripts of different genomic segments at different stages of the dynamic transcription process and

are smeared by averaging.

Structural comparison between t-CPV and S-CPV reveals conformational changes of the capsid

proteins in t-CPV (Figure 3C,D, Video 4 and Figure 3—figure supplement 1A–C). Among the

five protein molecules within each asymmetric unit of CPV, only LPP-3 remains unchanged in both

the location and structure (Figure 3—figure supplement 1A) and the other four protein

molecules exhibited changes in their locations, their structures, or both. The locations of LPP-5

molecules in t-CPV and S-CPV differ although their structures are the same (Figure 3—figure

supplement 1B), indicating a rigid-body type of movement, likely effected by changes of the

underlying CSP molecules. By contrast, the other molecules undergo both global domain

movements and local conformation changes from S-CPV to t-CPV (Figure 3C,D and

Figure 3—figure supplement 1C). All domains of TP undergo global outwards movements

(∼9 Å), while only the MT-1 domain and the large sub-domain of GTase domain of TP exhibit local

conformation changes (Figure 3C). CSP-A not only rotates outwards (up to 9 Å) around a pivot

point near the twofold axis (global domain movements indicated by dashed ellipses in Figure 3D

and Video 5), but it also changes conformation in its apical domain (dotted ellipse in Figure 3D).

CSP-B also undergoes similar but less obvious changes than CSP-A (Figure 3—figure

supplement 1C). These structural changes in CSP molecules result in an enlarged, yet stable

capsid of the transcribing CPV. Since viral mRNA synthesis takes place within the confines of intact

virus core, an enlarged capsid would facilitate dsRNA template movement, enabling efficient

mRNA synthesis.

The t-CPV structure contained two ligands bound to the GTase domain of each TP (Figure 1D,

Video 6 and Figure 3—figure supplement 1D). The first is the expected GTP molecule involved in

transfer of a guanylyl group catalyzed by GTase and is located at a cleft of the GTase active site

(Video 6 and Figure 3—figure supplement 1D). The second is unexpected ligand, bound to the

large sub-domain, away from the cleft (Video 6 and Figure 3—figure supplement 1D).

The density of the unexpected ligand is as strong as that of the GTP bound to the GTase site and

the surrounding amino acid residues, and it fits very well with the atomic model of an ATP molecule,

suggesting that the large sub-domain of GTase domain of TP could also be a viral ATP-binding site

(Figure 4A and Video 7). Located outside the turret chamber (Figures 1D, 4A and Figure 4—figure

supplement 1), the putative ATP-binding site is inaccessible to both the dsRNA genome and the

Video 1. Radially colored G-CPV reconstruction at

2.9 Å resolution as viewed along a fivefold axis.

DOI: 10.7554/eLife.07901.006
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Figure 2. SAM alone binds to MT-2 of TP and triggers global movement of all capsid proteins. (A) Superimposition

of CSP-A between unliganded CPV (gray) and S-CPV (colored by domain). Insets: zoom-in views of the boxed

regions. The twofold and fivefold axes are indicated by a pentagon and an oval, respectively. (B) Superimposition of

TP between unliganded CPV (gray) and S-CPV (colored by domain as in Figure 1D). Insets: zoom-in views of the

boxed regions from GTase and MT-1 domains, respectively. (C) Structure of MT-2 (purple) and SAM (green). Left,

view as the guide map (inset). Right, view rotated as indicated. (D) Active site of MT-2. SAM is colored by element:

carbon in green, nitrogen in blue, oxygen in red, and sulfur in yellow. Side chains of those amino acids interacting

with SAM are shown. (E) Superimposition of MT-2 between unliganded CPV (gray) and S-CPV (purple) before (left)

and after (right) domain alignment using Cα positions.

DOI: 10.7554/eLife.07901.007

The following figure supplement is available for figure 2:

Figure supplement 1. Global movement of viral capsid proteins caused by SAM bound to the externally

located MT-2.

DOI: 10.7554/eLife.07901.008
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nascent mRNA, thus rendering it unable to

directly participate in the mRNA transcription

and the capping reactions but may function as

a regulatory protein or enzyme.

To establish the identity of the aforemen-

tioned ligand and the function of the putative

ATP-binding site, we subsequently performed

the following two structural studies.

First, through incubating CPV capsids with

SAM, GTP, ATP, and Mg2+, we obtained the

SGA-CPV particle which, lacking of UTP and CTP,

is incapable of mRNA transcription. Indeed, under

cryoEM, SGA-CPV (Figure 4—figure supplement

2A), and S-CPV (Figure 3A) particles look similar

and differ from actively transcribing t-CPV par-

ticles (Figure 3B). However, the 3.1 Å structure of

SGA-CPV shows global movements and local

conformational changes of its structure proteins

that are indistinguishable from those of t-CPV

(Figure 4A,B and Figure 4—figure supplement 2B).

Furthermore, the large sub-domain of SGA-

CPV GTase domain also contains a ligand

similar to that in the t-CPV (Figure 4A,B and

Figure 4—figure supplement 2C).

Second, to eliminate the possibility of GTP as the ligand bound to the putative ATP-binding site in

t-CPV, we obtained a 3D reconstruction of SG-CPV at 3.1 Å resolution. While the local conformational

changes of SG-CPV structure proteins are identical to those of t-CPV (Figure 4C), the global movements

of structure proteins of SG-CPV are slightly less than those in t-CPV or SGA-CPV (Figure 4—figure

supplement 3A). For example, the movement of GTase domain in SG-CPV is ∼1 Å less than that of t-CPV

or SGA-CPV (Figure 4D and Video 8). Most importantly, the density of the bound GTP is not as strong as

that of the ligand in t-CPV or SGA-CPV, and its triphosphate group becomes invisible when displayed at

the same threshold of 3σ (Figure 4C and Figure 4—figure supplement 3B).

These results indicate that (1) the global movements and local conformational changes of structural

proteins observed in t-CPV are not a consequence, but rather a trigger of RNA transcription; (2) the

large sub-domain of the GTase domain binds ATP to mediate the conformational changes observed in

t-CPV. Consistent with this assignment, only

the large sub-domain (the one containing the

ATP-binding site) of the GTase domain under-

goes significant conformational changes between

S-CPV and t-CPV (Figures 3C, 4E). Accompany-

ing these conformational changes, part of the

loop connecting α13 and α14 in S-CPV became

a helix (αC) in SGA-CPV, SG-CPV, and t-CPV

(Figure 4).

Demonstration of viral ATPase
activity and its SAM-dependence
Previous biochemical studies have shown that the

hydrolysis of ATP is required for mRNA synthesis

(Furuichi, 1978) and that efficient synthesis of

CPV mRNA depended on the concentrations of

SAM and ATP in a synergistic manner (Furuichi,

1981). We reason that the large sub-domain with

the ATP-binding site is possibly an ATPase, and

the synergy between SAM and ATP reflects

Video 2. Conformational changes from unliganded

CPV to S-CPV. Atomic model of an asymmetric unit is

colored by protein subunit as in Figure 1B.

DOI: 10.7554/eLife.07901.009

Video 3. Global movements of CSP-A caused by SAM

bound to the externally located MT-2. Superimposition

of CSP-A between unliganded CPV and S-CPV. CSP-A

from unliganded CPV is in gray. CSP-A from S-CPV is

colored by domain as in Figure 2A.

DOI: 10.7554/eLife.07901.010
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Figure 3. Comparison of S-CPV and t-CPV reveals global protein movements and local conformational changes.

(A, B) Cryo-electron microscopy (cryoEM) images of S-CPV and t-CPV. Unlike that of S-CPV (A), the cryoEM image of

t-CPV (B) shows characteristic string-like densities emanating from virus particles (arrows). Scale bars, 50 nm.

(C) Superimposition of TP between S-CPV (gray) and t-CPV (colored by domain as in Figure 1D). Upper, domains

that show global movements are indicated by dashed ellipses. Lower, GTase domain of t-CPV was aligned to that of

S-CPV using Cα positions for residues in small sub-domain. Each of other three domains in t-CPV was aligned to its

counterpart in S-CPV using Cα positions for residues in each domain. Regions that undergo local conformational

changes are indicated by dotted ellipses. (D) Superimposition of CSP-A between S-CPV (gray) and t-CPV (colored as

in Figure 2A). Upper, domains that show global movements are indicated by dashed ellipses. Inset, density maps of

S-CPV (gray) and t-CPV (pink) from the boxed region. Lower, molecules were aligned using Ca positions for residues

in small protrusion, middle and dimerization domains. Region that undergoes local conformational change is

indicated by dotted ellipse. Part (470–472) of a helix (residues 460–472) in S-CPV becomes a loop in t-CPV (inset).

DOI: 10.7554/eLife.07901.011

The following figure supplement is available for figure 3:

Figure supplement 1. Global movements and local conformational changes of capsid proteins observed in t-CPV.

DOI: 10.7554/eLife.07901.012
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a dependence of its activity on the presence of

SAM. To test this hypothesis, we first obtained

the 3D reconstructions of G-CPV and A-CPV at

2.9 Å and 3.1 Å resolutions, respectively

(Figure 1A–C, Table 1, Video 1 and

Figure 1—figure supplement 1). Our structures

of G-CPV and A-CPV show that, in the absence of

SAM, neither GTP nor ATP induced any confor-

mational change (Table 1). While a GTP bound to

the GTase active site in G-CPV (Figure 5A and

Figure 5—figure supplement 1), neither ATP nor

GTP was observed at the newly discovered ATP-

binding site in A-CPV and G-CPV (Table 1),

indicating that ATP/GTP binding to the large

sub-domain of TP GTase domain is directly

regulated by SAM, most likely via binding to the

MT-2 domain, since the structure of S-CPV

revealed only MT-2 domain contained SAM

(Figure 2C,D).

We then determined the rates of NTP hydro-

lysis of CPV in the presence and absence of SAM.

Phosphate released upon hydrolysis of NTPs

indeed depended on the presence of SAM and

the most favorable NTP substrate was ATP, with

decreasing rate of hydrolysis of other substrates in the order of GTP > CTP > UTP in the presence of

SAM (Figure 5B). Previous biochemical studies have shown that the mRNA transcription of CPV is

SAM-dependent and is specifically coupled to ATP hydrolysis (Furuichi, 1978, 1981). Additionally, it

has been shown that the removal of turret in orthoreovirus leads loss of mRNA transcription activity

(Luongo et al., 2002). Our structural results, when combined with these biochemical data, suggest

that the ATP-binding site of TP GTase domain is possibly a SAM-dependent ATPase that mediates the

activation of mRNA transcription.

The putative viral ATPase regulates the activities of GTase and MT-1
The density for the bound GTP in the GTase site is strong in t-CPV (Figure 6A, Video 6 and

Figure 6—figure supplement 1A) but weak in G-CPV, particularly at the triphosphate group

(Figure 5A and Figure 5—figure supplement 1).

Compared to that of G-CPV, the opening

(or ‘gate’) leading to the GTase site and coupled

to the putative mRNA releasing hole (Yu et al.,

2011) is widened from 13 to 15 Å in t-CPV, likely

to accommodate nascent mRNA (Figures 5A,

6A,B). Following the nomenclature of PBCV-1

GTase (Hakansson et al., 1997), we designate

the states of GTase domain in G-CPV and t-CPV

as closed and open states, respectively. In the

open state of GTase domain in t-CPV, we

observed extra density next to the β, γ phos-

phates of the bound GTP (Figure 6A and Video

6), which we interpret as coordinated Mg2+ for

two reasons. First, Mg2+ was the only divalent

cation in our reaction mixture. Second, the GTase

domains in SGA-CPV and SG-CPV are also in the

open state with prominent densities attributable

to Mg2+ (Figure 6C,D and Video 9). Biochemical

data have shown that the Mg2+ is required for

Video 4. Conformational changes from S-CPV to

t-CPV. Atomic model of an asymmetric unit is colored

by protein subunit as in Figure 1B.

DOI: 10.7554/eLife.07901.013

Video 5. Global movements and local conformational

changes of CSP-A from S-CPV to t-CPV. Density map

superimposition of CSP-A between S-CPV and t-CPV.

CSP-A of S-CPV is in gray. CSP-A of t-CPV is in

orange red.

DOI: 10.7554/eLife.07901.014
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GTase activity of viruses in Reoviridae (Yama-

kawa et al., 1982; Le Blois et al., 1992;

Martinez-Costas et al., 1995; Qiu and Luongo,

2003; Mohd Jaafar et al., 2005). Therefore, only

the open state (with the putative Mg2+) is

catalytically active. Remarkably, the gate opening

is achieved through the displacement of α14 (i.e.,

the gate helix), one of the three helices compris-

ing the active site of the putative viral ATPase

(Figures 4A–C, 6B). However, even though the

gate helix α14 controls the open and closed

state, it is not part of the GTase active site. In

fact, the active sites of the putative ATPase and

GTase do not share any amino acids or secondary

elements (Figure 1E). Therefore, the putative

ATPase regulates GTase activity allosterically.

The bound GTP molecules in the GTase open

and closed states exhibit differences in their

conformations and interactions with the GTase

active site (Figures 5A, 6). The triphosphate

moiety forms only one hydrogen bond (between

the β phosphate and Tyr59) in the closed

conformation (Figure 5A) but forms three or

four more hydrogen bonds in the open confor-

mation including the two formed by the α
phosphate with His212 and Arg255 (Figure 6A,C,D). The more extensive hydrogen bonds observed

in the open conformation is consistent with our assignment of it as the active state.

Catalysis of guanylyl transfer occurs in two steps: reaction with GTP to form a covalent

enzyme–GMP intermediate (enzyme guanylylation) and transfer of GMP onto the 5′-diphosphorylated
acceptor. Previous loss-of-function mutagenesis study of lysine residues in mammalian reovirus

suggested that Lys190 of GTase domain is responsible for guanylylation of GTases (Luongo et al.,

2000). Lys190 is located in a 28-aa segment (residues 168–195) that connects two structurally

conserved β strands. Surprisingly, the conserved β strands (β3 and β4) in CPV GTPase is connected by

a segment of only 13 aa (a loop from residues 166–178), which contains no lysine (Figure 1D,E). The

connecting segments do not have sequence or structural similarities. Within the vicinity of the bound

GTP, the only lysine residue in CPV GTase domain is Lys234, which maps to a non-conserved residue

(Ser259) in mammalian reovirus GTase domain. Moreover, during GTase transition from its closed to

open state, the α phosphorus of the GTP moves towards a histidine-rich segment and away from

Lys234 (Figures 6, 7 and Figure 6—figure supplement 1). Therefore, our structures indicate that

Lys234 cannot directly participate in guanylylation of GTase, a conclusion that is contrary to a previous

suggestion based on a likely incorrect placement of a GMP molecule in the active site in a poorer

resolution map (Yang et al., 2012).

By contrast, the histidine-rich segment contains two histidines (His208 and His217) that are either

hydrogen bonded to or in proximity with the α- or β-phosphate of the bound GTP in the open state of

CPV GTase (Figure 6A,C,D) and conserved in both the orthoreovirus (Reinisch et al., 2000) and

aquareovirus (Zhang et al., 2010b) (Figure 6—figure supplement 2). Located on the same side of

the leaving group (i.e., β, γ-diphosphate), His208 is hydrogen bonded to the β-phosphate of the GTP

in SGA-CPV and SG-CPV. Therefore, His208 is not the active site residue; rather, it stabilizes the

charge built up on the β-phosphate in the transition state during the catalysis process. Instead, His217

is likely the active site residue. His217 and the leaving group are on opposite sides of the α
phosphorus, a geometry suitable for in-line nucleophilic attack of the α phosphorus by His217 (Figures

6, 7 and Figure 6—figure supplement 2B). Indeed, these two conserved histidine residues in

orthoreovirus are required for the GTase activities (Qiu and Luongo, 2003). Furthermore, unlike

KxDG GTases that have maximum activity at high pH, GTases of viruses in the Reoviridae family have

maximum activity at pH about or lower than the pKa value (∼6.0) of histidine (Qiu and Luongo, 2003).

Because we observed only the pre guanylylation state of GTase in all three CPV structures (t-CPV,

Video 6. GTase domain of t-CPV contains two ligands.

The density map and atomic model of GTase domain in

t-CPV are in transparent gray and sky blue, respectively.

The density map is contoured at 3.0σ above the means.

The atomic models of GTP and ATP are in orange and

magenta, respectively. Mg2+ is in green.

DOI: 10.7554/eLife.07901.015
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Figure 4. Discovery of the viral ATP-binding site. (A) Structure of GTase domain and ATP in t-CPV. Left, view rotated

from the guide map (inset) as indicated. GTase domain is in sky blue. ATP is in magenta. Middle, zoom-in view of the

putative ATP-binding site. ATP is colored by element: carbon atoms are magenta, nitrogen atoms are blue, and

oxygen atoms are red. The hydrogen bonds are indicated by black lines. Side chains of Tyr305 and Arg271 form

pi–pi and cation–pi interactions with the adenine ring of ATP, respectively. Right, same view as the middle. The

density map of bound ATP (gray mesh) is contoured at 3σ above the means. (B) Structure of GTase domain and ATP

in SGA-CPV. Molecules are viewed and colored as in A. (C) Structure of GTase domain and GTP in SG-CPV.

Molecules are viewed and colored as in A. GTP is colored analogously. The density map of bound GTP (gray mesh)

is contoured at 1.4σ above the means. (D) Superimposition of GTase domain between SG-CPV (gray) and t-CPV (sky

blue). Inset: zoom-in view of the boxed region. Density maps from t-CPV (sky blue) and SG-CPV (gray) are contoured

at 3.0σ above the means. (E) Superimposition of the large sub-domain of GTase domain between S-CPV (gray) and

t-CPV (sky blue). Molecules were aligned using Ca positions for residues in small sub-domain. The bound ATP of

t-CPV is in magenta.

DOI: 10.7554/eLife.07901.016
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SGA-CPV, and SG-CPV), we reason that enzyme guanylylation mediated by His217 is likely the rate-

limiting step in the process of guanylyl transfer.

Our structures also indicate that the putative viral ATPase regulates the methyl transfer activity of

MT-1 through a long-range allosteric effect (Figures 1D, 8 and Figure 8—figure supplement 1). First

of all, active sites of MT-1 and the putative ATPase are spatially separated from each other (Figure 1D

and Figure 8—figure supplement 1) as the distance from the putative ATPase site to the MT-1 in the

same molecule is ∼80 Å, while that to a neighboring MT-1 is ∼40 Å (Figure 8—figure supplement 1A).

Second, even if the putative ATPase is activated by SAM but lacks ATP for binding/hydrolysis, MT-1

remains incapable of SAM binding as was observed in S-CPV. In t-CPV where ATP is available, MT-1

becomes SAM bound (Figure 8 and Figure 8—figure supplement 2A). The structures of MT-2 in

S-CPV and t-CPV are essentially identical (Figure 8A,B), but their MT-1 structures differ. In particular,

two loops lining one side of the un-occupied MT-1 active site in S-CPV shifted up to 4 Å in t-CPV,

resulting in an enlarged active site to accommodate the SAM molecule required for methyl transfer

(Figure 8C,D). In SGA-CPV and SG-CPV, the structures of MT-1 domains with bound SAM are

essentially identical to those in t-CPV (Figure 8—figure supplement 2), though the outwards

movement of MT-1 in SG-CPV is ∼1.1 Å less (Figure 8E), likely due to the lower rate of GTP hydrolysis

by the ATPase (Figure 5B).

Discussion
In this study, we discovered that the large sub-

domain of CPV GTase domain has an ATP-

binding site and is likely an ATPase. This putative

viral ATPase has the conserved structural motif

for recognition of the adenine base of ATP:

hydrogen bonds between the side chains of

Ser301, Asp302 and Tyr316 and the adenine

Figure 4. Continued

The following figure supplements are available for figure 4:

Figure supplement 1. The pentameric turret complex of t-CPV.

DOI: 10.7554/eLife.07901.017

Figure supplement 2. CryoEM of SGA-CPV.

DOI: 10.7554/eLife.07901.018

Figure supplement 3. CryoEM of SG-CPV.

DOI: 10.7554/eLife.07901.019

Video 7. Structure of ATP-binding site and the bound

ATP in t-CPV. The atomic model of GTase domain is in

sky blue. ATP is colored by element as in Figure 4A.

Side chains of amino acid involved in hydrogen bonding

(black lines) or stacking with ATP are shown. The density

map of the bound ATP is contoured at 3.0σ above the

means.

DOI: 10.7554/eLife.07901.020

Video 8. Structure comparison of GTase domain

between SG-CPV (gray) and t-CPV (sky blue).

DOI: 10.7554/eLife.07901.021
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ring, pi–pi stacking between the side chain of Tyr305 with the adenine base, and the cation–pi

stacking between the side chain of Arg271 and the adenine base (Figure 4A,B). However, this

putative viral ATPase lacks the structural motifs of canonical nucleoside triphosphatases (NTPases)

(including cellular kinases), most notably the P loop, for binding the phosphoryl moiety of NTP

(Saraste et al., 1990; Smith and Rayment, 1996; Snider and Houry, 2008). Instead, the phosphoryl

group of the bound ATP is stabilized through hydrogen bonds with the side chain of Arg271 or Tyr268

from α13 helix (Figure 4A,B). Although the large sub-domain has an α helices/β sheet fold, the

putative viral ATPase active site is composed of three consecutive helices of α13, α14, and α15
(Figure 4A,B). Structurally, the putative ATPase is different from all ATPase known to date, and it may

thus represent a new type of ATPase.

Although both GTP and ATP can bind at the putative viral ATPase site, their interactions with the

protein have some differences (Figure 4A–C). The base and ribose of the bound GTP are less

hydrogen bounded to the active site than those of the bound ATP. More importantly, while the

Figure 5. ATP binding and hydrolysis by the viral ATPase is SAM-dependent. (A) Structure of GTase domain and

GTP in G-CPV. Left, view rotated from the guide map (inset) as indicated. GTase domain is in sky blue. GTP is in

orange red. Middle, active site of GTase. GTP is colored by element: carbon atoms are orange red, nitrogen atoms

are blue, and oxygen atoms are red. The hydrogen bonds are indicated by black lines. Side chain of Tyr59 also forms

pi–pi stacking interaction with the guanylyl ring of GTP. Right, same view as the middle. The density map of bound

GTP (gray mesh) is contoured at 3σ above the means. (B) Nucleotide substrates specificity by CPV nucleoside

triphosphatase. Values are means derived from duplicate experiments. Standard deviations are indicated by

error bar.

DOI: 10.7554/eLife.07901.022

The following figure supplement is available for figure 5:

Figure supplement 1. Stereo view of GTPase site and GTP in G-CPV.

DOI: 10.7554/eLife.07901.023
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Figure 6. The catalytic activity of viral GTase is regulated by the viral ATPase through allosteric effect. (A) Structure

of GTase domain and the bound Mg2+-GTP in t-CPV. Left, view rotated from the guide map (inset) as indicated.

GTase domain is in sky blue. GTP is in orange red. Mg2+ is in green. Middle, active site of GTase with bound Mg2+

-GTP. GTP is colored by element as in Figure 5A. The hydrogen bonds are indicated by black lines. Side chains of

the two conserved His208 and His217 are shown. Right, same view as the middle. The density map of bound GTP

(gray mesh) is contoured at 3σ above the means. (B) Superimposition of GTase domain between G-CPV (gray) and

t-CPV (sky blue). Molecules were aligned using Ca positions for residues in small sub-domain. GTPs bound to the

GTase sites of G-CPV and t-CPV are in purple and orange red, respectively. Inset, zoom-in view of the boxed region.

(C) Structure of GTase domain and the bound Mg2+-GTP in SGA-CPV. Molecules and Mg2+ are viewed and colored

as in A. Side chain of the conserved His217 is shown. (D) Structure of GTase domain and the bound Mg2+-GTP in

SG-CPV. Molecules and Mg2+ are shown as in A. Side chain of the conserved His217 is shown.

DOI: 10.7554/eLife.07901.024

The following figure supplements are available for figure 6:

Figure supplement 1. Structures of GTase sites and bound GTPs.

DOI: 10.7554/eLife.07901.025

Figure supplement 2. The conserved His217 is the catalytic amino acid for guanylylation of GTase in CPV.

DOI: 10.7554/eLife.07901.026

Yu et al. eLife 2015;4:e07901. DOI: 10.7554/eLife.07901 14 of 23

Research article Biochemistry | Biophysics and structural biology

http://dx.doi.org/10.7554/eLife.07901.024
http://dx.doi.org/10.7554/eLife.07901.025
http://dx.doi.org/10.7554/eLife.07901.026
http://dx.doi.org/10.7554/eLife.07901


triphosphate group of the bound GTP forms only

one hydrogen bond through its β phosphate with

Tyr268 of the active site (Figure 4C), the tri-

phosphate moiety of the bound ATP is better

stabilized by forming two more hydrogen bonds

with the protein (Figure 4A,B). Conceivably, the

more hydrogen bonded ATP is a more efficient

substrate of the putative viral ATPase for hydro-

lysis than GTP, consistent with the colorimetric

assay of CPV NTPase activity (Figure 5B).

By integrating the atomic structures of six

different CPV particles and correlation with

NTPase assay results, we propose a viral ATPase-

mediated activation of mRNA transcription and

capping, as illustrated in Figure 9. As a virus must

rely on host cell for replication, it is to the best

interest of the virus to remain quiescent outside

host cells (Figure 9A). CPV senses the entrance

into host cytoplasm by detecting the presence of

SAM. SAM, acting as a signal and binding to its

receptor of MT-2, causes initial conformational

change of the virus capsid, which activates the

putative viral ATPase (Figure 9B). The activated

viral ATPase then binds and hydrolyzes ATP to

cause three major structural transformations,

leading to mRNA transcription and capping

(Figure 9C). First, as a result of the translocation

of CSP, the viral capsid is enlarged, facilitating

dsRNA template movement and enabling efficient mRNA synthesis (Figure 9C). Second, the GTase

domain transforms from its closed to open state (Figure 9C). Although GTP binds to the GTase active

site in both states of GTase domain, only in the open state can the GTase bind Mg2+ and catalyze

His217-mediated guanylyl transfer. Third, the MT-1 domain transforms from its closed to open

conformation (Figure 9C). Only in its open conformation can MT-1 bind SAM. While the MT-1 and

GTase domains from the samemolecule are separated by the bridge domain and have no direct contact

with each other, the MT-1 from a neighboring TP sits atop the putative ATPase sub-domain of GTase

domain (Figure 8—figure supplement 1). We, therefore propose that the putative ATPase regulates

the activity of MT-1 in a neighboring TP, probably through the conformational changes of the putative

ATPase sub-domain upon ATP binding/hydrolysis. Notably, from S-CPV to t-CPV, the C-terminal loop of

GTase domain exhibits significant movement towards the MT-1 domain of its neighboring TP molecule,

presumably contributing to open the active site of the MT-1 (Figure 8—figure supplement 1).

Several viruses within the Reoviridae, such as rotaviruses and blue-tongue viruses, cause wide spread

diseases in human and live stocks. Some of these multi-shelled viruses in the Reoviridae, including the

animal reovirus and blue-tongue virus, have been shown to have ATPase activity (Noble andNibert, 1997;

Ramadevi and Roy, 1998). The remarkable parallel between the ATPase activity and the transcription

activity indicated that they may have also employed the ATPase-mediated activation for mRNA

transcription and capping identified here. For example, reovirus cores had high level of ATPase activity

(Noble and Nibert, 1997) and could synthesize mRNA (Shatkin and Sipe, 1968; Banerjee and Shatkin,

1970; Drayna and Fields, 1982; Farsetta et al., 2000), but virions had little ATPase activity (Noble and

Nibert, 1997) and could not synthesize mRNA (Shatkin and Sipe, 1968; Farsetta et al., 2000). Thus, it is

the removal of outer shell other than SAM that triggers the activation process in multi-shelled reoviruses.

Materials and methods

Sample preparation
CPV virions were purified as described (Yu et al., 2008). Briefly, purified polyhedra were treated with

an alkaline solution of 0.2 M Na2CO3-NaHCO3 (pH 10.8) for 1 hr. The suspension was centrifuged at

Video 9. Structure of GTase active site and the bound

Mg-GTP in SGA-CPV. Color coding: sky blue—atomic

model of GTase domain; green—Mg2+; GTP—colored

by element as in Figure 6C. Side chains of amino acids

of the conserved His217, and those involved in

hydrogen bonding or in stacking with GTP are shown.

The density map of the bound GTP is shown as mesh at

a contour level of 3.0σ above the means.

DOI: 10.7554/eLife.07901.027
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10,000×g for 40 min. The resulting supernatant was collected and then centrifuged again at 80,000×g
for 60 min at 4˚C to pellet the CPV virions. The final pellet was re-suspended in a reaction buffer

(70 mM pH 8.0 Tris-Cl, 10 mM MgCl2, and 100 mM NaCl) and used for the following experiments.

We prepared six different CPV samples using a protocol modified from a previously described CPV

transcription essay (Smith and Furuichi, 1980). Reaction mixtures (30 μl) contained purified CPV,

70 mM Tris-Cl (pH 8.0), 10 mM MgCl2, 100 mM NaCl, and 1 mM SAM (S-CPV), or 1 mM SAM+2 mM

GTP+2 mM UTP+2 mM CTP+4 mM ATP (t-CPV), or 1 mM SAM+2 mM GTP+ 2 mM ATP (SGA-CPV),

or 1 mM SAM+2 mM GTP (SG-CPV), or 2 mM GTP (G-CPV), or 2 mM ATP (A-CPV). All reactions were

incubated at 31˚C for 15 min and stopped by quenching the reaction tubes on ice.

CryoEM imaging and 3D reconstruction
Each of the six different CPV particles mentioned above was embedded in a thin layer of vitreous ice

suspended across the holes of holey carbon films by plunge-freezing into liquid ethane. Before data

collection, beam tilt was carefully minimized by coma-free alignment. Viral particle samples were kept

at liquid-nitrogen temperature. CryoEM images were recorded on Kodak SO163 films at a dosage of

∼25 electrons/Å2 on an FEI Titan Krios cryo-electron microscope operated at 300 kV and 59,000×
nominal magnification with parallel beam illumination. The films were digitized with a Nikon scanner at

Figure 7. The α-phosphorus of GTP bound to the GTase site moves towards His217 and away from Lys234

accompanying the activation of GTase. (A) The distance between the Nε2 of His217 and the α-phosphorus of GTP in

G-CPV is ∼6.5 Å. The distance between the Nε of Lys234 and the α-phosphorus is ∼5.4 Å. Molecules and Mg2+ are

colored as in Figure 5B. (B) The distance between Nε2 of His217 and the α-phosphorus of GTP in t-CPV is ∼4.8 Å.

The distance between the Nε of Lys234 and the α-phosphorus is ∼7.6 Å. (C) The distance between Nε2 of His217 and

the α-phosphorus of GTP in SGA-CPV is ∼4.5 Å. The distance between the Nε of Lys234 and the α-phosphorus is

∼7.8 Å. (D) The distance between Nε2 of His217 and the α-phosphorus of GTP in SG-CPV is ∼4.7 Å. The distance

between the Nε of Lys234 and the α-phosphorus is ∼7.4 Å.

DOI: 10.7554/eLife.07901.028
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Figure 8. The catalytic activity of MT-1 is also regulated by the viral ATPase through allosteric effect. (A) Structure of

MT-2 domain and the bound SAM in t-CPV. MT-2 domain is in purple. SAM is in green. Left, viewed as in Figure 2C.

Right, view rotated as indicated. (B) Superimposition of MT-2 between S-CPV (gray) and t-CPV (purple). Molecules

were aligned using Ca positions for residues in domain. (C) Structure of MT-1 domain and the bound SAM in t-CPV.

MT-1 domain is in magenta. SAM is in green. Left, view as the guide map (inset). Middle, view rotated as indicated.

Right, active site of MT-1 domain. SAM is colored as in Figure 2D. Side chains of amino acids involved in interactions

with SAM are shown. (D) Superimposition of MT-1 between S-CPV (gray) and t-CPV (magenta). Molecules were

aligned using Ca positions for residues in MT-1 domain. The bound SAM of t-CPV is in green. Left, viewed as the

guide map in C. Right, view rotated as indicated. Inset: zoom-in view of MT-1 active site. (E) Superimposition of MT-1

active site between SG-CPV (gray) and t-CPV (magenta). The SAM molecules bound to the active sites of SG-CPV

and t-CPV are colored in coral and green, respectively.

DOI: 10.7554/eLife.07901.029

Figure 8. continued on next page
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a step size of 6.35 μm/pixel, corresponding to 1.076 Å/pixel at the sample level. Individual particle images

(960 × 960 pixels) were first boxed out automatically by the autoBox program in the IMIRS package

(Liang et al., 2002) and then followed by manual screening using the EMAN boxer program (Ludtke

et al., 1999) to keep only the well-separated, contamination-free, intact RNA-containing particles.

The program CTFFIND (Mindell and Grigorieff, 2003) was used to determine the defocus value and

astigmatism parameters for each micrograph. We determined particle orientation, center parameters with

the IMIRS package running in MPI-enabled Windows workstations (Liang et al., 2002). 3D reconstruction

was performed by eLite3D using graphical processing units (Zhang et al., 2010a). We considered

astigmatism during CTF correction in the orientation/center refinement and 3D reconstruction steps.

Effective resolutions of the final reconstructions were estimated to be 2.9–3.1 Å (Figure 1A–C,

Table 1 and Figure 1—figure supplement 1), based on the structural features revealed in the cryoEM

density maps, R-factors (Wolf et al., 2010), and Fourier shell correlation coefficient (FSC) criterion as

defined by Rosenthal and Henderson (Rosenthal and Henderson, 2003). We have previously shown

that our common-lines-based programs do not suffer from the problems of over-fitting or model bias

(Zhou et al., 2014). To provide further validation, we took advantage of the existence of identical

structures of t-CPV and SGA-CPV (both independently determined) and calculated the FSC curves

between the SGA-CPV map and SGA-CPV model and that between the SGA-CPV map and t-CPV

model. Because these structures were independently determined, they are essentially the same as

‘gold-standard’ FSC (Scheres and Chen, 2012). These analyses further support our conclusion that

our reconstructions do not have over-fitting (Figure 1—figure supplement 1B).

Figure 8. Continued

The following figure supplements are available for figure 8:

Figure supplement 1. The putative viral ATPase regulates the methyl transfer activity of MT-1.

DOI: 10.7554/eLife.07901.030

Figure supplement 2. Structures of MT-1 active sites and SAMs.

DOI: 10.7554/eLife.07901.031

Figure 9. Schematic illustration of the putative viral ATPase-mediated activation of mRNA transcription and

capping. In this illustration, the active open states of enzymes are shown in filled colors and the inactive closed states

of enzymes are shown in dotted color lines. (A) CSP-A (red) and GTase, bridge and MT-2 domains from the same TP

molecule, and a neighboring MT-1 (colored as in Figure 1D) of unliganded CPV. The inactive ATPase site is

indicated by three empty cylinders. (B) CSP-A and GTase, bridge and MT-2 domains from the same TP molecule,

and a neighboring MT-1of S-CPV. SAM alone can only bind to MT-2 domain (purple) to cause conformational

change and activate the putative viral ATPase. The activated ATPase site is indicated by three colored cylinders.

(C) CSP-A and GTase, bridge and MT-2 domains from the same molecule, and a neighboring MT-1 of t-CPV.

DOI: 10.7554/eLife.07901.032

Yu et al. eLife 2015;4:e07901. DOI: 10.7554/eLife.07901 18 of 23

Research article Biochemistry | Biophysics and structural biology

http://dx.doi.org/10.7554/eLife.07901.030
http://dx.doi.org/10.7554/eLife.07901.031
http://dx.doi.org/10.7554/eLife.07901.032
http://dx.doi.org/10.7554/eLife.07901


Atomic model building, model refinement, and 3D visualization
Rebuilding the model to fit the EM map was done manually with COOT (Emsley and Cowtan, 2004)

with the help of REMO (Li and Zhang, 2009). The ‘regularize zone’ utility of COOT was used to

improve model stereochemistry.

These coarse full-atom models were then refined in a pseudocrystallographic manner using Phenix

(Adams et al., 2010). This procedure only improves atomic models and does not modify the cryoEM

density map. Densities for individual proteins were segmented, put in artificial crystal lattices, and

then used to calculate their structural factors. The amplitudes and phases of these structural factors

were used as pseudo-experimental diffraction data for model refinement in Phenix. To improve the

areas of interaction between different protein subunits, we put the refined structures of all five

subunits from an asymmetric unit into a single coordinate file and pseudo-crystallographically refined

them simultaneously with their non-crystallographic symmetry. This refinement process uses pseudo-

experimental diffraction data generated from the cryoEM map of an asymmetric unit.

CryoEM reconstruction was visualized and segmented using Chimera (Pettersen et al., 2004). All

figures were prepared with Chimera and COOT.

Determination of CPV NTPase activity by colorimetric assay
The NTPase reactions and colorimetric assay were performed as described byNoble and Nibert (1997) in

1.5-ml eppendorf tubes. NTPase reaction mixtures contained 100 mM Tris-Cl (pH 8.0), 100 mM NaCl, 10

mM MgCl2, without or with 1 mM SAM, 6 × 1011 CPV particles per ml, and 1 mM of one of the 4 NTPs in

a total volume of 60 μl. Reaction components were mixed on ice, incubated at 31˚C for 30 min and then

returned to ice. Termination of each reaction was ensured by the addition of an equal volume of 10%

trichloroacetic acid. To measure the amount of phosphate ion in each sample, the stopped reaction mixture

was mixed with an equal volume of colorimetric reagent (3 vol of 0.8% ammonium molybdate, 1 vol of 6 N

sulfuric acid, 1 vol of 10% [wt/vol] ascorbic acid). After all samples in the experiment were added, the

eppendorf tubes were incubated in a water bath at 31˚C for 30 min. During development, a reduced

phosphomolybdate complex was formed, which was blue in color and quantifiable by A655 nm. In each

experiment, samples containing NTP but no CPV were included to permit correction for background.

Accession numbers
The cryoEM density maps and atomic coordinates reported here are deposited in the EM Data Bank

and the Protein Data Bank with accession codes EMD-6371 (A-CPV), EMD-6374 (G-CPV), EMD-6375

(S-CPV), EMD-6376 (SG-CPV), EMD-6377 (SGA-CPV), EMD-6378 (t-CPV) (Yu et al., 2015a; 2015b;

2015c; 2015d; 2015e; 2015f ) and 3JAZ (A-CPV), 3JB0 (G-CPV), 3JB1 (S-CPV), 3JB2 (SG-CPV), 3JB3

(SGA-CPV), 3JAY (t-CPV) (Yu et al., 2015g; 2015h; 2015i; 2015j; 2015k; 2015l ), respectively.
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