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1  |  HL A-E–RESTRIC TED T- CELL S

The non-classical HLA class Ib molecule HLA-E is best known as a 
ligand for CD94/NKG2A and CD94/NKG2C, which are inhibitory 

and activating C-type lectin receptors, respectively, that are ex-
pressed by NK cells and some subsets of T-cells.1 CD94/NKG2A 
recognition of HLA-E–presented self-peptides, typically derived 
from HLA class Ia signal sequences, leads to inhibition of NK-cell 
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Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T- and 
B-cells, have shown limited success, encouraging the addition of alternative targets. 
Classically restricted T-cells recognize antigens presented via highly polymorphic HLA 
class Ia and class II molecules, while donor-unrestricted T-cells (DURTs), with few ex-
ceptions, recognize ligands via genetically conserved antigen presentation molecules. 
Consequently, DURTs can respond to the same ligands across diverse human popula-
tions. DURTs can be activated either through cognate TCR ligation or via bystander 
cytokine signaling. TCR-driven antigen-specific activation of DURTs occurs upon an-
tigen presentation via non-polymorphic molecules such as HLA-E, CD1, MR1, and 
butyrophilin, leading to the activation of HLA-E–restricted T-cells, CD1-restricted 
T-cells, mucosal-associated invariant T-cells (MAITs), and TCRγδ T-cells, respectively. 
NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated 
through other receptor-triggering pathways, or can be engaged through bystander 
cytokines, produced, for example, by activated antigen-specific T-cells or phagocytes. 
NK cells can also develop trained immune memory and thus could represent cells of 
interest to mobilize by novel vaccines. In this review, we summarize the latest find-
ings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, 
M leprae, and non-tuberculous mycobacterial immunity and explore possible ways in 
which they could be harnessed through vaccines and immunotherapies to improve 
protection against Mtb.
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cytolytic function.2,3 This interaction operates as a surveillance 
system for monitoring bonafide surface expression of HLA class Ia, 
which can be downregulated by tumors or pathogens as an immune 
escape mechanism.4 However, HLA-E molecules have also been 
shown to present peptides of non–self-origin, such as the glycopro-
tein UL40 leader peptide from CMV, which, being identical to HLA 
class Ia signal peptide, also engages CD94/NKG2A allowing CMV to 
escape NK-cell–mediated cytotoxicity.5 Moreover, HLA-E–depen-
dent peptide presentation to TCRs on human CD8+ T-cells has been 
shown for a variety of bacterial and viral pathogens including Mtb, 
Salmonella, and CMV.6-12 Mtb-specific HLA-E–restricted T-cells 
were able to control intracellular mycobacterial growth in human 
macrophages ex vivo, rendering these cells interesting targets for 
vaccination strategies.9

In contrast to other HLA molecules, HLA-E is essentially mono-
morphic: only one amino acid located outside of the peptide-bind-
ing groove differentiates the two allelic, coding variants in humans, 
HLA-E*01:01 (107Arg) and HLA-E*01:03 (107Gly).13 These two al-
lelic variants are equally represented in human populations, promot-
ing interest in HLA-E as a vaccine presentation molecule conserved 
in otherwise genetically diverse populations.14 HLA-E–mediated 
antigen presentation has attracted particular interest in the con-
text of Mtb infection after several studies showed that HLA-E, in 
contrast to classical HLA molecules, was resistant to HIV-mediated 
downregulation.15 Although a recent publication showed that this 
resistance varied with the HIV strain studied,16 the observed main-
tained HLA-E expression can be of significance when administer-
ing vaccines to individuals at risk of Mtb/HIV coinfection. HLA-E’s 
function can be studied in mice and non-human primates, due to the 
high structural and functional conservation across vertebrates, with 
Qa-1b, Mamu-E, and Mafa-E being the HLA-E orthologues in mice, 
rhesus macaques (RM), and cynomolgus macaques, respectively.17,18 
This is particularly relevant for preclinical and translational HLA-E–
oriented vaccine research.

1.1  |  Functional properties of HLA-E–restricted 
T-cells in an infectious disease: the example of 
Mtb infection

HLA-E tetramers loaded with Mtb-derived peptides were used to 
detect circulating Mtb-specific HLA-E–restricted T-cells in active 
TB patients, particularly in TB patients coinfected with HIV, but at 
lower frequencies also in LTBI. The higher frequencies of these cells 
in active TB and HIV/TB patients suggest activation during disease, 
possibly correlating with disease severity.9,19 Functional characteri-
zation of these cells ex vivo and of Mtb-specific HLA-E–restricted 
polyclonal and monoclonal T-cells in vitro revealed an unorthodox 
Th2 cytokine and effector-memory profile, with both cytotoxic and 
regulatory activities. Despite possessing Th2-like characteristics, 
these T-cells were able to inhibit intracellular mycobacterial growth 
in human Mtb-infected macrophages.8,9 In mice, balanced activation 
of Qa-1b–restricted T-cells was found to be associated with improved 

control of bacterial burden, reduced inflammation, and reduced mor-
tality following Mtb infection.20 In line with these cells’ Th2 char-
acteristics, our own work further demonstrated that Mtb-specific 
human HLA-E–restricted T-cells could activate B-cells,9 which play a 
key role in T-cell immunity to Mtb.21 Mtb-specific HLA-E–restricted 
T-cells, however, also can express IFN-γ, a Th1 cytokine, which has 
been associated with control of Mtb growth.7,11,22 Taken together, 
the polyfunctional nature of Mtb-specific HLA-E–restricted T-cells 
renders them interesting targets for vaccine-inducible control of 
Mtb infection, by mobilizing a number of as yet incompletely re-
solved functional pathways, which include helping macrophages, 
promoting B-cell activation, and regulating excessive inflammatory 
responses (Table 1).

1.2  |  Studies on HLA-E–restricted T-cells in 
experimental vaccination studies

The potential of HLA-E–restricted T-cells in vaccination strategies 
is further supported by a series of studies in RM demonstrating the 
induction of these unconventional T-cells after vaccination with 
engineered rhesus cytomegalovirus (RhCMV) vectors. These vec-
tors carried virus or parasite antigens and elicited tissue-resident 
and high-frequency circulating effector-memory CD4+ and CD8+T-
cell responses specific for the pathogen-derived antigen.23 Hansen 
et al24 showed that vaccination of RM with RhCMV/simian immu-
nodeficiency virus (SIV) led to complete protection against high-
dose SIV challenge in half of the animals, which was at least partially 
dependent on Mamu-E–restricted T-cell responses. Mamu-E–re-
stricted T-cells from these animals were able to recognize SIV-
infected CD4+T-cells as shown by IFN-γ and TNF-α production, a 
response which could be blocked by the HLA-E–specific binding 
VL9 peptide. Similarly, vaccination of RM with RhCMV/hepatitis 
B virus (HBV) elicited Mamu-E–restricted T-cells producing IFN-γ 
upon recognition of both RM- and human-derived HBV-infected pri-
mary hepatocytes in vitro.24,25 Plasmodium knowlesi (Pk) challenge of 
RhCMV/Pk-vaccinated RM led to delayed parasitemia, again partially 
dependent on Mamu-E–restricted T-cells.26 A significant reduc-
tion in the magnitude of Mtb infection and disease after RhCMV/
TB vaccination in RM was observed compared with unvaccinated 
animals.27 In this case, Mamu-E- and MHC-II- or MHC-Ia–restricted 
Mtb-specific effector T-cell responses were induced, partly depend-
ing on the vector used, and both may play a role in protection, hint-
ing to diverse and possibly complementary protective mechanisms 
in the immune response against Mtb.27 The finding of MHC-E–re-
stricted SIV epitopes that were recognized by all tested (outbred) 
animals led to the term “supertopes” and supports the potential of 
HLA-E–targeting vaccines to induce effector T-cell responses re-
gardless of human genetic diversity.24

Recent insights into HLA-E peptide-binding motifs28,29 and the 
availability of improved peptide/HLA-E–binding algorithms will 
allow for better selection of optimal peptide ligands for HLA-E 
from diverse pathogens and perhaps even tumors, which could be 
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harnessed in better vaccines and therapeutics. Further research will 
be necessary to define the influence of peptide-binding affinity and 
stability on optimal TCR triggering via HLA-E. An additional advan-
tage when considering HLA-E as a vaccine target, especially in the 
case of intracellular pathogens such as Mtb, is HLA-E’s expression in 
the Mtb phagosome of macrophages.30 Therefore, the Mtb phago-
some could be involved in HLA-E peptide loading and thus be an al-
ternative cytosolic cross-presentation pathway, although the precise 
mechanisms involved remain undefined.

2  |  MUCOSAL-A SSOCIATED INVARIANT T 
(MAIT )  OR MR1-RESTRIC TED T- CELL S

MAIT-cells are a subset of (mostly oligoclonal) TCRαβ T-cells initially 
associated with mucosal surfaces, and defined by surface expression 
of CD161, CD26, and a semi-invariant TCR.31,32 MAIT-cells express 
chemokine receptors CCR9, CCR5, CCR6, and CXCR6, suggesting 
preferential homing to liver, lung, and intestines.33 However, MAIT-
cells also circulate in the blood from where they are recruited during 
bacterial infections such by Mtb.34 MAIT-cells have the capacity to 
detect bacterially infected cells in mice and humans through the rec-
ognition of metabolic intermediates presented by the monomorphic 
MHC-related protein 1 (MR1). Known MAIT agonists include ribofla-
vin metabolites, which are only present in bacteria and fungi, such as 
5-OE-RU and 5-OP-RU,35 making them an important component of 
the mucosal immune response against bacterial infections.

Despite the initially observed conservation of the MAIT TCR 
repertoire, additional studies using MR1 tetramers discovered more 
heterogeneous intra- and inter-individual TCR-V fragment usage.36-38  
Comparison of Mtb-specific MR1 tetramer–positive and MR1 te-
tramer–negative MAIT-cells showed that MAIT-cells can react to 
diverse ligands.39 Nevertheless, the relatively limited MAIT TCR rep-
ertoire and its conservation across species are clear indications of 
underlying conserved specificity and functionality of at least a sub-
set of MAIT-cells. A recently expanded MAIT-cell classification has 
suggested to encompass the apparent increasing diversity of human 
MAIT-cell populations, considering MR1 restriction, antigen reactiv-
ity, and innate-like effector function associated with the expression 
of promyelocytic leukemia zinc finger (PLZF).31 Classical MAIT-cells 
can be identified by the expression of a semi-invariant TCR encoded 
by TRAV1-2 and TRAJ33/12/20 α-chain, with restricted TCRβ chain 
usage dominated by TRBV6 and TRBV20. The alternative, more vari-
able expression of TCRA genes in TRAV1-2–negative MAIT-cells 
characterizes non-classical MAIT-cells. Atypical MR1-restricted 
T-cells can express variable TCR fragments and are phenotypically 
distinct from MAIT-cells as determined by reactivity to alternative 
antigens and lack of PLZF expression.31 Therefore, MAIT-cells are 
also often referred to as MR1-restricted T-cells (MR1T), but it is 
currently uncertain whether all MR1-restricted T-cells classify as 
MAIT-cells.

Classical MAIT-cells share high similarity in transcriptional pat-
terns with invariant natural killer T (iNKT)-cells, which we discuss 

in detail below, and both types of unconventional T-cells express a 
transcriptome distinct from that of conventional CD8+T-cells.39,40 
These shared transcriptional programs are acquired during thymic 
development and reflect defined effector functions and tissue resi-
dency.41 Upon mycobacterial activation, MAIT-cell gene expression 
profiles overlapped also with that of activated NK cells and conven-
tional CD8+T-cells, further suggesting MAIT-cells as a functional 
bridge between innate immunity and adaptive immunity.42

2.1  |  Contribution of MAIT-cells to protective 
immunity against mycobacterial infections

Circulating MAIT-cells were decreased in active TB patients com-
pared with healthy controls, a trend also observed in HIV- and HIV/
TB-infected patients. In contrast, MAIT-cells were enriched at the 
site of infection, suggesting preferential homing from the blood.43-48  
In a recent report, MAIT-cells were enriched in bronchoalveolar 
lavage (BAL) fluids of active TB patients compared with uninfected 
individuals and were reactive to Mycobacterium smegmatis–infected 
antigen-presenting cells only when MR1 was expressed.49 However, 
a recent study conducted in a high endemic setting detected no dif-
ferences in circulating MAIT-cell frequencies when comparing TB 
patients with LTBI and healthy Mtb–exposed controls.50 These dif-
ferential frequencies of MAIT-cells across different studies suggest 
a potential effect of (high) Mtb exposure or other environmental fac-
tors such as microbiota, nutritional status, co-infections, or host ge-
netics. In any case, these studies suggest that MAIT-cells may not be 
an appropriate correlate of Mtb infection in high-transmission areas. 
Moreover, increased susceptibility to meningeal TB in a Vietnamese 
cohort was associated with a single genetic polymorphism caus-
ing increased MR1 expression, while reduced MR1 expression of 
MR1 was associated with increased mortality. This suggests a role 
for MR1-mediated antigen presentation and MAIT-cell activation in 
human TB susceptibility, and perhaps also dissemination to the cen-
tral nervous system.51

Functionally, MAIT-cells can be cytotoxic toward bacterially 
infected MR1-expressing lung-epithelial cells.43,52 In recently Mtb-
exposed subjects resistant to infection, MAIT-cells showed an acti-
vated phenotype with expression of granzyme B and IL-2RA.53 The 
reduced frequency of MAIT-cells in the blood of active TB patients 
was linked to the elevated expression of exhaustion marker pro-
grammed cell death protein 1 (PD-1) on MAIT-cells54 and to defi-
cient MAIT-cell production of IFN-γ, TNF-α, granulysin, granzyme 
B, and IL-17F when exposed to antigen, compared with healthy con-
trols.55,56 In contrast, a recent study showed that IFN-γ production 
by circulating MAIT-cells in response to Mtb was higher in active 
TB patients and LTBI compared with uninfected contacts, although 
LTBI showed highest IFN-γ production, suggesting a possible role 
for MAIT-cells in infection control.57 In another study, MAIT-cells 
isolated from tuberculous pleural effusions displayed increased cy-
tokine and cytotoxic responses to Mtb-derived antigens compared 
with blood MAIT-cells, mainly mediated by IL-2, IL-12, and IL-18 
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signaling, supporting the importance of Mtb-specific and bystander 
activation of MAIT-cells at the site of infection.58 Interestingly, the 
persistent absence of IFN-γ release assay (IGRA) conversion in a 
sizeable fraction of highly Mtb-exposed household contacts was 
associated with a reduced proportion of IL-17–producing circulat-
ing MAIT-cells compared with IGRA converters, an indication of the 
possible importance of migration of these cells to the infection site 
for bacterial control, although this could not be proven.59 In chil-
dren, where TB disease is usually the result of primary infection as 
opposed to the reactivation of latent infection predominantly seen 
in adults, active TB correlated with reduced MAIT-cell numbers in 
blood and BAL fluid compared with LTBI and healthy children.60 
Recently, activated, proliferating, granzyme B–producing MAIT-cells 
were identified in the blood of NHP after BCG vaccination and Mtb 
infection, in agreement with observations in humans.61 In another 
study, a transient increase in MAIT-cells was detected in BAL but 
not peripheral blood after protective intravenous BCG vaccination 
in NHP, suggesting that MAIT-cell recruitment to the infection site 
might be involved in protection against aerosol Mtb challenge.62 
Exploration of lung tissue and TB granulomas of these Mtb-infected 
macaques showed an uneven accumulation of activated MAIT-cells. 
Kauffman et al found that MAIT-cells were increased in the lungs of 
only half of the NHP at late time points of Mtb infection. Moreover, 
in TB granulomas only few and poorly activated MAIT-cells were 
identified, which expressed low levels of granzyme B, suggesting 
a limited role for MAIT-cells in Mtb control.63 Bucsan et al, on the 
other hand, found increased MAIT-cell frequencies with Th1 cyto-
kine profiles in blood and BAL fluid of NHP only at early time points 
after Mtb infection.64

Altogether, these studies underscore the pertinence of MAIT-
cells for mucosal immunity and the ambiguity of their role in local 
immune control of Mtb infection and TB disease progression in hu-
mans. Importantly, we must consider the spectrum, and the kinet-
ics of Mtb infection and TB disease development when designing 
strategies to mobilize MAIT-cells, as they might have an important 
short term and early role at the site of Mtb infection, with possibly 
reduced functionality in more advanced TB disease.

2.2  |  MAIT-cell activation pathways and potential 
as vaccine or immunotherapeutic target

Studies in mice have shed further light on the function of MAIT-
cells during infection. MR1-deficient mice showed increased 
susceptibility to Mycobacterium abscessus and Escherichia coli in-
fections.44 Follow-up studies demonstrated a protective function 
of mouse MAIT-cells against infections with Klebsiella pneumoniae, 
Mycobacterium bovis BCG, Francisella tularensis, and Legionella long-
beachae.65-68 In vitro activation of human MAIT-cells primarily de-
pended on MR1 antigen presentation and subsequent TCR signaling 
at early time points, while combined IL-12/IL-18 signaling was shown 
to be equally important at later time points, supporting a TCR-
independent mechanism of later-phase MAIT-cell stimulation.69 This 

bystander activation mechanism was also observed in BCG-specific 
MAIT-cells, hinting to a role for these cells in innate immunity cy-
tokine-driven expansion in the response against Mtb infection.70

The impaired control of bacterial loads in genetically MR1-
deficient mice compared with wildtype mice at early time points 
after Francisella tularensis infection provided strong evidence for a 
role of MAIT-cells in early innate immunity and in initiating adaptive 
immune responses to chronic infection through IFN-γ production 
and the recruitment of CD4+ and CD8+T-cells.67 The importance 
of MAIT-cells in protection against bacterial infections was further 
substantiated by experiments in which MAIT-cells were adoptively 
transferred into immunodeficient mice, leading to rescue from lethal 
Legionella infection.68 Importantly, in vivo MAIT-cell priming with 
5-OP-RU and TLR9/2 agonists CpG or Pam2Lys increased protection 
against Legionella infection.68 In contrast, 5-OP-RU–mediated ex-
pansion of MAIT-cells prior to Mtb infection in mice was associated 
with delayed Mtb-specific CD4+T-cell priming and lack of protection, 
suggesting that MAIT-cell priming might have pathogen-specific 
effects.71 During Mtb infection in vivo, the presence of inhibitory 
MR1-ligands such as riboflavin and FO might counteract the effect 
of MAIT-cell agonists,72 resulting in a balanced MAIT-cell response, 
which, however, might limit protection against Mtb despite success-
ful vaccine-mediated priming. In contrast, IL-17A–mediated control 
of Mtb in vivo was achieved through administration of MAIT agonist 
during chronic infection, pointing to differential functions for MAIT-
cells during steady and inflammatory states.71 In two recent studies, 
accumulation of MAIT-cells in BCG- and Mtb-infected mouse lungs 
was shown to be dependent on exposure to the MAIT-cell–activat-
ing antigen 5-OP-RU and TLR2/6 agonist Pam2CSK4 or Pam2Cys.73,74 
However, this was associated with a reduced ability to control Mtb, 
and with increased levels of anti-inflammatory cytokine IL-10, adding 
to the complexity of targeting MAIT-cells to enhance host protec-
tion against Mtb infection.73,74 In the context of Mtb/SIV coinfection 
in NHP, MAIT-cells were recruited to granulomas, but were func-
tionally impaired in vitro and in vivo.75 Impaired MAIT-cell responses 
to Mtb were also observed in HIV-infected patients and could be 
redressed through IL-10 signaling blockade.76 Therefore, a proper 
balance between induction and regulation of MAIT-cells linked to 
the inflammatory environment during MAIT-cell recruitment seems 
to be crucial for an optimal response during Mtb infection.

Additionally, host gut microbiota has been shown to contribute 
to MAIT-cell function in the early protection of Mtb lung coloniza-
tion in mice and humans.53,77 Indeed, the development of MAIT-cells 
that are relevant for tissue repair depended on the exposure to ribo-
flavin-derived antigens present in early-life microbiota.78 This is fur-
ther supported by the finding that MAIT-cell frequencies increased 
rapidly after birth and with age, regardless of BCG vaccination sta-
tus, hinting to a role of gut microbiome colonization and increased 
microbial exposure in MAIT-cell expansion.79

In conclusion, although MAIT-cells have the capacity to elim-
inate bacteria-infected cells in vitro, their specific role in overall 
protection against Mtb in humans and NHP remains unresolved. 
Notably, MAIT-cells might be particularly important for mucosal 
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immunity at early time points after primary Mtb infection, by 
their mobilized effector functions or by regulating other adaptive 
immune cells (Table 1). Additional larger longitudinal studies will 
be necessary to unravel MAIT-cells’ roles, specific effector func-
tions, and homing behavior in host defense against mycobacterial 
infection, and to identify effective MAIT-cell–targeting strategies 
to increase protection at different stages of Mtb infection or TB 
disease. Moreover, it will be necessary to evaluate MR1 ligands 
as vaccine components, in particular on the feasibility and po-
tential for MAIT-cell expansion upon vaccination. Presently, the 
possibility to target MAIT-cell responses with other than whole-
cell vaccines hinges upon the development of stable MR1 ligands. 
Furthermore, enhancing MAIT-cell priming with cytokine costim-
ulation or blockade, perhaps immune-checkpoint manipulation, 
might represent alternatives to improve protection against Mtb, 
although this remains to be evaluated.

3  |  TCRγδ  T- CELL S

TCRγδ T-cells are CD3+T-cells expressing Vγ and Vδ-encoded 
TCR, and are unique in their capacity to recognize non-peptidic 
phosphorylated intermediates of metabolic pathways, known 
as phosphoantigens, presented via butyrophilin (BTN).80 BTN-
mediated presentation requires binding of phosphoantigen to the 
intracellular domain of BTN3, known as B30.2, inducing confor-
mational changes in the BTN2/3 extracellular domains recognized 
by TCRγδ T-cells.81,82 TCRγδ T-cells react to pathogen-derived 
phosphoantigens such as isopentenyl pyrophosphate (IPP),83 (E)-
4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP),84 and 
6-O-methylglucose lipopolysaccharides (mGLP), the latter being 
able to promote Mtb inhibitory TCRγδ T-cell activity in vitro.85 
Moreover, a small population of TCRγδ T-cells reactive to CD1d-
presented α-GalCer has been described86; also, Mtb-derived pro-
tein antigens recognized by TCRγδ T-cells have been identified, 
further broadening the possibilities to activate TCRγδ T-cell in the 
context of Mtb infection.87,88

TCRγδ T-cells were more abundant in peripheral blood of TB 
patients compared with healthy controls and to patients with 
other lung infections or malignancies.89 Repertoire sequencing al-
lowed the detection of clonal expansion of TCRγδ T-cells in blood 
and lungs of TB patients.87,90 Reactivity of TCRγδ T-cells to Mtb in 
vitro was higher in individuals with less severe TB and was asso-
ciated with the production of anti-microbial IFN-γ, GM-CSF, IL-3, 
and TNF-α.91 In a different study, TB severity was associated with 
Vγ9Vδ2+ T-cell production of IL-10, suggesting an immunoregula-
tory role for these cells, which could be unfavorable for protec-
tion.92 A predominant subset of Vγ9Vδ2+ TCRγδ-expressing cells 
representing up to 5% of circulating T-cells in healthy individuals 
can expand in patients with bacterial and parasitic infections and 
represent up to 20%-50%, highlighting their participation in im-
mune responses against infections.93 Supporting a possibly protec-
tive role for TCRγδ T-cells during Mtb infection, IFN-γ–producing 

circulating Vγ9Vδ2+ effector T-cells were reduced in acute pulmo-
nary TB patients compared with healthy donors,94 and decreased 
levels of circulating Vδ2+ TCRγδ T-cells were correlated with more 
severe pulmonary lesions in TB patients.92,95 Similarly, hyporespon-
sive Vγ9Vδ2+ were identified in TB patients’ lungs.96 A more recent 
study showed an association between the establishment of latent 
Mtb infection in exposed household contacts and a defective acti-
vation of TCRγδ T-cells, characterized by impaired upregulation of 
PD-1 and CD69, an effect which was not observed in persistently 
IGRA-negative household contacts.53

In NHP, where recognition of phosphoantigens by TCRγδ T-cells 
is conserved,97 protection against Mtb challenge was associated 
with a rapid and transient expansion of BAL Vγ9+T-cells after intra-
venous BCG vaccination.62 The expansion of Vγ2Vδ2+ TCRγδ T-cells 
associated with Mtb clearance and increased survival after challenge 
of BCG-vaccinated macaques was linked to Th17 cytokines.98 In TB 
patients, frequencies of circulating IL-17–producing Vγ9Vδ2+ T-cells 
were increased compared with controls.99 Upon BCG vaccination, an 
increased number of circulating IFN-γ–producing TCRγδ T-cells were 
detected in newborns and infants.100,101 Importantly, TCRγδ T-cell 
responses to secondary stimulation were enhanced in adults after 
BCG vaccination compared with unvaccinated controls.102 These 
studies suggest a memory TCRγδ T-cell function supporting the po-
tential of TCRγδ T-cells as vaccine targets.

Mechanistically, the coculture of Vγ9Vδ2+ T-cells with Mtb- or 
BCG-infected macrophages led to control of intracellular mycobac-
terial growth and to killing of infected macrophages through perforin 
and granulysin production in vitro,103,104 or by inducing monocyte 
TNF-α production through granzyme A.105 Moreover, Mtb phos-
phoantigen–activated Vγ9Vδ2+ T-cells could induce DC maturation 
through TNF-α and IFN-γ production.106 The early IFN-γ production 
by TCRγδ T-cells in mice lungs was associated with optimal DC acti-
vation in vivo.107 The helper function of Mtb-specific Vγ9Vδ2+ T-cell 
lines was assessed in vitro, showing that CD40-CD40L interactions 
were necessary for Vγ9Vδ2+ T-cells to promote TCRαβ T-cell–me-
diated control of Mtb infection.108 A regulatory function for TCRγδ 
T-cells has also been suggested, as IL-22–producing T-cells associ-
ated with severe TB were downmodulated by phosphoantigen-stim-
ulated TCRγδ T-cells, through an IFN-γ–mediated mechanism.109 
Thus, in attempts to identify the mechanisms involved in TCRγδ 
T-cell–mediated protection against Mtb, these collective studies 
suggest that cytotoxic, regulatory, and helper effector functions of 
TCRγδ may all be involved (Table 1).

Several studies have explored a number of different strategies 
to target TCRγδ T-cell responses to improve protection against 
Mtb before and after infection. NHP vaccinated with ESAT6-
Ag85B fusion protein combined with phosphoantigens induced 
a fast Th1-like TCRγδ T-cell expansion upon immunization.110 
Treatment of NHP with HMBPP phosphoantigen in combination 
with IL-2 led to a long-lasting Vγ9Vδ2 effector-memory T-cells 
expansion in the lungs, with the capacity to produce IFN-γ and 
perforin upon restimulation.111 In another study, Vγ9Vδ2+ T-cells 
induced by an attenuated HMBPP-producing L monocytogenes 
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contributed to reduced pulmonary and systemic bacterial bur-
den in Mtb-challenged NHP. This vaccine elicited Vγ9Vδ2+ T-cells 
capable of inhibiting intracellular Mtb growth through IFN-γ and 
perforin production.112,113 Postinfection, TCRγδ-centered therapy 
has also been explored through the adoptive transfer of Vγ9Vδ2+ 
T-cells after Mtb infection in NHP, inducing decreased pulmonary 
and systemic bacterial burden and attenuated TB morbidity.114 The 
possibility of modulating TCRγδ T-cell responses with cytokines 
has additionally been explored in different studies. For instance, 
IL-15 enhanced the proliferation of TCRγδ T-cells and together 
with IL-12 induced IFN-γ production in vitro.115 IL-12–mediated 
expansion of Vγ9Vδ2 T-cells in vitro led to IFN-γ or TNF-α–de-
pendent control of intracellular mycobacteria growth.116 In NHP, 
phosphoantigen administration in combination with IL-2 during 
early pulmonary Mtb infection induced protective multifunctional 
IFN-γ, granulysin, and perforin-producing Vγ9Vδ2+ T-cells in blood 
and lungs, with IL-12 production by these cells possibly further 
enhancing conventional T-cell responses.117 Therefore, diverse 
strategies have shown promise to target protective TCRγδ T-cell 
responses against Mtb, both pre-infection and postinfection.

4  |  CD1-RESTRIC TED T- CELL S

T-cell recognition of the molecularly highly complex and uniquely 
structured Mtb envelope is possible through presentation of lipid-
derived antigens via the CD1 family of monomorphic antigen-pre-
senting molecules. Lipids are essential components of mycobacterial 
cell envelopes and can therefore represent unique targets for DURT-
mediated immunity against Mtb.

The CD1 family includes CD1a, CD1b, and CD1c (group 1), and 
CD1d (group 2)118,119 molecules, complemented by the intracellular 
lipid transfer protein CD1e (group 3), which is not directly involved 
in antigen presentation.120 Group 1 and group 2 CD1 molecules can 
present antigen to CD4+ and CD8+T-cells (as well as in some cases 
double-negative T-cells), and to both TCRαβ- and TCRγδ-expressing 
T-cells. CD1 molecules recycle in the lysosomes where they encoun-
ter phagocytosed bacteria, allowing them to bind lipids and return 
to the cell surface for presentation.121 CD1a recycles via early en-
dosomes,122 while cytoplasmic tyrosine motifs localize CD1b to 
late endosomes and lysosomes for lipid loading.123 CD1c and CD1d 
are instead regulated by adapter protein 2 (AP-2) to survey differ-
ent intracellular compartments, and localize to early and late endo-
somes.124 Group 2 or CD1d-restricted T-cells are commonly known 
as natural killer T (NKT) cells and can be further classified on antigen 
specificity and on TCR diversity.

Despite their high structural similarity, the presentation of 
lipid antigens via group 1 and group 2 CD1 molecules activates 
functionally distinct CD1-restricted T-cells (Table 1). The pres-
ence of lipid-specific polycytotoxic T-cells in peripheral blood and 
BAL was associated with Mtb infection control.125 The expression 
of CD1b and CD1d on DCs and macrophages in human TB gran-
ulomas supports a role for lipid-specific T-cell responses during 

TB and hints to the possibility of modulating their response to 
enhance immunity.126,127

4.1  |  Function of group 1 CD1-restricted 
T-cells and potential as vaccine targets

CD1a-restricted T-cells can recognize Mtb-derived lipopeptide dide-
oxymycobactin (DDM).128,129 CD1b-restricted T-cell responses have 
been defined mostly in the context of mycolic acid (MA),130 glucose 
monomycolate (GMM),121 sulfoglycolipids (SGLs, Mtb-specific),131 
and glycerol monomycolate (GroMM)132 recognition. GMM-reactive 
T-cells have been specifically associated with active mycobacterial 
infection, as its synthesis requires mycobacterial mycolate and host 
glucose.133 CD1c-restricted T-cells can respond to isoprenoid gly-
colipids and mycoketide antigens.134,135 The development of lipid-
loaded tetramers for studies focused around group 1 CD1-restricted 
T-cells facilitated the demonstration of comparable frequencies of 
lipid-reactive, CD1a-, CD1b-, and CD1c–restricted T-cells in TB pa-
tients or LTBI.136-138

Several studies have explored the role of group 1 CD1-
restricted T-cells in immunity against Mtb. Initial work demon-
strated Mtb-specific Th1-like cytokines and granulysin-mediated 
cytotoxicity by CD1-restricted T-cell clones in vitro.119,139 CD1b-
restricted CD8+T-cells from Mtb-infected patients, but not unin-
fected controls, produced IFN-γ upon SGL stimulation leading to 
intracellular Mtb killing.131 Expansion of CD1-restricted T-cells 
was associated with bacterial burden, as MA-stimulated circu-
lating and BAL T-cells from TB patients but not BCG-vaccinated 
healthy controls produced IFN-γ and IL-2, a response which de-
clined following completion of treatment.140 Similarly, activated 
GMM-specific CD1b-restricted T-cells produced proinflammatory 
cytokines IFN-γ and TNF, supporting their anti-microbial effector 
function.141 On the other hand, CD1b-restricted GroMM-specific 
CD4+T-cells were detected in BCG-vaccinated and LTBI but not 
active TB patients, suggesting that these cells might be function-
ally relevant during Mtb exposure and disappear from the circula-
tion or become anergic or exhausted during active TB.132 Similarly, 
CD1b-restricted T-cells were associated with Mtb exposure rather 
than TB disease as higher frequencies of MA- and GMM-loaded 
CD1b tetramer+ cells were identified in highly Mtb-exposed indi-
viduals compared with low or unexposed controls, while no differ-
ences were observed between TB patients, LTBI, and uninfected 
individuals.142 Ex vivo profiling of GMM-specific T-cells in healthy 
and Mtb-infected individuals showed a polyfunctional CD4+T-cell 
phenotype expressing CD40L, IFN-γ, IL-2, TNF-α, and IL-17a.143 
Moreover, lipid-reactive polycytotoxic CD8+T-cells capable of 
controlling intracellular Mtb growth by expressing perforin, gran-
zyme B, and granulysin were found in BAL-cells from LTBI.125 The 
relevance of CD1-mediated immunity to Mtb is further supported 
by population genetic studies in Vietnam in which increased TB 
susceptibility was associated with an intronic CD1A polymorphism 
linked to functional deficiency.144 GMM-specific T-cells from LTBI 
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were shown to persist and express the memory marker CD45RO,145 
and MA-specific T-cells could be expanded 1-2 years after curative 
treatment, indicating memory function140 and supporting the po-
tential for targeting these cells by vaccination. Altogether, these 
studies show that lipid-reactive CD1-restricted T-cells are an im-
portant component of the cellular immune response to Mtb.

Group 1 CD1 molecules are naturally expressed in guinea pigs, 
a TB model in which vaccination with mycobacterial lipids led to 
a reduction in Mtb burden and lung pathology after aerosol chal-
lenge.146 The importance of CD1-restricted T-cells for protection 
against Mtb infection in vivo is further substantiated by studies 
in transgenic mouse models expressing human CD1 molecules.147 
Adoptive transfer of MA-specific CD1b-restricted T-cells prior to 
Mtb challenge showed that these cells played a role in protective 
immunity against Mtb infection through TNF-α, IFN-γ, IL-2 produc-
tion, and the expression of the cytotoxic granule release–associated 
membrane marker CD107a.148 Optimized intracellular delivery of 
MA through polymeric micellar nanocarriers elicited potent CD1-
restricted T-cells in mice, although it remains to be evaluated if this 
increased protection against Mtb.149 Altogether, these studies show 
that lipid-reactive CD1-restricted T-cells are important players in 
immunity to, and in protection against, Mtb infection and that lip-
id-based vaccines, or whole-cell vaccines containing mycobacte-
rial lipids, are promising strategies to improve immune protection 
against Mtb infection.

Structural analyses have shown that both the antigen-exposed 
polar cap and the distal hydrophobic antigen regions buried within 
the CD1 groove influence TCR recognition.150-152 Simplified synthetic 
SGL variants have been proposed as potential vaccine components 
to prime CD1-restricted T-cells.153 These and future developments 
for lipid antigen production, together with the understanding of TCR 
recognition requirements, will support the potential to administer 
these ligands as candidate vaccines targeting CD1-restricted T-cells 
against Mtb.

4.2  |  (invariant) NKT-cells in immunity against Mtb

Type I or invariant NKT (iNKT) cells recognize α-galactosylceramide 
(α-GalCer) or phosphatidylinositol mannoside (PIM)154 and are de-
fined by conserved TCRα and TCRβ chains predominantly encoded 
by TRAV10 joint to TRAJ8 and TRBV25.155,156 In contrast, type II 
NKT-cells include CD1d-restricted T-cells with diverse TCRs that are 
responsive to Mtb-derived phosphatidylglycerol, diphosphatidylg-
lycerol, and phosphatidylinositol.157

Accumulating evidence highlights the importance of iNKT-cells 
for immune control of Mtb. Several studies reported reduced num-
bers of circulating iNKT-cells in active TB patients compared with 
LTBI and healthy controls.158-160 Interestingly, circulating iNKT-cells 
in TB patients showed increased CD38, CD69, and HLA-DR expres-
sion compared with healthy controls, suggesting an activated pheno-
type.48,160 Moreover, iNKT-cells from active TB patients, contrary to 
LTBI, showed a higher PD-1 expression, which was linked to reduced 

reactivity to α-GalCer and increased iNKT-cell apoptosis.48,161 In 
NHP, which have conserved primate CD1 and TCR sequences,162 
an increased frequency of circulating iNKT-cells was linked to im-
proved control of Mtb infection and disease.163 In line with this, at 
TB diagnosis in humans, higher counts of NKT-cells, including cells 
that do not express an invariant TCR, strongly correlated with faster 
responses to antibiotic treatment.164 Higher PD-1 expression on 
NKT-cells correlated with increased bacillary loads in TB patients, 
and PD-1 blockade was associated with increased NKT-cell survival 
and function.165 Furthermore, NKT-cells isolated from pleural fluid 
from TB patients expressed not only Th1 and Th17 cytokines, but 
also IL-21 and CXCR5 upon PPD stimulation, and could induce B-cell 
function in vitro.166 Altogether, these studies suggest that iNKT and 
NKT-cells could play an important role in the control of Mtb infec-
tion through distinct and complementary mechanisms.

An immunoregulatory role for iNKT-cells was suggested after 
BCG-infected NKT-cell deficient mice showed no differences in 
bacterial load but greater lung pathology compared with wild-
type mice.167 Although neither CD1d nor NKT-cell–deficient mice 
presented increased susceptibility to Mtb infection,168,169 adop-
tive transfer of iNKT-cells demonstrated their contribution to the 
control of Mtb replication in vivo by recognition of infected mac-
rophages.170 In this study, iNKT-cell activation was shown to be 
TCR-independent but IL-12 and IL-18 induced, which triggered IFN-γ 
production. Similarly, induction of NKT-like cells in humans vacci-
nated with the subunit vaccine candidate H4:IC31 was associated 
with TCR-independent, cytokine-mediated activation.171 In the ab-
sence of IL-12/IL-18, Mtb control by murine iNKT-cells depended on 
CD1d and granulocyte-macrophage-colony-stimulating factor (GM-
CSF). GM-CSF is associated with control of intracellular mycobacte-
rial proliferation in vitro and with protective immunity in mice,172,173 
and was shown to be induced by Mtb antigens in in vitro human 
studies.174 Anti-microbial activity of α-GalCer–stimulated human 
iNKT-cell clones in vitro was associated with IFN-γ and granulysin 
production.127

Modulation of iNKT-cell responses to enhance protection against 
Mtb was explored through administering mycobacterial-derived lip-
ids. Reduced bacterial loads and lung pathology were observed after 
Mtb challenge of guinea pigs vaccinated with PIM and SGL, lipids 
presented by CD1d and CD1b, respectively.175 In mice, vaccination 
with α-GalCer–containing BCG led to enhanced DC maturation and 
increased CD8+T-cell priming, which correlated with increased pro-
tection against Mtb compared with BCG alone, suggesting a role for 
iNKT-cells in bridging innate and adaptive immunity.176 Similarly, 
α-GalCer–adjuvanted Ag85B and ESAT-6 subunit vaccines induced 
stronger CD4+ and CD8+T-cell responses accompanied by increased 
local and systemic protection against Mtb, compared with subunit 
vaccines or BCG alone.177 α-GalCer also showed a protective ef-
fect against Mtb when administered, alone or in combination with 
antibiotics, shortly after infection, reminiscent of trained immunity 
effects likely through activating NKT-cells.178-180 However, at later 
time points, the treatment had no benefits, possibly as a conse-
quence of apoptotic or irresponsive NKT-cells, underscoring their 
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relevance as an early immune response component against Mtb in-
fection, akin to the above observations for MAITs. Administration 
of a novel B-cell targeting vaccine expressing ESAT6 and loaded 
with α-GalCer showed both preventive and therapeutic effects in M 
kansasii infected mice, mediated by enhanced B-cell and CD4+T-cell 
function.181 Additional efforts are underway to design lipid-based 
vaccine strategies able to induce NKT-cell responses.182

5  |  NK CELL S AND INNATE LYMPHOID 
CELL S ( ILC S)  IN IMMUNIT Y AGAINST MTB

5.1  |  NK cells

NK cells have been observed within granulomatous lesions in hu-
mans, suggesting their contribution at the infection site.183 A large 
multi-cohort study showed that circulating NK-cell frequencies 
were increased during LTBI, decreased during TB disease, and nor-
malized after treatment, supporting a role for NK cells in Mtb in-
fection control.184 Importantly, longitudinal analysis identified that 
circulating NK-cell frequencies could indeed be a correlate of TB 
disease progression and an indicator of recovery after treatment. 
Moreover, functionally impaired NK-cell function was associated 
with reactivation of TB disease.185 NK cells from LTBI showed down-
regulation of cytotoxic receptor NKp46 compared with uninfected 
controls.186 In vitro, the expression of NK-cell–activating receptors 
was upregulated upon coculture with Mtb-infected cells and was as-
sociated with antigen-specific NK-cell–mediated lysis.187,188 In BCG-
vaccinated infants and children, NK cells were identified as one of 
the main sources of IFN-γ, highlighting their functional importance in 
the early immune responses against Mtb.101 Although frequencies of 
peripheral NK cells remained unchanged, BCG vaccination in healthy 
adults led to increased production of proinflammatory cytokines 
IL-1β, IL-6, and TNF-α after in vitro exposure to Mtb or unrelated 
stimuli, reminiscent of trained immunity.189 Importantly, memory-
like antigen-specific NK cells isolated from TB patients’ pleural fluid 
were shown to produce IL-22 in response to BCG and Mtb antigens, 
only when expressing CD45RO.190 In a recent study, supporting the 
potential for vaccine-induced memory NK cells, BCG vaccination 
of mice led to the development of IL-21–dependent IFN-γ–produc-
ing memory-like NK cells, which were shown to provide protection 
against Mtb challenge.191 Indeed, NK-cell memory phenotypes and 
their potential as vaccine target have been described in the context 
of diverse infectious diseases.192 In adults revaccinated with BCG, 
NK-cell effector responses were long-lasting and IFN-γ production 
by these cells was reported to be dependent on IL-12 and IL-18 sign-
aling.193 Altogether, these studies highlight NK cells as potentially 
important players not only in the innate but also in trained innate 
memory immune responses to mycobacteria. However, in a recent 
study where intravenous administration of BCG was associated with 
protection against TB in NHP, the lack of innate cytokine produc-
tion by PBMCs suggested that this response might be redundant for 
protection.62

BCG vaccination of mice induced NK-cell production of IL-22 
and IFN-γ associated with reduced numbers of immunosuppressive 
Tregs and reduced bacterial burden after Mtb challenge.194 NK cells 
were able to lyse extracellular mycobacteria through the release 
of cytotoxic granules195 and to induce phagolysosomal fusion and 
Mtb growth control in infected phagocytes via IL-22.196 NK cells 
activated by Mtb-infected monocytes could lyse expanded Tregs in 
vitro,197 and multidrug-resistant TB was associated with decreased 
NK-cell function and elevated Treg expansion.198 Moreover, NK 
cells induced TCRγδ T-cell proliferation via cell-to-cell contact or 
TNF-α, GM-CSF, and IL-12 signaling.199 Furthermore, NK cells were 
shown to exert regulatory functions on CD8+T-cells, enhancing their 
cytotoxicity via IFN-γ, IL-15, and IL-18.200 In the absence of T-cell 
responses, IL-12–mediated NK-cell production of IFN-γ can play an 
important role in protection against Mtb in mice, a mechanism which 
might be relevant in patients with genetic or acquired immunode-
ficiencies.201 CMV antigen presentation via the non-classical HLA 
class Ib molecule HLA-E has been shown to influence NK-cell expan-
sion and to induce effector functions in NKG2C-expressing NK cells 
in vitro.202 Differential recognition of HLA-E–presented peptide 
variants has been shown to modulate NK-cell adaptive immune re-
sponses, hinting to a possible mechanism through which protective 
NK cells could be induced.203 This, together with the potential to tar-
get HLA-E–restricted T-cells discussed above, further underscores 
the importance of defining HLA-E–presented peptides and the re-
quirements for TCR versus NKG2A/C recognition.

Altogether, NK cells present a functional spectrum of cells asso-
ciated with protection to Mtb, via cytotoxic, regulatory, and memory 
activities in coordination with or independent from other immune 
cells (Table 1). The versatility for NK-cell induction through innate 
and adaptive mechanisms makes them an appealing cell target for 
mobilization via new vaccines.

5.2  |  ILCs

ILCs lack rearranging antigen receptors typically found on T-cells 
and B-cells, and their function, mediated by cytokine stimulation, 
is important for mucosal immunity. Three different subsets are de-
scribed based on their cytokine profiles: ILC1s share features with 
NK cells and respond to IL-12, IL-15, and IL-18 stimulation by produc-
ing IFN-γ; ILC2s are triggered by IL-25, IL-33, and thymic stromal 
lymphopoietin (TSLP) leading to a type 2 cytokine profile; and ILC3s, 
as the innate counterpart of Th17 cells, respond to IL-23 and IL-1β to 
secrete IL-17 and IL-22.204 ILCs are involved in promoting protective 
immune responses to pathogens and in maintaining tissue integrity 
and homeostasis.205 Circulating ILCs have been shown to be reduced 
in TB patients compared with healthy controls, and to be restored 
following treatment.206 The accumulation of ILC3s in infected lungs, 
apparently recruited by CXCL13-CXCR5 signaling to localize to TB 
granulomas, was associated with Mtb control in humans and mice, 
mediated by IL-23–induced IL-17 and IL-22.206 Transfer of ILC3s or 
IL-22 treatment reduced inflammation during Mtb infection resulting 
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in increased survival of type 2 diabetic mice, suggesting a role for 
ILC3s in protection against TB disease.207 Supporting the possibility 
of vaccine-mediated induction of ILCs, IFN-γ–producing ILC1s and 
ILC3s were increased in lungs and lymph nodes of mice after BCG 
vaccination, a response which was more prominent after mucosal 
BCG administration compared with other routes.208 Altogether, 
ILCs, and in particular ILC1s and ILC3s, are recently identified play-
ers participating in the human and mouse immune responses to TB, 
and future studies must delineate their role in vaccine-induced im-
munity (Table 1).

6  |  TARGETING DURTS,  NK CELL S ,  AND 
ILC S IN PRE VENTIVE OR THER APEUTIC 
VACCINATION AGAINST MYCOBAC TERIA

DURTs, NK cells, and ILCs can help controlling Mtb and may syner-
gize with classical Th1 T-cells and B-cells (Table 1). They may there-
fore be considered as interesting targets for vaccination to prevent 
infection or disease, or be mobilized via therapeutic strategies in 
treatment-resistant TB patients, for example, due to multidrug 
resistance.

6.1  |  As vaccine targets to prevent infection 
(POI) or to prevent disease (POD)

Very recently, BCG revaccination in a phase-2 clinical trial showed 
efficacy in protecting Mtb-uninfected adolescents from acquir-
ing sustained Mtb infection, suggesting POI by vaccination is pos-
sible.209 Whole-cell vaccines, such as BCG, grant the possibility to 
target multiple cell populations simultaneously for induction of in-
nate and adaptive immune responses, including DURTs, NK cells, 
and ILCs, through presenting alternative and diverse antigens. In 
contrast, subunit or virally vectored vaccines for TB have mostly 
focused on antigens inducing CD4+T-cell responses essential to pro-
tection, among others through IFN-γ signaling,210 although IFN-γ 
was not always a correlate of protection against Mtb infection and 
TB disease in clinical trials.211,212 Recently, a phase 2 clinical trial 
with the subunit vaccine M72/AS01E reduced progression to TB 
by 50% in LTBI, although the lack of an adjuvant-alone control arm 
precluded the precise definition of the vaccine-induced mechanisms 
of protection.213 Nevertheless, successful recent and future vaccine 
trials will allow the immunological dissection of protective responses 
and we strongly support assessment of the various DURT, ILC, and 
NK-cell populations in that context.

Advances in our understanding of the role played by DURTs, NK 
cells, and ILCs in protection against Mtb infection and TB disease 
now provide new and testable opportunities for vaccine and ther-
apeutic targeting. Considering the effector, regulatory, and mem-
ory activities that have been identified for these unconventional 
immune cells, a whole-cell vaccine or combination of diverse anti-
gens selected to induce an optimized and balanced response could 

represent an effective strategy. Nevertheless, the complex interac-
tions occurring in vivo need to be addressed carefully. For instance, 
in addition to classical immune responses, BCG vaccination could in-
duce trained immunity on NK cells, ILC-production of IFN-γ, and an 
array of DURT-mediated immune responses.62,101,171,208,214,215 The 
delivery route of the vaccine is an important factor to consider, since 
intravenous BCG vaccination of NHP induced the transient recruit-
ment of MAIT-cells and Vγ9+ TCRγδ T-cells to the lung, and was asso-
ciated with protection to Mtb challenge.62 Pulmonary mucosal BCG 
delivery was also shown to prevent infection following repeated lim-
iting-dose Mtb challenge, but DURT-cells were not investigated.216 
Other whole-cell vaccine candidates currently undergoing clinical 
testing are the genetically attenuated Mtb vaccine MTBVAC217 and 
the recombinant BCG vaccine VPM1002.218 However, their immu-
nogenicity has been mostly evaluated in the context of Th1 and Th17 
cytokine production. The upcoming efficacy trials for these vaccine 
candidates will likely contribute to the dissection of the immune cells 
involved in protection against Mtb infection and TB disease, includ-
ing the role of DURTs, NK cells, and ILCs.

Alternatively to live whole-cell vaccines, non-replicating virally 
vectored vaccines are likely safer and can be designed to express a 
particular set of relevant antigens. The RhCMV-based vaccine, as dis-
cussed above, induced effector-memory responses and showed effi-
cacy in preventing Mtb infection and TB disease in NHP.27 Notably, 
HLA: classical versus non-classical (HLA-E) restriction of immune 
responses elicited by RhCMV-vectored vaccines could be selected 
based on the type of RhCMV strain used.27 Similarly, Vγ9Vδ2+ 
 effector-memory T-cell induction by an attenuated HMBPP-producing  
L monocytogenes strain correlated with increased protection in Mtb-
challenged NHP.113 Further attempts to modify these vaccine deliv-
ery modalities and inserted antigens could help inducing increasingly 
diversified immune responses complementing and enhancing their 
vaccine efficacy.

Lipid and phosphoantigens inducing CD1-restricted and TCRγδ 
T-cells have been defined and synthesized and, in principle, are avail-
able to be included as vaccine components.85,152,153 Of particular in-
terest in this context is the design of efficient nanocarrier systems for 
intracellular delivery of antigens.149 Moreover, efforts are underway 
to define novel HLA-E–presented peptides with optimal capacity to 
induce T-cells while simultaneously triggering a favorable NK-cell re-
sponse.219 Furthermore, MR1 ligands for MAIT-cell induction have 
also been identified, although their potential to induce protective 
responses in vivo remains to be elucidated. The lack of stability of 
MR1 ligands could be counteracted by modulating MAIT-cell re-
sponses through BCG vaccination,62 via the microbiota,78 or via TCR-
independent mechanisms.70 Similarly, iNKT-cells have been shown 
to be activated in mice through TCR-independent mechanisms me-
diated by IL-12 and IL-18 signaling,170 and protective TCRγδ T-cells 
could also be induced with the combination of phosphoantigen and 
IL-2 in NHP,117 supporting the use of cytokines for the induction or 
modulation of DURT responses against Mtb. Also, ILCs have the po-
tential to be induced through targeted or bystander cytokine signal-
ing.206,208 The induction of protective iNKT-cells was also possible 
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through α-GalCer–adjuvanted subunit vaccine177 or α-GalCer insert 
in a modified BCG vaccine,176 further supporting the combination 
of antigens for targeting diverse immune responses. Although tradi-
tionally considered a component of the innate immune system, NK 
cells have been shown to have a memory phenotype inducible via 
trained immunity or antigenic triggering.189,190 Opportunities to tar-
get protective NK cells in the context of TB could thus be inspired 
by the field of cancer immunology and HIV infection, where solu-
ble agents, cytokines, and antibodies are used to modulate NK-cell 
function, as well as the design of chimeric antigen receptor (CAR) 
engineered NK cells.220 Similar approaches are also being developed 
to target NKT-cells against tumors221 and could potentially be ex-
panded to target these and other DURTs in the context of TB.

Altogether, diverse strategies are currently being investigated 
to induce immune responses, which could contribute to protection 
against Mtb via targeting DURTs, NK cells, and ILCs in conjunction 

with more classical responses (Figure 1). The lack of polymorphism 
in antigen presentation molecules and the presence of innate-like 
features characteristic of these immune cell populations, along with 
their polyfunctional phenotypes in response to Mtb, represent im-
portant advantages and highlight their potential in vaccine and im-
munotherapeutic strategies.

6.2  |  TB Treatment

Especially relevant in the context of multidrug-resistant and ex-
tensively multidrug-resistant TB are vaccine strategies designed to 
improve treatment outcomes in active TB, such as the liposomal 
vaccine candidate RUTI, based on detoxified fragments of Mtb-
inducing polyantigenic immune responses.222 Although knowl-
edge on the efficiency of therapeutic vaccines is limited, the high 

F I G U R E  1  DURTS, NK-cells and ILCs as unconventional targets in TB. DURTs, NK-cells and ILCs are important unconventional 
contributors involved in protective immunity in TB and other mycobacterial infections. Various potential approaches are being investigated 
to improve targeting DURTs, NK cells and ILCs for increased protection against Mtb-infection and TB disease. These include vaccine 
strategies ranging from classical BCG and modified whole cell vaccines to antigen-expressing viral vectors and subunit vaccines. Treatment 
with soluble agents such as cytokines and antibodies to increase the immune response can be complemented with the adoptive transfer of 
certain unconventional immune cells 
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diversity in the reactivity of DURTs could potentially be exploited 
to induce protective responses to Mtb antigens that are particu-
larly produced during active TB. This has been explored through 
vaccination in the context of MAITs in mice,73 as well as through 
adoptive transfer of previously expanded TCRγδ T-cells in NHP.114 
Here too, the design of genetically engineered T-cells could pro-
vide a possibility for DURTs and NK cells to improve treatment 
outcomes in active TB. Moreover, α-GalCer administration in com-
bination with antibiotics already has shown to improve outcome in 
Mtb-infected mice.178

7  |  CONCLUDING REMARKS

Targeting DURTs, NK cells, and ILCs opens a range of possibilities to 
induce immune responses against Mtb infection and TB disease that 
complement each other and classical immune responses. These un-
conventional subsets are considered to contribute important, addi-
tional protective immunity in TB and other mycobacterial infectious 
diseases such as leprosy159,223 and non-tuberculous mycobacteria 
infections, which can be difficult to treat. The ongoing challenge to 
define correlates of protection could be addressed, in part, by ex-
ploring the role of these unconventional responses in successful ef-
ficacy trials, and bridging human trials to detailed studies in NHP. 
Whether it is through whole-cell vaccines, vectored vaccines, subu-
nit vaccines, or a combination of these and other approaches, future 
studies must consider the contribution of DURTs, NK cells, and ILCs 
to optimal protective immunity to mycobacterial infectious diseases, 
a plague to mankind and animals.
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