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Insulin signalling mediates the 
response to male-induced harm in 
female Drosophila melanogaster
Irem Sepil1, Pau Carazo1,2, Jennifer C. Perry1,3 & Stuart Wigby1

Genetic manipulations in nutrient-sensing pathways are known to both extend lifespan and modify 
responses to environmental stressors (e.g., starvation, oxidative and thermal stresses), suggesting 
that similar mechanisms regulate lifespan and stress resistance. However, despite being a key factor 
reducing female lifespan and affecting female fitness, male-induced harm has rarely been considered 
as a stressor mediated by nutrient sensing pathways. We explored whether a lifespan-extending 
manipulation also modifies female resistance to male-induced harm. To do so, we used long-lived 
female Drosophila melanogaster that had their insulin signalling pathway downregulated by genetically 
ablating the median neurosecretory cells (mNSC). We varied the level of exposure to males for control 
and ablated females and tested for interacting effects on female lifespan and fitness. As expected, we 
found that lifespan significantly declined with exposure to males. However, mNSC-ablated females 
maintained significantly increased lifespan across all male exposure treatments. Furthermore, lifespan 
extension and relative fitness of mNSC-ablated females were maximized under intermediate exposure 
to males, and minimized under low and high exposure to males. Overall, our results suggest that wild-
type levels of insulin signalling reduce female susceptibility to male-induced harm under intense sexual 
conflict, and may also protect females when mating opportunities are sub-optimally low.

Lifespan varies tremendously both among and within species, and is influenced by factors including sex, repro-
duction, and environmental stresses. Recent advances in molecular and physiological genetics have improved our 
understanding of the mechanisms by which lifespan is regulated. In recent studies, nutrition and nutrient-sensing 
pathways have emerged as highly conserved regulators of lifespan and of other major life history components 
such as growth, metabolism, stress resistance and fecundity1,2. Remarkably, mutations in the network formed by 
the insulin/insulin-like growth factor signalling (IIS) and target-of-rapamycin (TOR) signalling pathways have 
been found to extend lifespan in model organisms3–5. These pathways also modify the responses to common 
environmental stressors, such as starvation, oxidative and thermal stresses, and immune challenge. For instance, 
in Caenorhabditis elegans lifespan-extending manipulations also increase resistance to thermal and oxidative 
stresses6, whereas in D. melanogaster long-lived mutants exhibit reduced tolerance to heat and cold but increased 
resistance to starvation and oxidative stress7,8. Understanding the genetic pathways underlying stress resistance 
and susceptibility, and linking these pathways to lifespan regulation, remains an important challenge, particularly 
given the interest in applying this research to human lifespan9.

Male-induced harm, resulting from sexual conflict over mating, represents a stress imposed on females that 
can drastically reduce female lifespan10–13. At this point, we know that nutrition can influence female susceptibil-
ity to male-induced harm14,15, suggesting a potential role for nutrient-signalling pathways in mediating female 
responses to harm. However, despite a wealth of research on the lifespan-extending effects of nutrient-signalling 
pathways, few studies have considered how variation in mating activity affects lifespan in nutrient-sensing 
pathway mutants16. This is a significant gap not only because the lifespan-extending effects of these mutations 
should vary with mating activity through concomitant variation in male harm, but also because these same 
mutations that increase lifespan are known to decrease female re-mating rates17. It is therefore possible that the 
lifespan-extending effects of nutrient-signalling mutations result from their effects on reducing re-mating and 
thereby exposure to male harm. Because most studies of the genetics of ageing consider organisms with fixed 

1Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK. 2Instituto Cavanilles of 
Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain. 3Jesus College, University of Oxford, 
Turl Street, Oxford OX1 3DW, UK. Correspondence and requests for materials should be addressed to I.S. (email: 
irem.sepil@zoo.ox.ac.uk)

received: 09 May 2016

accepted: 29 June 2016

Published: 26 July 2016

OPEN

mailto:irem.sepil@zoo.ox.ac.uk


www.nature.com/scientificreports/

2Scientific RepoRts | 6:30205 | DOI: 10.1038/srep30205

and extreme (i.e., either very low or very high) mating regimes, potential interactions between mating rate, 
male-induced harm and lifespan extension through altered nutrient signalling remain poorly understood.

To address this gap, we measured female lifespan and reproductive traits in wild-type and long-lived trans-
genic D. melanogaster under varying levels of exposure to males. We used long-lived transgenic females in which 
the insulin-like-peptide (dilp)-producing median neurosecretory cells (mNSCs) are ablated late in development, 
by expressing a UAS-reaper (UAS-rpr) construct (an apoptosis-promoting factor) with a InsP3-GAL4 driver 
(UAS-rpr >  InsP3GAL females)8,18,19. The ablation of the mNSCs results in a significant decrease in dilp2, dilp3 
and dilp5 expression in the fly, downregulating insulin signalling19. Hereon we refer to the UAS-rpr >  InsP3GAL 
females as ‘ablated females’. These transgenic lines have been the target of multiple studies, which demonstrate 
that ablated females have increased lifespan and reduced egg-laying, both as virgins and after a brief (48 h) 
early-life exposure to males7,8,20–22. We have also previously shown that ablated females display reduced remat-
ing rates after a single copulation17. In this study, we exposed control and ablated females to four levels of male 
exposure throughout their life: 1 day followed by no further exposure (Treatment 0), 1 in every 8 days (Treatment 
1/8), 1 in every 4 days (Treatment 1/4), or continuous exposure (Treatment 1). Intermediate levels of exposure 
to males are likely to maximize female fitness in wild-type flies14, because continuous exposure to males imposes 
survival costs on females10,12,23; whereas very low levels of male exposure likely result in sperm limitation24. Here, 
we explored whether varying levels of exposure to males affect the behaviour and fitness of control and ablated 
females differentially by measuring female lifespan, courtship and remating frequencies, fecundity, reproductive 
success, fertility and a population rate-sensitive estimate of fitness. We tested two sets of hypotheses:

(1) Lifespan extending manipulations of the insulin signalling pathway can modify the response to different 
environmental stressors in opposing ways6–8, hence we set out to examine both predictions for the response to 
male-induced harm, while under controlled environmental conditions. First, ablated females might be more 
resistant to male-induced harm compared with controls, as they are more resistant to certain environmental 
stressors (e.g., starvation)7,8. By this hypothesis, ablated females would display maximum lifespan-extension 
and fitness relative to controls under continuous exposure to males, and reduced or no differences under 
lower exposure. Alternatively, ablated females might be more susceptible to male-induced harm compared 
with controls, as they are more susceptible to some other environmental stressors (e.g., thermal stress)7 or 
because they may be frailer at older ages (e.g., as with Caenorhabditis elegans long-lived mutants25). By this 
hypothesis, the lifespan extension of ablated females would be minimized under continuous exposure to 
males, the treatment in which females are known to suffer costs of remating10,12,13,23.

(2) Under either of the above scenarios, we hypothesized that the greatest lifespan extension from mNSC abla-
tion would coincide with the largest reproductive cost, due to the predicted trade-offs between lifespan and 
reproduction26.

Results
Lifespan. Female lifespan declined with increased exposure to males for all genotypes (control females 
[Treatment 0 versus Treatment 1]: χ 21 =  347.28, P <  2.2e−16, hazard ratio =  271.873, 95% CI =  171.418– 
431.19; ablated females [Treatment 0 versus Treatment 1]: χ 21 =  211.55, P <  2.2e−16, hazard ratio =  194.807, 
95% CI =  115.038–329.891; see Supplementary Fig. S1). mNSC ablation significantly extended the lifespan 
of females within each male exposure treatment (Treatment 0: χ 21 =  53.084, P =  3.2e−13, hazard ratio =  0.360, 
95% CI =  0.271–0.478; Treatment 1/8: χ 21 =  109.22, P <  2.2e−16, hazard ratio =  0.199, 95% CI =  0.145–0.274; 
Treatment 1/4: χ 21 =  74.988, P <  2.2e−16, hazard ratio =  0.274, 95% CI =  0.202 - 0.373; Treatment 1: χ 21 =  35.625, 
P =  2.4e−09, hazard ratio =  0.439, 95% CI =  0.333–0.579; Fig. 1). The median lifespan of ablated females in 
our 24-hour exposure treatment (treatment 0) was 78 (68–82), similar to values reported elsewhere (UAS-
rpr >  InsP3GAL median survival =  82 days8). When comparing the effect of the ablation against controls, we 
found a significant interaction with male exposure on lifespan (χ 23 =  14.463, P =  0.002). The lifespan extension 
was significantly greater for the ablated females of treatment 1/8 compared to the ablated females of treatment 0 

Figure 1. Survival of female flies with late ablation of the median neurosecretory cells (ablated females) 
and their genetic controls under varying levels of exposure to males: (a) one day of exposure followed by no 
exposure to males (Treatment 0); (b) one day of exposure in every eight days (Treatment 1/8); (c) one day of 
exposure in every four days (Treatment 1/4); (d) continuous exposure to males (Treatment 1). ncontrol =  150 and 
nablated =  105 in each male exposure treatment. The crosses indicate censoring.
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(χ 21 =  7.622, P =  0.006, hazard ratio =  0.579, 95% CI =  0.393–0.853) and treatment 1 (χ 21 =  12.722, P =  0.0004, 
hazard ratio =  0.499, 95% CI =  0.339–0.736). Overall, mNSC ablation extended median lifespan under treatments 
0, 1/8, 1/4 and 1 by 15%, 26%, 22% and 18% respectively (Supplementary Fig. S1).

Courtship and mating behaviour. Both control and ablated females received similar rates of courtship 
when exposed to males: courtship frequencies did not differ between the control and ablated females for any 
treatment (Treatment 0: χ 21 =  1.684, P =  0.194; Treatment 1/8: χ 21 =  0.213, P =  0.644; Treatment 1/4: χ 21 =  2.941, 
P =  0.086; Treatment 1: χ 21 =  1.100, P =  0.294; Fig. 2a). However, compared with ablated females, control 
females of treatments 0 and 1 had significantly higher remating frequencies (Treatment 0: χ 21 =  4.774, P =  0.029; 
Treatment 1: χ 21 =  9.024, P =  0.003), whereas no difference was detected between the genotypes in treatments 1/8 
and 1/4 (Treatment 1/8: χ 21 =  2.216, P =  0.137; Treatment 1/4: χ 21 =  0.578, P =  0.447; Fig. 2b).

Fecundity, fertility and fitness. Control females of each male exposure treatment had significantly higher 
early egg production (fecundity) than did ablated females, whereas no difference was detected later in life (see 
Supplementary Fig. S2). Consequently, control females of each male exposure treatment had significantly higher 
indices of lifetime fecundity (Treatment 0, Treatment 1/8, Treatment 1: P <  0.001; Treatment 1/4: P =  0.002; Fig. 3a). 
Control females had significantly higher early-life offspring production (reproductive success), but lower late-life 
reproductive success compared to ablated females of each male exposure treatment (Supplementary Fig. S2).  
This late life advantage in reproductive success for ablated females was most pronounced at intermediate levels 
of male exposure (treatments 1/8 and 1/4). Hence, control females of treatments 0 and 1 had significantly higher 
indices of lifetime reproductive success, whereas no difference was detected between control and ablated females 
in treatments 1/8 and 1/4 (Treatment 0: P =  0.037; Treatment 1/8: P =  0.792; Treatment 1/4: P =  0.231; Treatment 

Figure 2. (a) Courtship and (b) remating frequency (± 95% CI) of control and median neurosecretory 
cell (mNSC)-ablated females for each male exposure treatment. * P <  0.05; * * P <  0.01; n.s., non-significant 
difference between control and ablated females. ncontrol =  150 and nablated =  105 in each male exposure treatment.

Figure 3. Indices of (a) lifetime fecundity, (b) lifetime reproductive success, and (c) lifetime fertility of control 
and mNSC-ablated females for each male exposure treatment. Asterisks indicate a significant difference 
(P <  0.05, permutation test) between control and ablated females within each male exposure treatment. Bars 
indicate 95% bootstrapped confidence intervals. * P <  0.05; * * P <  0.01; * * * P <  0.001; n.s., non-significant. See 
Table S1 for the number of vials retained for egg and offspring count every 4 days that were used for generating 
the indices.
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1: P =  0.003; Fig. 3b). Egg-to-adult offspring viability (fertility) was significantly higher in ablated females of 
each male exposure treatment compared with control females, for both maternal-age-specific offspring viability 
and indices of lifetime fertility (Treatment 0, Treatment 1/8, Treatment 1/4, Treatment 1: P <  0.001; Fig. 3c and 
Supplementary Fig. S2).

Finally, we computed a rate-sensitive fitness index to estimate population fitness under different rates of popu-
lation growth. Overall, the relative fitness cost of mNSC ablation (Cr) was estimated to be greatest in an expanding 
population (r >  0) for each male exposure treatment (Fig. 4). For the females of treatments 1/8 and 1/4, there 
was no cost of mNSC ablation in a stable population (r =  0), whereas the ablation was beneficial in a contracting 
population (r <  0). For the females of treatments 0 and 1, the benefit of mNSC ablation was only pronounced at 
smaller growth rates (r <  − 0.1) and it was costly in a stable population (r =  0).

Discussion
We found that differing levels of exposure to males mediated the degree of lifespan extension achieved by 
ablated females relative to controls, suggesting that the insulin signalling pathway mediates female responses to 
male-induced harm. However, the change in lifespan extension did not follow a linear pattern with increasing expo-
sure to males; instead, lifespan extension and fitness of ablated females were maximized under intermediate expo-
sure to males, and minimized under both high and low exposure to males, implying that low- and high- mating  
environments are sub-optimal for long-lived females. The stress from male-induced harm in the high-mating 
environment is likely to be a result of intense sexual conflict over mating rates; hence, our results are consistent 
with the idea that ablated females are less resistant to the costs of male-induced harm compared with control 
females.

We have previously reported that ablated females remate less frequently than control females after a brief ini-
tial exposure to males17. Here, we find that this difference in remating occurs only at low (1 day) or high (continu-
ous) exposure to males, whereas at intermediate levels of male exposure (1/8 and 1/4) ablated and control females 
remate at similar rates. Our mating observations were conducted on the morning after flies were first placed 
together within each 4-day cycle (see methods); for the 1-day exposure treatment, these observations therefore 
likely captured the remating of females that mated for the first time the day before. However, the most dramatic 
differences in remating were seen in the continuous exposure treatment, indicating that reduced remating rates 
of ablated females are not restricted to early life. The lack of difference in remating rates seen in the 1/8 and 1/4 
treatments might be due to the transient nature of female post-mating refractoriness: although components of the 
male ejaculate reduce female sexual receptivity27, this effect is temporary in D. melanogaster and over the course 
of several days females deplete sperm reserves and regain virgin-like levels of receptivity24,28,29. The periods of 4 
or 8 days between exposures to males may therefore have been sufficient for both control and ablated females to 
regain a substantial degree of sexual receptivity, resulting in a similar remating frequency.

We did not detect any significant differences in male courtship of ablated versus control females, suggesting 
that the differences in mating rates of females were largely female- rather than male-driven. Previous data show 
that IIS mediates female attractiveness, and that when given a choice males prefer to court females with high 
IIS30. However, in our experiments males were not given a choice of female types, and thus may have directed 
maximal courtship effort to the available females, irrespective of their IIS status. Harassment by males is harmful 

Figure 4. The relative fitness cost (Cr) of mNSC ablation at different population growth rates (r) for each 
male exposure treatment. The grey horizontal line identifies relative fitness of 1; values above one indicate a 
fitness cost to mNSC ablation and values below one indicate a fitness benefit. The grey vertical line identifies a 
stable population with no population growth (r =  0). See Table S1 for the number of vials retained for offspring 
count every 4 days that were used for generating the relative fitness cost measures.
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to females31, so reduced courtship could potentially add to the benefits of reduced IIS in mixed female IIS envi-
ronments; however, this hypothesis remains to be directly tested.

Given that there are significant survival costs of remating for females when continuously exposed to 
males10,12,13,23, we might have predicted exaggerated lifespan differences in the continuous exposure treatment due 
to the combined effects of reduced remating and any lifespan-extending effects of mNSC ablation that are unre-
lated to mating rate. Nevertheless, we did not find this, and a potential explanation is that ablated females might 
be more sensitive to male-induced harm (e.g., more frail), which would reduce the potential survival benefits of 
reduced insulin signalling and remating under high mating conditions. Yet, by this hypothesis, we would predict 
the greatest lifespan extension and health of ablated females under the lowest male exposure – but again, this 
pattern was not observed. However, the result for the low male-exposure treatment–where after 1 day of expo-
sure, females were isolated from males throughout life–should be interpreted with caution, as it likely reflects a 
biologically rare scenario. Both in our lab adapted population and in nature Drosophila mating rates are expected 
to be higher than one or two matings in a lifetime (an average of four to six times in nature32). Females in this 
group became sperm-depleted after day 20, producing no fertilized eggs despite living for an average of 78 days. 
Therefore, the decrease in lifespan extension for ablated females in this treatment might be related to increased 
investment in sexual signalling effort as they age33,34. Once females regain virgin-like levels of receptivity, they 
might switch to mate searching in order to obtain sperm. If ablated females are more susceptible to the costs of 
signalling receptivity, such as costs associated with the production of cuticular hydrocarbons (CHCs), or locomo-
tion, we would see a reduction in lifespan extension, as observed here. Investigating changes in CHC profiles and 
locomotor activity with age, in relation to female mating status, will be necessary to provide further insight into 
the sexual signalling effort of wild-type and long-lived females.

Consistent with previous studies, ablated females laid eggs at reduced rates early in life, compared with 
controls7,8,21. This reduced early life fecundity may be a factor in their increased lifespan; for example, if high 
early-life fecundity induces greater survival costs than a lower but longer reproductive output35,36. However, our 
results do not fall into the simple pattern predicted by a Y-model of resource allocation between reproduction 
and lifespan37,38, because for ablated females we did not see relative increases in lifespan extension consistently 
accompanied by relative decreases in reproduction (i.e., in fecundity and fertility) across male exposure treat-
ments. The largest difference in fecundity between ablated and control females occurred in the 1-day exposure 
treatment, but here we found only modest lifespan extension. Together, these data do not support the idea that 
lifespan extension due to reduced IIS reflects a straightforward trade-off with fecundity or mating. Yet, they sug-
gest that the mechanisms that underlie insulin-signalling mediated lifespan extension are sensitive to the mating 
environment. Our results support the notion that lifespan and reproductive traits might be regulated in ways 
other than resource allocation, for example through reproductive signalling39. However, ablated females might 
display lifespan-reproduction trade-offs under more natural conditions that include food restriction or direct 
competition with other genotypes40–42.

Ablated females produced eggs with consistently higher egg-to-adult viability than controls across all male 
exposure treatments. To our knowledge no previous studies have measured fertility in long-lived transgenic  
D. melanogaster females, so it is unclear whether this is a common effect of reduced insulin signalling or an 
effect specific to mNSC ablation. Yet, the increased viability of eggs produced by ablated females partially (in the 
1-day and continuous exposure treatments) or wholly (in the intermediate male exposure treatments) offsets the 
fecundity cost. Why the eggs of ablated females were more viable than controls is not known. A likely explanation 
is that ablated females divert resources from producing large number of eggs to producing higher quality eggs, 
with increased viability. A potential caveat would be if ablated females had higher fertility as a result of lower egg 
densities in the vials. However, this is unlikely since the largest viability difference between control and ablated 
females are detected later in life when egg densities are similar between genotypes, and we detect no differences in 
fertility early in life when fecundity is highest for the controls. Thus, when the densities of larvae are highest and 
most different between control and ablated females, we see no fertility differences.

Natural selection favours the product of reproductive ability and survival. We would therefore generally not 
expect to find mutations that can increase lifespan above wild-type levels without a concomitant reproductive 
cost. Yet, we apparently see this for ablated females in the 1/8 and 1/4 male exposure treatments in this study. 
However, because the rate of reproduction varied with age–with ablated females producing offspring at a reduced 
rate compared to controls early in life but an increased rate late in life–the fitness costs and benefits of mNSC 
ablation depend crucially on the population growth rate, with ablated females favoured when populations are 
declining, and controls favoured when populations are expanding. D. melanogaster populations in the lab and 
wild are likely to vary in population dynamics, cycling through periods of expansion and contraction, but in the 
long term will be stable or growing13,43. Thus it seems likely that the reproductive pattern of ablated females would 
be often disfavoured: as expected, wild-type would most commonly be the fittest phenotype. Moreover, the meas-
ures of survival and reproduction in this study were taken in a benign environment, with ad libitum food and no 
extrinsic sources of mortality. Even the population cage environment, to which the Dahomey population used 
in this study is adapted, is likely to be more exacting, with high densities at both the larval and adult stages and 
limited food resulting in intense competition. Moreover, because the population cages have high density, females 
are likely to experience intense and continual male harassment, with little opportunity for refuge, and little danger 
of sperm limitation. Thus, the continuous exposure treatment in our study likely represents the closest environ-
ment to which the flies are adapted–one characterized by high sexual conflict44– and, as expected, control females 
reproductively outperform ablated females in this treatment. Conversely, selection for reduced insulin signalling 
might occur in benign environments, for example where population density and sexual conflict are low, and/or in 
declining populations. A recent study investigated the genome-wide variation and differentiation patterns among 
three D. melanogaster populations collected along the North American east coast using sequences of DNA pools, 
and revealed that the variation indicated contracting winter population sizes in higher latitudes and population 
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expansions in lower latitudes45. Moreover, lifespan, fecundity and mortality rates also vary predictably with lat-
itude, such that northern populations are longer lived with reduced fecundity, whereas southern populations 
are shorter lived with high fecundity46. Furthermore, SNPs situated within the dilp3 gene, as well as other genes 
of the nutrient-sensing pathways, were highly differentiated between the southern and northern populations45. 
The question of whether the natural variants of these loci might directly underlie latitudinal differentiation in 
fitness-related traits is yet to be explored.

Recent decades have seen a revolution in our understanding of ageing mechanisms, and in our understanding 
of conflicts over mating between the sexes44. However, few studies have addressed how these fields can inform 
one another47. Here we have shown that mating rates and the genetic pathways that regulate ageing can interact to 
influence lifespan, and thus that these processes do not act in isolation. Our results raise the question of whether 
long-lived mutants might commonly be susceptible to male-induced harm under intense sexual conflict. To shed 
more light on this issue, future studies should consider how key lifespan regulating pathways evolve under differ-
ing levels of sexual conflict, and how genetic manipulations of female lifespan behave in populations with varying 
histories of male-harm.

Materials and Methods
Stocks and fly maintenance. We used a lab-adapted, outbred Dahomey wild-type stock, which has 
been maintained in large population cages with overlapping generations since 1970. A whiteDahomey stock was 
created by serially backcrossing w1118 into the Dahomey genetic background7. We ablated the mNSCs late in 
development in females by expressing UAS-reaper (UAS-rpr) under the control of the InsP3-GAL4 (InsP3GAL) 
driver8. This was achieved by crossing InsP3GAL females with UAS-rpr males, and collecting the female progeny 
(UAS-rpr >  InsP3GAL). InsP3GAL and UAS-rpr transgenic lines have been described and assayed elsewhere8 and 
are commonly used to genetically manipulate the IIS signalling pathway48. We backcrossed the UAS-rpr and 
InsP3GAL lines into the whiteDahomey genetic background for at least 5 generations prior to the experiment. We 
also used two sets of controls that are necessary and sufficient to account for any insertional mutagenic effects7,8,48. 
The first control InsP3GAL were the daughters of InsP3GAL females and whiteDahomey males and controlled for the 
effects of the GAL4 driver (InsP3GAL/+ ). The second control UAS-rpr were the daughters of whiteDahomey females 
and UAS-rpr males and controlled for the effects of the UAS insert (UAS-rpr/+ ). Males used in the experiment 
were all wild-type Dahomey. All flies were maintained at 25 °C on a 12:12 L:D cycle and fed Lewis medium49. 
Adult flies were maintained in 36 mL plastic vials containing Lewis medium supplemented with ad libitum live 
yeast grains or paste. Ablated and control flies were reared using a standard larval density method50, by placing 
approximately 200 eggs on 50 mL of food in 250 mL bottles. Virgins were collected on ice anaesthesia within 8h of 
eclosion and were aged in single-sex groups for 3–4 days before the experiment.

Experimental design. Females were transferred to vials in groups of three and kept on a four-day cycle. On 
day 1 of the first cycle, three wild-type males were added to each vial for approximately 24 hours so that all the 
ablated and control females were mated. On day 2, following behavioural observations (described below), females 
were randomly allocated to one of four subsequent male exposure treatments: “0”, “1/8”, “1/4” or “1”. Treatment 0 
females were not subsequently exposed to males; treatment 1/8 females were exposed to males on day 1 of every 
other 4-day cycle (i.e., every 8 days); treatment 1/4 females were exposed to males on day 1 of every cycle (i.e., 
every 4 days); and treatment 1 females were continuously exposed to males. 25 vials per male exposure treatment 
were set up for each control (InsP3GAL and UAS-rpr), and 35 vials per treatment were set up for the ablated 
females (UAS-rpr >  InsP3GAL); therefore, each male exposure treatment had 150 control females (consisting 
of 75 InsP3GAL and 75 UAS-rpr females) and 105 ablated females at the beginning of the experiment. For each 
treatment, females were transferred to fresh vials on day 1 and day 2 of the four-day cycle, and vials from day 1 
were retained to count eggs and score progeny (see below). For the continuous exposure treatment (treatment 1), 
males were transferred with females to fresh vials on day 2. For all other treatments, males were separated and 
held in single sex vials, while females were transferred to fresh vials. Flies were lightly anaesthetized using CO2 
at each transfer. Experimental males were replaced with fresh 3–5 day old males on day 1 of every other cycle 
(i.e., every 8 days throughout the experiment) to limit the effects of male co-ageing on female life history traits. 
Replacement Dahomey males were obtained from stocks reared using the same standard larval density method as 
above. Female deaths were scored 5–6 days each week. To minimize density effects on mortality, two vials of the 
same treatment and genotype were merged when a single female was left in a vial owing to previous mortality or 
censoring. Hence, each vial had two or three females at all times and an equal sex ratio was maintained by adding 
the same number of males. Although the experimental design allowed us to have a large sample size, which is a 
necessity for conducting robust survival analyses, it prevented us from observing individual flies and calculating 
individual fitness measures. However, we were able to compute indices of lifetime fecundity, lifetime reproductive 
success and lifetime fertility to compare the fitness estimates of control and ablated females under different male 
exposure rates as detailed below in the statistical analyses section.

Behavioural observations. On the evening of day 1, vials in which females were exposed to males were 
transferred to observation racks, where observations took place shortly after lights on (at 10am) on day 2 of every 
cycle. Observations were conducted between the 2nd and 50th day of the experiment, comprising 13 observation 
days, and lasted for approximately three hours, during which time vials were scanned continuously until every 
vial was scanned 3–6 times. We quantified the number of males courting females and the number of matings.

Fecundity and fertility assays. On day 1 of every cycle females from each male exposure treatment were 
transferred into fresh vials supplemented with live yeast paste for approximately 24 hours. Females were then 
transferred into fresh vials on day 2 and the old vials were retained to count eggs and score progeny. Five vials 
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per male exposure treatment were randomly selected for each control (InsP3GAL and UAS-rpr), whereas seven 
vials per male exposure treatment were selected for the ablated females (i.e., 17 vials in total) to estimate egg 
production (fecundity) in each cycle. Daily egg production was calculated as the number of eggs laid per female 
per 24 hours. The vials were then incubated at 25 °C for 11–13 days until adult eclosion. We used the same 17 
vials per treatment to count the emerging offspring and estimate offspring production (reproductive success) 
and egg-to-adult offspring viability (fertility). Daily offspring production was calculated as the number of adult 
offspring emerging per female per 24 hours. Egg-to-adult offspring viability was calculated as the proportion of 
eggs laid from which adult offspring emerged.

Statistical Analyses. We first tested whether the two control genotypes (InsP3GAL and UAS-rpr) had com-
parable responses. We used a Cox’s proportional hazards model implemented in the survival package in R51 to test 
whether male exposure treatments had a differential effect on female lifespan for the three genotypes (the two con-
trols and the ablated). We used two a priori contrasts: (i) InsP3GAL control versus UAS-rpr control females, and 
(ii) ablated females versus merged control48. The initial model included ‘male exposure treatment’ and ‘genotype’ 
as factors and their interaction term. For both contrasts, we checked the global goodness-of-fit of the model based 
on the scaled Schoenfeld residuals and confirmed that the assumptions of proportional hazards were met (con-
trast i: χ 27 =  6.798, P =  0.45; contrast ii: χ 27 =  12.499, P =  0.085). These analyses revealed no detectable difference 
between the two control genotypes (contrast i: χ 23 =  5.159, P =  0.160), thus supporting the hypothesis that the 
male exposure treatment had similar effects on the lifespan of each control genotype (see Supplementary Fig. S3).  
We therefore merged the two control genotypes (InsP3GAL and UAS-rpr) as a single control for subsequent 
analyses.

We calculated an estimate for courtship and remating frequencies for control and ablated females of each male 
exposure treatment. This is to estimate how much courtship and remating the females were subject to throughout 
their lives. Courtship or remating frequency was defined as the proportion of females courted (or the propor-
tion of females remating) on the observation day, corrected for male exposure differences between treatments10. 
Hence, the data was extrapolated to include the days in which the females of treatments 0, 1/8 and 1/4 were not 
exposed to males, as opposed to the females of treatments 1 that were continuously exposed to males. This cor-
rection was done as follows: For each treatment and genotype we summed the average number of females courted 
per vial on each observation day to calculate the total number of females courted (‘courtship’ total). For treatment 
1, the ‘no courtship’ total is the number of females present on observation days that were not courted. For the 
other male exposure treatments, the ‘no courtship’ total is the number of females present on observation days 
that were not courted, plus the number of females present on the other days (when females were not exposed to 
males) until day 50 (the last day of behavioural observations). Likewise, for each treatment the ‘remating’ total is 
the number of females remating on the observation days. For treatment 1, the ‘not remating’ total is the number 
of females present on the observation days that did not remate. For the other male exposure treatments, the ‘not 
remating’ total is the number of females present on observation days that did not remate, plus the number of 
females present on the other days until day 50. We compared the courtship and remating frequencies of control 
and ablated females of each male exposure treatment using a 2 ×  2 χ 2 contingency analysis. Yates’ continuity cor-
rection was used if a cell had a count smaller than five.

We used two approaches to compare reproductive traits between control and ablated females within male 
exposure treatments. First, we calculated the age-specific egg production, offspring production, and egg-to-adult 
offspring viability of ablated and control females of each treatment and used Mann-Whitney-Wilcoxon tests to 
compare treatments, and Holm’s sequential Bonferroni correction to control for inflation in type 1 error rate due 
to multiple testing52. Mann-Whitney-Wilcoxon tests were used to overcome the underlying assumption of nor-
mality. Second, we calculated indices of lifetime fecundity, lifetime reproductive success and lifetime fertility53 
to compare the fitness estimates of control and ablated females under different male exposure rates. Here, the 
means of age-specific egg production, offspring production and egg-to-adult offspring survival were multiplied 
by the age-specific proportion of survivors for each genotype in all male exposure treatments and summed to 
generate the indices; hence, a single value was obtained for control and ablated females of each treatment. To 
test for differences in the indices between control and ablated flies of each treatment, we used permutation tests 
with 1,000 iterations54. We present bootstrapped confidence intervals (based on 1,000 replicates) for indices of 
lifetime fecundity, lifetime reproductive success and lifetime fertility. Permutation tests and bootstrapping were 
conducted in Excel 2010 (Microsoft, Redmond, Washington, USA).

Finally, we adopted a population rate-sensitive estimate of fitness, which incorporates information on both 
the timing and number of offspring produced in life13, to determine the relative fitness costs of reduced insu-
lin signalling for each male exposure treatment under different population growth rates. To do this, we calcu-
lated a rate-sensitive fitness measure wpop for each treatment and genotype, from the fitness index developed 
by Charlesworth55. Values of intrinsic rates of population growth, r, were taken in the range of − 0.4 to 0.4 as 
suggested for laboratory populations of D. melanogaster56. Values of wpop were used to determine the relative 
fitness costs (Cr) of mNSC ablation for different values of r defined as: Cr =  wpop cont./wpop abl. We halved the off-
spring counts to reflect each female’s genetic contribution to its offspring57. All analyses were conducted using R 
v. 3.1.251.
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