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ABSTRACT: This study presents an innovative approach for estimating the
proximate composition of diverse rice varieties using attenuated total
reflectance fourier transform infrared (ATR-FTIR) spectroscopy and
chemometric techniques. Principal component analysis (PCA) reveals distinct
separations among the seven rice varieties based on their FTIR spectra.
Robust partial least squares (PLS) regression models, developed with high
calibration (R2) values from 0.778 for protein up to 0.941 for moisture,
demonstrate high accuracy in predicting proximate composition. The root
mean squared error (RMSE) in percentage values, indicative of prediction
accuracy, were low across all proximate components. To ensure the response
variable of regression, proximate composition measurements were taken five
times, while FTIR spectra were scanned tens of times, employing random
numbers around the average with the same standard deviation as the
measurement. Notably, the study emphasizes the pivotal role of the amide-III band in protein determination, alongside specific
wavenumber regions associated with molecular changes in proximate components. This research underscores the potential of ATR-
FTIR spectroscopy and chemometrics for rapid and accurate proximate assessment in food science and agriculture.

■ INTRODUCTION
Rice serves as a foundational dietary staple for more than half
of the global population, particularly prevalent in regions such
as Asia, the Caribbean, and South America.1−3 The nutritional
profile of rice, determined by its macronutrients, comprising
carbohydrates, proteins, and fats, plays a crucial role in
sustaining essential bodily functions, necessitating substantial
daily intake.4 Understanding the macronutrient content in rice
is vital, offering essential insights to guide dietary practices,
especially among populations heavily reliant on rice as their
primary food source.5 Moreover, the analysis of macronutrient
levels lays the foundation for a deeper exploration of proximate
composition, a crucial aspect of nutritional assessment
encompassing key components such protein, fat, carbohydrate,
moisture, and ash. Additionally, analyzing macronutrient levels
helps identify rice varieties with enhanced nutritional value,
which is essential for regions grappling with food security
challenges.6

Recent studies have shed light on potential health risks tied
to rice consumption, especially its link to type 2 diabetes. Some
research has highlighted a significant link between consuming
substantial amounts of white rice and elevated blood sugar
levels, increasing the vulnerability to type 2 diabetes in certain
individuals.7−9 These findings emphasize the need to look

beyond rice as just a staple food and to explore its specific
nutritional components. By accurately determining the
amounts of macronutrients in rice, we can better understand
how different types might affect metabolic health. This detailed
understanding paves the way for more specific interventions
and dietary advice, particularly for those at risk of metabolic
conditions. Therefore, it is crucial to adopt advanced methods
to precisely assess the nutritional content of rice, shaping more
informed public health and dietary recommendation.
Macronutrients interact uniquely with infrared radiation,

rendering them infrared-active molecules detectable by Fourier
Transform Infrared (FTIR) spectroscopy. This technique
extends beyond merely identifying functional groups; when
calibrated against quantitative chemical analyses and employ-
ing multivariate statistical methods, FTIR spectroscopy
emerges as a versatile tool essential for quantitative analysis
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across diverse domains, including food science and chem-
istry.10−12

Recently, the combination of FTIR spectroscopy with
chemometrics has revolutionized food analysis by facilitating
rapid, nondestructive evaluations of chemical composition and
structure. Notably, FTIR spectroscopy has accurately quanti-
fied sugars in fruits and mango juice, shedding light on mango
ripening dynamics.13−15 Moreover, integrating FTIR spectros-
copy with machine learning algorithms has shown potential in
identifying the geographical origin of rice samples, as
demonstrated in studies focused on Thailand.16

Within the domain of chemometrics, partial least square
(PLS) regression stands out for its efficacy in spectroscopy
analysis across various food science applications, ranging from
identifying aged rice to detecting adulteration.17−19 Moreover,
its ability to filter out irrelevant features enhances regression
performance.20,21

Despite the widespread use of FTIR in rice research, there’s
a pronounced research gap concerning its application alongside
chemometrics for analyzing proximate composition. Conven-
tional methods, such as proximate analysis, although accurate,
demand extensive time and labor, making them less feasible for
large-scale or rapid analyses. Such limitations underscore the
urgency for innovative, efficient techniques that can offer both
accuracy and speed.
Addressing this, our study aims to devise a rapid and reliable

method for estimating rice proximate contents using
attenuated total reflection-fourier transform infrared (ATR-
FTIR) spectroscopy integrated with PLS regression. Addition-
ally, we extract important bands corresponding to proximate
content. In the future, we will focus solely on these crucial
bands for the rapid identification and quantification of
macronutrients. We also employed principal component
analysis (PCA) to observe the chemical composition difference
among the rice samples. This innovative approach for
quantifying proximate composition of rice using ATR-FTIR
not only holds promise for versatile applications in agriculture,
dietary guidance, and the advancement of nutritional research
but also contributes to enhancing our understanding of FTIR
spectra in the context of macronutrients.

■ MATERIALS AND METHODS
Sample Preparation. We gathered seven varieties of rice

samples from various regions within the Yogyakarta province
of Indonesia. These varieties include Beras Curah (BC) or bulk
rice, Beras Ketan Hitam (BKH) or black sticky rice, Beras
Ketan Putih (BKP) or white sticky rice, Beras Merah (BM) or
brown rice, Beras Premium (BP) or premium rice, Beras
Basmati (BS) or basmati rice, and Beras Wangi (BW) or

fragrant rice. These selected varieties were subjected to the
experiment due to its commercial availability in the Indonesian
market. Samples collections were taken across several regions
since each area produced different best products. For example,
the Sleman region which is in the north area of Yogyakarta is
the best for yielding brown rice. We would like to have fresh
samples after being directly milled in the station. Thus, the
samples are obtained directly from the manufacturer which are
packed and branded differently after the milling process.
However, some types of rice which is rarely consumed by the
locals, such as basmati rice and black and white sticky rice,
were obtained from the rice specialty store in the city center of
Yogyakarta. To prepare the samples for analysis, we subjected
them to grinding and sieving processes using a test sieve with a
mesh size of 100 μm.
Proximate Analysis. To assess the macronutrient

composition as target variables in our regression model, we
utilized the proximate analysis technique. The components
analyzed included protein, lipid, moisture, ash, and carbohy-
drate. Each type of rice underwent five times measurements for
each parameter as outlined in Table 1. Thus, a total of 35 data
were obtained for all seven varieties in one analyzed parameter
(e.g., protein). For the sampling technique, as many as five
portions of the samples were taken from the same packaging in
each type of rice to minimize the contribution of differences
results in repetition. The proximate analysis involved
determining moisture and ash contents using the gravimetric
method (AOAC 952.08, 930.30, 2016),22 fat content using
Soxhlet method (AOAC 948.15, 2016),22 protein content
using Kjeldahl method (AOAC 992.23, 2016),22 and
carbohydrate content through the carbohydrate by difference
method (AOAC, 2005).23 Detailed methodologies for
measuring each parameter are presented in the subsequent
subsections.
Protein Content Measurement. We employed the

Kjeldahl method to determine the protein content, involving
stages of destruction, distillation, and titration.22 Initially, 0.5 g
of the sample and a 0.5 g blank test were mixed with 10 mL of
sulfuric acid (H2SO4) and a quarter of a Kjeldahl tablet. The
destruction phase occurred in a KjelDigester K-446 Buchi at
400 °C for 90 min. For this process, 3 L of 10% sodium
hydroxide (NaOH) was used in a Scrubber K-415 Buchi to
capture the sulfuric acid vapor. Subsequent distillation and
titration were conducted in an automatic KjelMaster K-375
Buchi, utilizing 4% boric acid (H3BO4), 32% NaOH, distilled
water, and 0.2 N hydrochloric acid (HCl). The Kjeldahl
method determines the nitrogen content in the sample, which
is then converted to protein content using a general nitrogen
factor (NF) of 6.25, derived from the assumption that proteins

Table 1. Proximate Composition in Diverse Rice Varietiesa

proximate analysis results (%)b

ID Total FTIR spectra Protein Lipid Moisture Ash Carbohydratec

BC 120 9.899 ± 0.194 0.596 ± 0.077 12.589 ± 0.068 0.505 ± 0.050 76.416 ± 0.225
BKH 75 12.197 ± 0.404 3.692 ± 0.422 11.560 ± 0.532 0.944 ± 0.029 71.607 ± 0.790
BKP 45 7.509 ± 0.099 1.001 ± 0.147 11.811 ± 0.196 0.258 ± 0.006 79.420 ± 0.264
BM 45 10.245 ± 0.065 2.051 ± 0.183 12.504 ± 0.016 1.034 ± 0.041 74.165 ± 0.199
BP 120 6.992 ± 0.005 0.250 ± 0.096 11.984 ± 0.037 0.369 ± 0.018 80.405 ± 0.104
BS 45 8.911 ± 0.081 0.592 ± 0.141 11.447 ± 0.185 0.461 ± 0.023 78.859 ± 0.247
BW 120 7.273 ± 0.061 0.296 ± 0.067 14.248 ± 0.093 0.371 ± 0.080 77.812 ± 0.152

aStandard deviation (SD) is given after ±. bBased on the means of five times measurements. cSD of carbohydrate based on the error propagation
from protein, lipid, moisture, and ash.
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contain 16% (w/v) nitrogen. The derived protein content is
termed “crude protein” due to the presence of various
nitrogen-containing derivatives. The protein content calcu-
lation is represented by

v v N

w
%N

( ) ArN

1000
100%

blank sample HCl

sample
=

× ×
×

×
(1)

Nprotein content (%) % NF= × (2)

where vblank represents the blank volume post-titration, vsample is
the sample volume post-titration, NHCl indicates the molarity
of HCl, wsample is the sample weight prechemical treatment (in
grams), and ArN is the atomic mass of nitrogen.
Lipid Content Measurement. The fat content was

determined using the Soxhlet method.22 Specifically, 2 g
samples were subjected to extraction using a fat extractor Buchi
for 20 cycles with petroleum benzene as the solvent. The
weights of the samples pre- and postextraction were
determined after drying them in an oven at 105 °C overnight.
Since the extracted fat content includes not only pure oil but
also other compounds like organic acids, alcohols, essential
oils, pigments, and fat-soluble vitamins in trace amounts, it is
referred to as “crude fat”. The fat content lost from the samples
is calculated as

w w
w

crude fat content (%)
( )

100%1 2

3
= ×

(3)

where w1, w2, and w3, respectively, denote the weight of the
sample pre-extraction and postdrying, the weight postextrac-
tion and postdrying, and the weight of the sample pre-
extraction without drying.
Moisture Content Measurement. Moisture content was

determined gravimetrically.22,24 Samples weighing 2 g were
dried in an oven set at 105 °C for 24 h, and their weights were
monitored until a constant weight was attained. Following the
drying phase, samples were allowed to equilibrate in a
desiccator for 15 min before measurement. The moisture
content was calculated using the formula:

w w

w
moisture content (%)

( )
100%

pre post

pre
= ×

(4)

where wpre is the weight of the sample before drying, and wpost
is the weight of the sample after drying.
Ash Content Measurement. Ash content represents the

inorganic minerals present in a sample and includes elements
such as calcium, magnesium, potassium, phosphorus, sulfur,

and trace minerals. It is an essential parameter in food and
agricultural analysis as it provides insights into the mineral
composition of the material. Ash content determination
followed a gravimetric approach similar to that for moisture
content.22 Samples (2 g each) were ashed in a cabolite furnace
at 550 °C for 5−6 h. Subsequently, they were dried in an oven
at 105 °C for an additional 24 h until reaching a constant
weight. After removal from the oven, a 15 min desiccator
equilibration preceded the weighing process. The ash content
is determined by the formula:

w
w

ash content (%) 100%a

b
= ×

(5)

where wa represents the weight of the sample after ashing and
drying, and wb is the weight of the sample before ashing and
drying.
Carbohydrate Content Measurement. Total carbohy-

drate contents were estimated by difference.23 In this method,
carbohydrate content was determined indirectly by subtracting
the values of other components, namely crude protein, crude
fat, moisture content, and ash content, from 100%. Since
carbohydrate levels are derived indirectly from these measure-
ments, there is associated error (standard deviation)
propagated through this approach. The standard deviation of
carbohydrate was calculated using principles of error
propagation.25

FTIR Spectra Preprocessing. The ATR FTIR spectro-
photometer Bruker vertex 60 system was utilized to capture the
spectral data. Each data acquisition was performed in
reflectance mode, encompassing 32 scans per sample. The
wavenumber resolution was set at 4 cm−1, covering a spectral
range from 600 to 4000 cm−1 with 882 points along the
wavenumber.
For every rice variety, we conducted multiple random

acquisitions, resulting in distinct spectra. Overall, we examined
a total of 570 spectra. Specific details on the spectrum count
for each sample are provided in Table 1.
Prior to any analysis, the raw spectra underwent a series of

preprocessing steps. Initially, the spectra were truncated to
focus solely on the fingerprint region, specifically ranging from
600 to 1800 cm−1. Following this, vector normalization was
applied to standardize the data. Further refinement involved
calculating second derivatives spectra using Savitzky-Golay
(SG) algorithm with specific parameters: a window length of
17 and a polynomial order of 2. This procedure yielded the
second derivative spectra, which served as the basis for
subsequent PCA and PLS regression analyses. Ultimately, the

Figure 1. Mean spectra for each rice variety. Left: raw data; middle: normalized spectra; and right: second derivative spectra.
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number of points in the wavenumber was reduced to 312.
Please refer to Figure 1 to observe the impact of preprocessing
on the spectra.
Principal Component Analysis. To discern the separa-

tion among the samples, PCA was employed, and the resultant
separation will be elucidated through the PC scores plot. In
mathematical terms, PCA is a matrix decomposition defined as
follows:

n p n kA U V E( , ) ( , ) k p( , )
T= + (6)

Here, A represents the matrix slated for reduction consisting of
all spectra, U denotes scores, V is designated as loadings, and E
signifies the error. k is number of the principal components
and can be estimated by evaluating the cumulative explained
variance. Scores can be interpreted as new coordinates
resulting from PCA reduction, while loadings can be
understood as the most significant magnitudes or patterns
that delineate the data.
Chemometric Analyses. Chemometric analyses were

conducted to quantify the FTIR spectra using custom-built
software. Given our goal of quantifying the FTIR spectra, we
employed multivariate regression, specifically using PLS
regression. PLS regression was chosen for its straightforward-
ness, rapidity, comparative effectiveness, user-friendliness, and
widespread use in spectroscopy.26−28 The construction of our
PLS models adhered to guidelines from Daniel Pelliccia’s
tutorial on variable selection for PLS regression.29 Additional

details on specific algorithms referenced in this study can be
found in papers by Mehmood et al.20 and Cai et al.30

All computations were performed on a PC equipped with
Ubuntu Linux, an Intel Core i7−12700K processor, an
NVIDIA GeForce RTX 4060 GPU with 8 GB, and 64 GB
of RAM. The software was developed using Python 3.10.
The number of collected FTIR spectra ranged from 45 to

120 samples for each rice variety, as detailed in Table 1.
However, in the proximate analysis, each rice variety
underwent five measurements. To align the number of targets
with the number of spectra, Gaussian random numbers were
employed. Each value’s mean was associated with its respective
target, and its standard deviation mirrored the measurement’s
precision.
The optimum number of components in PLS regression was

determined by looping through numbers from 2 to 35.
Simultaneously, a wavenumber-by-wavenumber loop was
performed to exclude unimportant wavenumbers in the PLS
regression. Finally, we employed another PLS regression with
the optimum number of components and only important
wavenumber data.
To assess the reliability of our model, a leave-one-group-out

cross-validation technique was utilized, evaluating its perform-
ance based on RMSE and coefficient of determination (R2). In
this cross-validation technique, data set is divided into groups,
and the validation process involves leaving out an entire group
of data points for testing while training the model on the
remaining groups.

Figure 2. (a) 3 Dimensional PC scores, (b) PC loadings, and (c) PCA residual graph.
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■ RESULTS AND DISCUSSION
PCA Separation. In our analysis, we utilized 5 principal

components, which, according to the cumulative explained
variance plot, already represent close to 98.5%. Therefore,
further analysis focused on the first three PC scores (PC1,
PC2, and PC3) due to their significant information content
regarding the spectra of the rice samples. Figure 2a displays a
3D plot of PC scores, revealing a clear separation for each rice
variety. The distinct clusters formed by the red, blue, light blue,
and purple samples arise from the random selection of rice
samples for FTIR measurements, reflecting the inherent
variability in the samples and manifested in their clustering
patterns. Despite these separate clusters, it is important to note

that they still exist within the same spatial plane, underscoring
the complexity of the sample distribution.
The loadings plot provides insight into the wavenumbers

responsible for the observed separation. Figure 2b illustrates
the loadings plot for PC1, revealing a pronounced magnitude
in the region of 900−1100 cm−1. This region exhibits notably
stronger intensity compared to others across all PC
components, indicating significant differences among rice
varieties in this specific wavenumber range. These wave-
numbers are associated with protein, total carbohydrate, and
their overlap.31,32 Additionally, the loadings for PC2 and PC3
display peaks around 1680−1770 cm−1, this region belonging
to the C�O band can be lipid and carbohydrate.33 The PC
loading also shows that some low to medium intensity peaks lie

Table 2. PLS Regression Performance Metrics

R2 RMSE (%) Optimum Discharged

Calibration Cross validation Calibration Cross validation Number of components Wavenumber

Protein 0.881 0.778 7.23 9.92 5 305
Lipid 0.975 0.931 37.02 50.75 23 240
Carbohydrate 0.941 0.848 0.91 1.46 11 298
Moisture 0.963 0.941 1.61 2.08 29 247
Ash 0.968 0.939 14.23 17.47 24 209

Figure 3. Regression plots on the left depict the predictions of the PLS model for the respective targets, whereas the FTIR spectra of rice on the
right showcase key features. In these plots, intensity is represented in absorbance. The white lines mark the highlighted features, and the brown
shaded areas indicate regions with diminished wavenumbers.
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in the region of 600−1800 cm−1, and this region is the
figerprint region of the macronutrient.
The observed PCA residuals plot indicates that the majority

of residuals fluctuate around small values close to zero,
suggesting a consistent pattern within the data set as shown in
Figure 2c. This pattern aligns with the concept of
homoscedasticity, indicating that the variability in the residuals
remains relatively constant across different values of the
independent variables. While a small subset of samples,
specifically only two out of 540, display slightly higher residual
amplitudes, these deviations are minimal in comparison to the
overall data set. Given the predominance of residuals clustering
near zero and the limited occurrence of outliers, the PCA
appears to be robust and effective in capturing the underlying
structure of the data.
Chemometric Results. The metrics R2 and RMSE

calibration evaluate the model’s performance during training.
In contrast, cross-validation assesses how well the model
generalizes to new data, specifically using the leave-one-group-
out cross-validation technique.
From Table 2, our calibration R2 values are commendable:

0.881 for protein and over 0.94 for other proximate
composition, indicating effective model training. The R2 values
cross-validation range is between 0.778 and 0.941, affirming
the model’s robustness in predicting the desired targets. This
underscores the efficacy of the PLS regression approach we
adopted.
The RMSE values for protein, carbohydrate, moisture, and

ash were relatively low, indicating the accuracy of the model in
predicting these components. However, for lipids, the RMSE
was quite large, at 37.02% for calibration and 50.75% for cross-
validation. This noticeable discrepancy is attributed to the low
lipid concentration in rice samples, which was even less than
1% for BC, BP, BS, and BW, as shown in Table 1. Due to this
low concentration, it is challenging to estimate lipid content
with high accuracy.
Despite the subpar performance of our model in predicting

lipid concentration, the typically low lipid content in rice
mitigates its impact on indirect estimations reliant on lipid
concentration, such as carbohydrate concentration.
For determining the optimal number of PLS components,

we iterated from 5 to 35 components. Correspondingly, setting
35 as the upper limit proved adequate. Our analysis, detailed in
Table 2, revealed the optimal component range to be between
5 and 29.
Despite focusing on the fingerprint region in PLS regression,

not every wavenumber significantly contributes to the
regression models. Our calculations suggest that for each
target, a subset of wavenumbers had a small contribution to
regression. Consequently, 209 to 305 points of wavenumber
need to be excluded from calculation as outlined in Table 2 as
discharged wavenumber.
Protein. Our regression model for protein achieved R2

values of 0.881 for calibration and 0.778 for cross-validation,
which were the lowest among the various targets evaluated.
However, the RMSE scores were low 7.23% for calibration and
9.92% for cross-validation. Despite this, the performance was
deemed satisfactory, as illustrated in Figure 3a.
In the analysis, 305 wavenumbers were excluded due to their

negligible impact on the protein regression. Consequently,
only seven wavenumbers significantly contributed to the
calculation. Specifically, these wavenumbers are associated
with four distinct regions related to protein changes in rice

samples: 1020, 1130, 1255, and 1360 cm−1. Notably, the bands
observed at 1250 and 1360 cm−1 correspond to the amide-III
protein band, as referenced in previous studies,34,35 while 1020
and 1030 cm−1 belongs to the C−N stretching mode.36

Intriguingly, the amide-I (1650 cm−1) and amide-II (1500
cm−1) bands did not exhibit significant contributions to this
regression analysis. This observation suggests that the amide-
III band predominantly influences the determination of protein
content in rice samples. While historically the amide-III region
has not been utilized as extensively for determining protein
secondary structure when compared to the amide-I
region,37−39 our findings are in line with recent studies
indicating the accurate assignment of protein secondary
structure changes in silk during deformation or processing
using the amide III.39 The absence of amide-I and amide-II in
this regression model may also be caused by overlap with lipid
and carbohydrate bands. However, further analysis is also
required to confirm that amide-III is sensitive to the amount of
protein content in rice.

Lipid. The regression performance of lipids outperformed
other targets in this study, with R2 values of 0.975 for
calibration and 0.931 for cross-validation, as indicated in Table
2. The data closely followed the trendline, as illustrated in
Figure 3b. However, the RMSE for carbohydrate estimation
was also high. These results suggest that our model explains a
large proportion of the variability in the dependent variable but
may not provide precise predictions for individual data points.
In this analysis, 240 wavenumbers were excluded due to

their minimal contribution to the regression. Consequently, 74
wavenumbers played a significant role in the regression. The
bands associated with lipids include the −PO2 bond in
phospholipids, the vibration of −CH3, the deformation of
−CH2, and the C�O bond. For a more detailed list of bands,
please refer to Table 3.
Carbohydrate. Our regression model for carbohydrate

achieved R2 values of 0.941 for calibration and 0.848 for cross-
validation. These values indicate good regression performance,
as illustrated in Figure 3c. Additionally, the RMSE for

Table 3. Preliminary Assignment of FTIR Absorption Bands
Related to Macronutrients

Targets
Wavenumber

(cm−1) Assignment Ref

Protein 1020 Primary amine, C−N
stretching

36

1130 Secondary amine, C−N
stretching

36

1255, 1360 Amide-III 3435
Lipid 870−890

910−940
1120−1140
1230−1280 −PO2 bond in phospholipid 40
1340−1370 CH3 bending 31
1390−1410 Fatty acids, CH3 bending 31
1500−1530 Deformation of −CH2 and

−CH3

40

1660−1680 C�O 33
Carbohydrate 740

780
1070, 1130, 1160 Total carbohydrates 41
1540
1660 C�O 33
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carbohydrate was the lowest among other proximate
compositions. Specifically, the RMSE for calibration was
0.91%, and for cross-validation, it was 1.46%. A low RMSE
suggests robust model performance.
In the analysis, 298 wavenumbers were excluded due to their

negligible impact on the carbohydrate regression. Conse-
quently, only 14 wavenumbers significantly contributed to the
calculation. Specifically, these wavenumbers relate to the total
carbohydrate band and the C�O bond as listed in Table 3.
Moisture and Ash. The regression model demonstrates

strong predictive performance for the moisture (water) and ash
contents of rice, achieving R2 (CV) values of 0.941 and 0.939,
respectively, as illustrated in Figure 4. Water molecules, being
infrared-active, exhibit absorption in two distinct regions,
approximately 1300−2000 cm−1 and 3500−4000 cm−1.42 Our
regression analysis pinpointed several regions associated with
moisture content, including 640, 710, 860, 940, and numerous
regions around 1200−1800 cm−1 (particularly 1630 cm−1).
Notably, only 255 wavenumber points were excluded in this
regression. The results for 1630 cm−1 align well with
Nesakumar et al. that assigned 1637 cm−1 to the moisture.43

In terms of ash content, our analysis revealed notable
regions spanning 600−1800 cm−1. This finding aligns with
expectations, as ash content represents the inorganic residue
and mineral composition in rice samples.

■ CONCLUSIONS
In conclusion, our comprehensive analysis of different rice
varieties using FTIR spectroscopy and chemometric techni-
ques has provided valuable insights into the distinctive
molecular fingerprints associated with key nutritional compo-
nents. The 3D PCA scores plot demonstrated a clear
separation among rice varieties, indicating significant differ-
ences in their FTIR spectra. The subclusters within the same

rice variety were attributed to the variability in the samples.
Additionally, the residual plot suggests homoscedasticity,
signifying that the variability in the residuals remains relatively
constant across different values of the independent variables.
The subsequent PLS regression models exhibited robust
performance, achieving high calibration R2 values and
demonstrating the models’ capacity to generalize effectively
to new data during cross-validation. The identification of
optimal PLS components and selective inclusion of critical
wavenumber subsets underscored the importance of targeted
spectral features in predicting nutritional components,
enhancing the precision and efficiency of our models.
Notably, our findings challenged conventional norms in

nutritional analysis by highlighting the pivotal role of the
amide-III band in protein determination, deviating from the
traditional emphasis on amide-I and amide-II bands.
Furthermore, the regression analyses for lipid and carbohy-
drate revealed distinct wavenumber regions associated with
their molecular changes in rice samples, providing specific
insights into the chemical composition. This study not only
contributes to the understanding of rice diversity but also
showcases the potential of FTIR spectroscopy coupled with
chemometric analysis as a robust tool for rapid and accurate
nutritional assessment in various agricultural and food science
applications. Future research endeavors can leverage this
approach for a broader spectrum of food samples and
nutritional components, expanding its applicability and impact
in the field of food quality control and nutritional studies.
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