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Global cooling and enhanced Eocene Asian
mid-latitude interior aridity
J.X. Li1,2, L.P. Yue2,3, A.P. Roberts4, A.M. Hirt 5, F. Pan1,2, Lin Guo1, Y. Xu1, R.G. Xi1, Lei Guo1, X.K. Qiang3,

C.C. Gai6,7, Z.X. Jiang4,7,8, Z.M. Sun9 & Q.S. Liu 10

Tibetan Plateau uplift has been suggested as the main driving force for mid-latitude Asian

inland aridity (AIA) and for deposition of thick aeolian sequences in northern China since the

Miocene. However, the relationship between earlier AIA and Tibetan Plateau mountain

building is uncertain because of a lack of corresponding thick aeolian sequences with

accurate age constraints. We here present results for a continuous aeolian sequence that

spans the interval from >51 to 39Ma from the eastern Xorkol Basin, Altun Shan, northeastern

Tibetan Plateau. The basal age of the studied sequence postdates initial uplift of the Tibetan

Plateau by several million years. Our results indicate that the local palaeoclimate was tele-

connected strongly to the overall global cooling pattern, so that local enhanced aridification

recorded by the studied aeolian sequence is dominantly a response to global climatic forcing

rather than plateau uplift.
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Asian inland aridity (AIA) has been linked strongly with
surface Tibetan Plateau uplift1–7. Details of late Eocene
and early Miocene uplift history have been reported

widely from different methods8–10. Recent studies trace an initial
Andean-like Tibetan Plateau to the early Eocene11–13, but no
related long AIA records are available for that time period. This
hampers the understanding of any potential causality between
early Tibetan Plateau uplift and AIA. Aeolian deposits, such as
loess and red clay, are particularly valuable as indicators of dry
land evolution because sizeable deserts are needed as sources for
aeolian deposits2,14,15. Therefore, long (semi-) continuous aeolian
deposits have been used widely to trace the history of AIA.
Reworked and discrete aeolian deposits are also helpful for
palaeoclimate reconstructions16–18.

To trace early stages of AIA development and its underlying
mechanisms, we here investigated a 95.8-m red clay sequence
from the Xorkol Basin (91°31′45″ E, 38°54′42″ N), which is a
Cenozoic Basin within the Altun Shan, northeastern Tibetan
Plateau (Fig. 1; Supplementary Figures 1 and 2; Supplementary
Table 1; Supplementary Note 1). Our study demonstrates that the
studied sequence spans the ~51–39Ma time interval. The basal
age of the studied sequence postdates initial uplift of the Tibetan
Plateau by several million years. Our results indicate that
enhanced Eocene AIA was mainly driven by global palaeoclimatic
changes rather than being a direct response to the plateau uplift.

Results
Evidence for aeolian dust. Most terrestrial clastic sediments with
silt-clay size particles are transported by either water or wind.
Following typical studies of aeolian dust on the Chinese
Loess Plateau (CLP) and surrounding areas2,16–18, we interpret
the studied red clay sediments as aeolian deposits for the fol-
lowing six main reasons. First, the fine-grained sediment fraction
(<100 μm) that can be transported in suspension by wind19

consists of up to 92% of the total sediment, which is within the
typical range for aeolian dust from the CLP20. Second, aeolian
dust on the CLP is well sorted due to long-distance transportation
and accumulated at low and relatively stable rates. Chinese loess
is, thus, homogenous and devoid of stratification and lamina-
tion21. The studied red clay also lacks bedding, but has pseudo-
bedding (Fig. 2a, Supplementary Figure 3; Supplementary Note 2)
associated with calcareous nodules derived from leaching of
primary clay. Layer-cutting spindle-like calcareous nodules in
some “layers” distinguish pseudobedding from periodic climatic
stratification and lamination (Fig. 2a, Supplementary Figure 3).
Third, mineral assemblages and geochemical features of the stu-
died red clay are comparable to those of aeolian red clay from the
CLP (Fig. 2b–d). Fourth, grain size distributions of the clastic
component in the red clay have bimodal distributions (~30–100
μm and ~1–10 μm for the coarse and fine fractions, respectively)
and remain relatively stable throughout the profile (Fig. 2e). The
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Fig. 1 Topographic map of the study location and surrounding region. a Present day topography of the Tibetan Plateau and location of the study site. The
sub-figure is focused on the Altun Shan and surrounding area. Also shown in a are the estimated extent of the Paratethys Sea60 and the estimated extent of
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bimodal distribution is strikingly similar to Miocene-Quaternary
CLP aeolian deposits that were transported by two wind
systems22,23 and to aeolian deposits in the NE Tibetan Plateau
(Fig. 2e)16. Fifth, quartz grains, which comprise the main granular
mineral of the studied red clay, have irregular and angular shapes,
with most having sharp edges (Fig. 2f), low-relief and conchoidal
fracture. This is because fine particles are transported in
suspension24,25, which decreases grain–grain and grain–bed

collisions and preserves the original shape of quartz grains from
the source area. Sixth, elemental signatures of the studied Eocene
red clay are similar to the average composition of upper con-
tinental crust, which indicates that the sediments were derived
from well-mixed sedimentary protoliths that underwent repeated
upper crustal recycling (Supplementary Figure 4)26. The sediment
must, therefore, be derived from widely mixed areas, such as
Asian deserts, because local sources have more specific

f

F
re

qu
en

cy
 p

er
ce

nt
ag

e 
(%

)

0.1 1 10 100 1000

2.0

4.0

6.0

8.0

e

0

Content (mm)

C
on

te
nt

 (
p.

p.
m

.)

Content (p.p.m.)
0.1 10 100 1000

0.1

1

10

100

1000

Nb

Bi

Y

Rb

Pb

Ta

Sr

Zr

Ni

Be

Li

Ba

Hf

U

Co
Cs

Sc
Th

Eocene red clay

Qinan red clay

d

1
Content (wt%)

C
on

te
nt

 (
w

t%
)

0.01 0.1 10 100
0.01

0.1

1

10

100

MgO

CaO

Na2O

SiO2

Al2O3

TiO2

Fe2O3

MnO

Eocene red clay

Qinan red clay

c

P2O5

K2O

1

In
te

ns
ity

 (
C

P
S

)

2

4

6

8

10

12

×103

Chl

I/S

It Gao
Chl

Te

Q

Q

Or

Ab

Do
Hem

Q Q Q Q

Eocene red clay

SL loess 

SL red clay

SL paleosol

Q: Quartz
Or: Orthoclase
Ab: Albite
Cal: Dolomite
Do: Hematite

Chl: Chlorite
Gao: Kaolinite
It: illite
I/S: illite/smectite
Te: Amphibole

b

10 20 30 40 50
2� (°)

a

JEOL 10/11/201610 μm
LM10.0 kVX 1800 SEI WD 8.0 mm 14 : 49 :49

Fig. 2 Evidence for an aeolian origin of the studied red clay. a Field photograph of alternating reddish-brown clay and grey caliche nodule layers. b Mineral
composition from X-ray diffraction results from bulk sediments for the studied red clay in Altun Shan, compared with Quaternary loess and red clay from
Shilou61 (SL) on the Chinese Loess Plateau. c, d Average major and trace element distributions for the studied red clay from Altun Shan compared with red
clay from Qin’an62. e Grain size distributions for the studied red clay from Altun Shan. f Scanning electron microscope image of representative quartz
grains that illustrate the angular morphology of the grains
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geochemical signatures. All of the above sedimentological and
geochemical evidence attests to an aeolian origin for the studied
red clay deposits (Supplementary Notes 3 and 4).

Age model. The red clay is overlain disconformably by the Cai-
honggou Formation, which was deposited between 13 and 2.6
Ma27, and indicates a minimum age of 13Ma for the studied red
clay. Furthermore, we discovered Yuomys altunensis at a depth of
~17.5 m within the studied sequence that belongs to the Shar-
amurunian period, which spans the late Middle Eocene age
interval28. Constrained by the Eocene age for the Yuomys altu-
nensis fossils, we correlated our newly defined palaeomagnetic
polarity sequence to the geomagnetic polarity timescale29. The
extrapolated uppermost and basal ages are ~39Ma and ~51Ma,
respectively (Fig. 3; Supplementary Figures 5–12; Supplementary
Notes 5–10).

Correlation between χfd and δ18O. On the basis of the bios-
tratigraphically tied magnetostratigraphic age model, a notable
correlation between the frequency-dependent magnetic suscept-
ibility (χfd) and the global marine oxygen isotope (δ18O) record is
observed (Fig. 3d, e). χfd is sensitive to ferrimagnetic nanoparticles,
with grain size across the superparamagnetic (SP) to stable single-
domain (SD) size range30. Generally, χfd is enhanced for (palaeo-)
soils due to formation of SP+ SD magnetic particles under warm/
humid conditions and is used as a precipitation proxy31. Marine
δ18O data provide information on ice volume variations. Con-
tinental atmospheric vapour content is linked strongly to regional
rainfall. Our χfd curve mimics clearly the δ18O results, and records
not only the long-term global Cenozoic cooling trend, but also
major hyperthermal events such as the Middle Eocene Climatic
Optimum (MECO) at ~41.5 Ma32 (Fig. 3d, e). This indicates
strongly that climatic variations recorded by red clay χfd in the
study area were sensitive to global palaeoclimatic fluctuations on
different time scales. The age model indicates that the basal age of
the red clay is >51Ma, which is much earlier than documented
previously for the oldest aeolian deposits from North China and
Central Asia (<22–40Ma)2,16–18,33.

Discussion
Generally, continuous long aeolian deposition requires both
sizeable source areas arid enough to allow deflation and an
atmospheric circulation sufficiently energetic to carry aeolian
particles from the source to the depositional sinks. For example,
the long loess sequences from the Chinese Loess Plateau have
been taken as indicative of mid-latitude aridity2,33. In addition to
sizeable source areas, piedmont fluvial fans34, reworked fluvial
sediments and dry lake beds35–37 could have been potential dust
sources. Regardless of the exact source, deposition of such a thick
aeolian sequence requires a sizable and long-lived source to
provide a continuous dust supply over timescales of 10Myr,
which indicates enhanced regional aridity. Palaeomagnetic data
from the Tarim and Qaidam Basins, and the surrounds suggest
insignificant post-Early Cretaceous northward motion, which
indicates that these areas have been at the same latitude since the
Cretaceous38–40. Therefore, the studied Xorkol Basin aeolian
sequence provides a record of mid-latitude AIA that can be traced
at least to >51Ma.

Palaeoclimatic changes (e.g., progressive global cooling in a
long-term hot and dry continental environment), retreat of
the Paratethys Sea and Tibetan Plateau uplift are possible
factors that contributed to the documented enhanced mid-
latitude AIA1–7,9,11,13,17,18,33,41,42 and then to long-term aeolian
deposition in the Xorkol Basin. The interiors of large continents,
such as Eurasia, are normally arid because of the distance to

oceanic moisture sources and highly evaporative conditions.
Given that the Tibetan Plateau was already elevated to altitudes
>4,000 m in the Eocene12,13, moisture that reached inland areas
during this period would have come from the Paratethys Sea to
the west (Fig. 1a), over the Tibetan Plateau from the Indian
Ocean to the south or from the east for a strengthened East Asian
Monsoon.

Our measured χfd signal is carried by nanosized magnets that
were formed during pedogenesis. Extensive studies of Chinese
Loess and modern soils distributed along a precipitation gradient
indicate that χfd is proportional to annual precipitation. Tem-
perature is not evidently important for χfd changes. χfd values for
the studied sequence are ~0.8 m3 kg−1 at ~50–51Ma, which
corresponds to modern annual precipitations <~300mm per yr43,
which strongly indicates dry regional conditions at the onset of
aeolian deposition in the Xorkol Basin at ~50–51Ma. Excellent
correspondence between the marine δ18O record and the Altun
Shan χfd record through the profile (Fig. 3d, e) provides key
information on the subsequent control of AIA by climate evo-
lution. Coupling between marine δ18O and magnetic suscept-
ibility of younger loess and red clay deposits reveals that global
climate was the main driver of local rainfall variations44. Based on
the correspondence between marine δ18O and Altun Shan χfd
variations, we conclude similarly that global cooling was the main
factor that drove aeolian deposition in the Xorkol Basin. The key
question is how did global cooling lead to increased aeolian
deposition in this part of the Asian continental interior? Our
evidence suggests strongly that global cooling after ~50–51Ma
decreased moisture availability (controlled by the precipitation/
evaporation balance) to drive progressively drier conditions
indicated by the decreasing χfd trend. We lack detailed records
older than 51Ma, so we cannot provide an exact mechanism for
the onset of enhanced AIA in warm periods prior to ~51Ma, but
the studied region has evidently had a dry climate since the early
Eocene, in which progressively decreased moisture availability
was the major factor in controlling the signals recorded in the
studied palaeoclimatic archive. Ongoing Cenozoic global cooling
could have contributed to regional environmental changes in Asia
by reducing the intensity of the global hydrological cycle and by
intensifying dry conditions45. δ18O records indicate that the onset
of long-term global cooling from greenhouse to icehouse condi-
tions started from ~51 Ma32, which coincides with the basal age
of the studied aeolian sequence, and suggests strongly that global
climate cooling was an important factor for AIA.

The Paratethys Sea, which was a significant moisture source
and climate regulator via changing land–sea thermal contrast,
played a critical role in the climatic evolution of interior Asia7,41,
as supported by geological evidence3,46. The Paratethys Sea,
which was connected to the central Atlantic Ocean, extended to
the Tarim Basin in the east during the early Cenozoic era47,48.
The eastern extremity of this vast region is now occupied by the
Tibet–Pamir orogenic system and related sedimentary basins,
including the Tajik and Tarim Basins46. Recent studies from both
of these basins indicate that the Paratethys Sea retreated from
Central Asia not earlier than ~40Ma, which implies that there
was no clear land–sea redistribution that coincided with the
accumulation of the studied aeolian sequence3,46–48. The low χfd
values compared with those of Quaternary CLP palaeosols indi-
cate limited precipitation in this region43. Nevertheless, excellent
correlation between our χfd record and the global marine δ18O
record indicates strongly that vapour transportation was con-
nected to the global climatic system because weak moisture
supply to the Altun area would have originated mainly from the
Paratethys Sea since the early Eocene11.

Previous studies have hypothesised a link between Plateau
uplift and Central Asian interior climate1–7. Rising vapour from
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the Indian Ocean cools, condenses and precipitates before it
crosses the Tibetan Plateau, which results in drier air advancing
to the northern Plateau. If the orographic barrier is high enough,
vapour will be blocked to create a typical rain shadow effect on
the lee side of the high mountains, which has been demonstrated
by the building of high relief as a result of India–Asia collision
since the late Eocene to early Miocene1–7. Ding et al.13 recon-
structed palaeoelevations using the most negative oxygen isotope
values, which suggest an elevation of about 4500m on the
southern margin of the Lhasa terrane that resulted from early
Eocene subduction of the Indian plate. Before ∼50Myr, southern
Tibet had grown into a mountain belt, resembling the Central
Andes, that was 200–400 km wide and perhaps ∼4000 m high,
extending from roughly 10°N ( ± 5°) at ∼90°E to 20°N ( ± 5°) at
∼70°E12. This long-standing topographic feature was high
enough and extensive enough in the early Eocene to produce a
rain shadow on the lee side of the plateau, which blocked the
southerly sourced moisture to produce a distinct spatial palaeo-
precipitation distribution with low δ18O values in the rain sha-
dow and high δ18O values for westerly driven precipitation in
Central Asia, respectively11. This topographic limitation of
moisture supply likely contributed to mid-latitude AIA and
deposition of the studied aeolian Altun Shan sediments. However,
the basal age of the studied aeolian sequence postdates initial
southern Tibetan Plateau uplift by several million years. This
indicates strongly a lack of causality between AIA and Tibetan
Plateau uplift. In contrast, several lines of evidence indicate that
Tibetan Plateau uplift should have increased hydrological activity.
For example, Ruddiman and Prell49 and Licht et al.16 argued that
high topography should have further increased monsoon pre-
cipitation. Nie et al.50 also demonstrated that East Asian summer
monsoon precipitation penetrated further inland to the Qaidam
Basin during the late Miocene, when different lines of evidence
suggested a phase of northeastward Tibetan Plateau growth.
Therefore, we conclude that plateau uplift was not the dominant
driver of this AIA. We note that closed basins were present in
inland Asia for much of the Mesozoic and Cenozoic eras51,52.
Red-bed deposits with extensive dune fields and thick pedogenic/
caliche carbonates indicate localised aridity before the early
Cenozoic era in northern China53–56. Thus, although the studied
aeolian sequence does not provide the oldest evidence for AIA, its
basal age strongly indicates that AIA was enhanced at ~51Ma.

Preservation of aeolian deposits is extremely sensitive to ero-
sion. We attribute cessation of aeolian deposition (at ~39Ma) to a
change in local depositional conditions. First, the Paratethys Sea
had retreated from Central Asia by ~40 Ma3,46,47, which implies
that transportation of humid vapour into the Altun Shan was
reduced from that time. Such moisture sources are needed to
release, transport and deposit silt during humid periods that can
then be deflated during subsequent arid periods50,57. Second,
preservation of red clay sequences requires a relatively stable
tectonic environment during and after deposition42. Fission track
studies indicate that the Altun Shan underwent uplift during the
middle-late Eocene58,59. Thus, we suggest that aeolian deposition
ended at ~39Ma, possibly due to a combination of reduced
moisture supply and increased local tectonic instability.

The studied red clay sequence is the oldest known aeolian
section from the northeastern Tibetan Plateau, which provides
important insights into the regional response to global climate
evolution. Specifically, the 95.8-m-thick sequence discussed here
extends the known history of thick aeolian deposition in the
Asian interior by ~10Myr. Progressive global climate cooling is
the most likely driver of the documented Eocene AIA. The base of
our studied sequence postdated initial Tibetan Plateau uplift by
several million years, and the AIA enhancement (>51Ma) post-
dated initial development of the Gangdese mountains on the

southern margin of the Lhasa terrane (at ~55Ma). We conclude,
therefore, that the study area was teleconnected strongly to the
overall global cooling pattern, so that, local aridification recorded
by the studied aeolian sequence was dominantly a response to
global climatic forcing rather than plateau uplift.

Methods
Sampling. Oriented palaeomagnetic samples were collected in 2 ways depending
on the hardness of the sediment. Discrete cubic samples (2 × 2 × 2 cm3) were taken
from softer sediments, while cylindrical samples were drilled from harder sedi-
ments and were later cut into individual specimens (2.2 cm diameter × 2.5 cm
length). Two parallel sets of samples were taken at 20–100-cm stratigraphic
intervals. At each stratigraphic horizon, parallel powder samples were also taken
for magnetic measurements (e.g., mass-specific magnetic susceptibility, χ) and for
grain size analysis.

Sedimentological measurements. Grain size analyses were made using a standard
chemical pre-treatment procedure, in which organic material, carbonate and clay
minerals were removed sequentially from the red clay. The samples were then
analysed using a Mastersizer 2000 laser particle analyzer. Sample preparation, pre-
treatment and analyses were done at the State Key Laboratory of Continental
Dynamics, Department of Geology, Northwest University, Xi’an. Major and rare
earth elements, and mineral compositions were determined at the Xi’an Institute of
Geology and Mineral Resources using an inductively coupled plasma mass spec-
trometer (ICPMS, Thermo Elemental X Series) and a Rigaku X-ray diffractometer,
respectively. Quartz micromorphology was observed with a LEO 1450VP scanning
electron microscope (SEM) at the Xi’an Institute of Geology and Mineral
Resources.

Magnetic measurements. Palaeomagnetic specimens were demagnetised using an
ASC TD48 oven, and palaeomagnetic directions were measured with a 2-G
Enterprises cryogenic magnetometer (model 755 R) at the Institute of Geophysics,
ETH Zürich, Switzerland. Both the demagnetiser and magnetometer were housed
in a magnetically shielded laboratory. Thermal demagnetisation of the natural
remanent magnetisation (NRM) was carried out at 25 °C or 50 °C increments from
room temperature to 700 °C. Details of the magnetic properties are described in the
Supplementary Material.

To determine the magnetic properties and minerals responsible for the
measured palaeomagnetic signals, and to determine the best procedure for
subsequent thermal demagnetisation, rock magnetic analyses were performed
before palaeomagnetic analyses. Representative samples were analysed in the
Palaeomagnetism and Geochronology Laboratory, Institute of Geology and
Geophysics, Chinese Academy of Sciences, Beijing. Temperature-dependent
magnetic susceptibility curves (χ-T) were obtained using a KLY-3 Kappabridge
magnetic susceptibility meter and a CS-3 furnace with an argon atmosphere.

Data availability. The datasets generated and/or analysed during the current study
are available from the corresponding author on request.
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