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The high level of serum cholesterol caused by the excessive absorption of cholesterol can
lead to hypercholesteremia, thus promoting the occurrence and development of cancer.
Ezetimibe is a drug that reduces cholesterol absorption and has been widely used for the
treatment of patients with high circulating cholesterol levels for many years.
Mechanistically, ezetimibe works by binding to NPC1L1, which is a key mediator of
cholesterol absorption. Accumulating data from preclinical models have shown that
ezetimibe alone could inhibit the development and progression of cancer through a
variety of mechanisms, including anti-angiogenesis, stem cell suppression, anti-
inflammation, immune enhancement and anti-proliferation. In the past decade, there
has been heated discussion on whether ezetimibe combined with statins will increase
the risk of cancer. At present, more and more evidence shows that ezetimibe does not
increase the risk of cancers, which supports the role of ezetimibe in anti-cancer. In this
review, we discussed the latest progress in the anti-cancer properties of ezetimibe and
elucidated its underlying molecular mechanisms. Finally, we highlighted the potential of
ezetimibe as a therapeutic agent in future cancer treatment and prevention.
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INTRODUCTION

Almost all mammalian cells can synthesize cholesterol. About 50% of total synthesis takes place in
the human liver, but most cells cannot completely decompose cholesterol. They can excrete excess
cholesterol or store it in lipid droplets as esterified cholesterol esters (Luo et al., 2020). One of the
basic excretion pathways of cholesterol is to convert of cholesterol into bile acids through the liver
and excrete them to the intestine together with bile, which is a key to maintaining the balance of
cholesterol level in the body. Besides de novo synthesis and hepatic excretion, intestinal absorption of
exogenous cholesterol from the diet plays a vital role in maintaining cholesterol homeostasis
(Baigent, 2015). However, the long-term excessive absorption of cholesterol will ultimately lead
to many diseases, notably hypercholesteremia (Singh et al., 2013; Aljenedil et al., 2018), which is
considered to be a cause of cardiovascular disease (CVD) (Giugliano et al., 2017; Schmidt et al., 2017)
and cancer (Nelson et al., 2013; Zhang et al., 2021).

Ezetimibe is an effective cholesterol absorption inhibitor. It can effectively reduce the level of
serum cholesterol by blocking the sterol transporter Niemann-Pick C1-Like 1 (NPC1L1). NPC1L1 is
a key regulator of cholesterol uptake in intestine cavity through clathrin-mediated endocytosis (Luo
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et al., 2020). NPC1L1 is expressed exclusively in human liver and
small intestine, and is specifically expressed in rodent intestine
(Kim et al., 2017). NPC1L1 is mainly localized in the apical
membrane of small intestine epithelial cells and hepatic tubular
membrane (Jia et al., 2011). NPC1L1 is not only involved in
regulating intestinal cholesterol absorption from daily diet, but
also modulates hepatobiliary cholesterol excretion by
transporting bile cholesterol to hepatocytes (Park, 2013). The
cholesterol absorption block caused by NPC1L1 inhibition
suppresses the delivery of cholesterol to the liver, leading to
the reduction of liver cholesterol storage, promoting liver low-
density lipoprotein (LDL) uptake and plasma LDL cholesterol
reduction (Preiss et al., 2020). NPC1L1-mediated cholesterol
absorption exceeds LDL receptor (LDLR)-mediated hepatic
endocytosis, resulting in excessive accumulation of LDL-C,
which can be oxidized and transformed into oxidized LDL
(ox-LDL). In addition, other cholesterol-lowering drugs, such
as statins and proprotein convertase subtilisin/kexin type 9
(PCSK9) inhibitors, are often used. Statins are the earliest used
lipid-lowering drugs, which play a role by inhibiting HMG-CoA
reductase (HMGCR), the rate limiting enzyme of cholesterol
synthesis. PCSK9 inhibitors play a role by binding to LDLR
and impairing its function of transporting cholesterol to the liver.

Clinically, ezetimibe has been recommended in the current
guidelines and is widely used in the treatment of
hypercholesterolemia alone or in combination with statins to
prevent adverse cardiovascular disease events and mortality
(Ouchi et al., 2019; Mourikis et al., 2020). Epidemiologic
studies have shown that the use of statin can reduce the risk
of cancer and is conductive to the prognosis of cancer (Walker
et al., 2015; Voorneveld et al., 2017). Although no dedicated
studies have described the relationship between ezetimibe and the
risk of cancer or the prognosis of cancer, it is reported that the
high expression of NPC1L1, the target of ezetimibe, is associated
with the development and prognosis of colorectal cancer,
indicating the potential of ezetimibe in the treatment and
prevention of cancer (Kwon et al., 2021). Here, we
comprehensively review the existing evidence that supports the
role of ezetimibe in cancer chemoprevention and therapy. Next,
we will focus on cell-based and animal-based pre-clinical studies
to summarize the potential molecular mechanism of the
inhibitory effects of ezetimibe in cancer pathogenesis and
progression. Moreover, we also discuss whether the
controversy over the combination of ezetimibe and statins is
related to the increased risk of cancer, and emphasized the
potential of ezetimibe as a personalized cancer treatment drug
in the future.

HISTORY OF EZETIMIBE

A series of landmark discoveries have provided people with the
latest understanding of ezetimibe and its cholesterol-lowering
mechanism. SCH48461 is a potential cholesterol-lowering
intestinal absorption substance. Davis group (Van Heek
et al., 1997) unexpectedly found that SCH58235, one of the
metabolites of SCH48461, displayed a better cholesterol-

lowering effect than SCH48461 itself. SCH48461 inhibited
cholesterol absorption by 70%, while SCH58235 in bile
inhibited cholesterol absorption by more than 95%. Several
subsequent studies are also documented (Zaks and Dodds,
1998; Reiss et al., 1999). In 2000, Margaret van Heek and
colleagues (van Heek et al., 2000) named SCH58235
“ezetimibe”, and its molecular structure has been well
known to researchers. Compared with statins, which mainly
inhibit the activity of HMG-CoA reductase, ezetimibe can
inhibit cholesterol absorption in the intestine cavity through
some other pathway. In 2004, Klett and Patel (Klett et al., 2004)
confirmed that ezetimibe specifically binds to NPC1L1 and
inhibits its activity.

CHOLESTEROL-LOWERING MECHANISM
OF EZETIMIBE

NPC1L1 was first identified because of its high sequence
homology with Niemann–Pick type C1 (NPC1) (42%
identity and 51% similarity), so it was named NPC1L1.
Under normal growth conditions, NPC1L1 mainly exists in
the endocytic recycling compartment (ERC). After cholesterol
depletion, NPC1L1 rapidly transfers to the plasma membrane
(Yu et al., 2006; Ge et al., 2008). Cholesterol supplementation
triggers NPC1L1 and cholesterol transport from the plasma
membrane to the ERC (Ge et al., 2008). Mechanistically,
NPC1L1 interacts with cholesterol on the surface and
flotillin at the inner leaflet of the plasma membrane (Ge
et al., 2011; Zhang et al., 2011). The combination of
Cholesterol and NPC1L1 promotes the formation of
specialized membrane microregions rich in cholesterol,
flotillins, and gangliosides (Ge et al., 2011; Zhang et al.,
2011; Nihei et al., 2018), and leads to the separation of the
NPC1L1 C- terminal tail from plasma membrane. Therefore,
YVNxxF sequence can be used for NUMB recognition (Li et al.,
2014). As a clathrin adaptor protein, NUMB further recruits
clathrin and clathrin adaptor AP2 to the invaginated
microregions, generates encapsulated vesicles. Then the
endocytic vesicles migrate along actin filaments to the ERC
(Ge et al., 2008). Bao-Liang Song’s research group recently
found that a rare frameshift variant of LIMA1 gene in a
Chinese family of Kazakh ethnicity inherited low levels of
LDL cholesterol (LDL-C) and reduced cholesterol absorption
(Zhang et al., 2018a). LIMA1 connects NPC1L1 to a
transportation complex containing myosin Vitamin B (Vb)
and facilities cholesterol absorption.

THE POTENTIAL OF EZETIMIBE IN
CANCER TREATMENT AND PREVENTION

Over the past decade, many preclinical and clinical studies
have reinforced the hypothesis that ezetimibe has the potential
to treat and prevent cancer. Interestingly, but unfortunately,
the hypothesis that ezetimibe in combination with statins
increases cancer risk has aroused great public interest and
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controversy (Rossebø et al., 2008). Clinical studies show that
the cholesterol-lowering treatment by five-year usage of
simvastatin does not affect the incidence of cancer and
mortality. Therefore, the short-term cancerogenic effects of
simvastatin are excluded (Strandberg et al., 2004). So far, in
order to understand the effect of simvastatin, a combination of
drugs with better cholesterol-lowering effects cannot be
ignored. It is reassuring that more and more evidence does
not support above hypothesis (Peto et al., 2008; Green et al.,
2014). On the contrary, more and more evidence supports that
ezetimibe plays an active role in combating cancer. For
example, several in vitro and in vivo studies (Table 1) show
that ezetimibe can inhibit multiple cancers, such as prostate
cancer (Solomon et al., 2009), breast cancer (Pelton et al.,
2014), pancreatic cancer (Nicolle et al., 2017), urinary bladder
cancer (Yang et al., 2021), colorectal cancer (He et al., 2015),
hepatocellular carcinoma (Ribas et al., 2021), melanoma
(Wang et al., 2022) and renal cell carcinoma (Wang et al.,
2022) through various mechanisms, including anti-
angiogenesis, apoptosis, anti-proliferation, anti-
inflammation, stem cell inhibition, and immune
enhancement. Existing evidence shows that ezetimibe
should be considered as a safe and effective cholesterol-
lowering agent, and may become an academic bomb-shell
for cancer treatment and prevention. However, the specific
anti-cancer molecular mechanisms of ezetimibe remain to be
further clarified and studied.

ANTI-CANCER MECHANISMS OF
EZETIMIBE

Anti-Angiogenesis
High fat diet (HFD) is the leading cause of high cholesterol levels
in the blood, resulting in the hypercholesterolemia event, then
promoting cancer progression through a variety of mechanisms
(Lyu et al., 2019; Liu et al., 2021; Zhang et al., 2021). Figure 1
briefly summarizes the anticancer effect of ezetimibe. One well-
established anticancer effect of ezetimibe is its anti-angiogenesis
activity. Ezetimibe inhibits the germination and the growth of
neovascularization. Previous studies have reported that in LNCaP
human prostate cancer xenografts mice which were fed with a
high fat/high cholesterol diet (HFHC), high levels of circulating
cholesterol promote tumor angiogenesis by reducing the
expression of angiogenesis inhibitor thrombospondin-1 (TSP-
1, an effective angiogenic suppressor), and increasing the
instability of vascular structure and the amount of tumor-
associated microvessels density (Solomon et al., 2009; Zhang
et al., 2018b). More importantly, by inhibiting CD31 (platelet
endothelial cell adhesion molecule 1) and ki67, and increasing the
expression of TSP-1 and SMA (smooth muscle actin, a
perivascular cell marker), ezetimibe can significantly inhibit
angiogenesis, promote apoptosis and prevent cell proliferation,
so as to inhibit the growth of prostate tumor (Solomon et al.,
2009). In addition, in breast cancer mice model, by decreasing
angiogenesis, cell proliferation and elevating apoptosis, ezetimibe

TABLE 1 | In vitro and in vivo evidence of ezetimibe against cancer.

Cancer types In Vivo In Vitro Mechanisms Dose and
route of

administration

References

Prostate cancer PTEN-null mice NA Androgen↓, Ki67↓, TUNEL H score↑ 30 mg/kg/day
HFHC, p.o

Allott et al.,
(2018)

LNCaP cell-derived xenograft
mouse models

NA Ki67↓, TUNEL H score↑, CD31↓, Caveolin-1↓,
fibroblast↓, TSP-1↑, SMA↑

30 mg/kg/day
HFHC, p.o

Solomon et al.,
(2009)

RM1 cell-derived xenograft
mouse models, mTORC2−/−
mice

NA Akt↓, mTORC2↓, CPT1A↑, CD8+ lymphocyte↑ 30 mg/kg/day Wang et al.,
(2022)alone, p.o

Urinary bladder
cancer

T24 cell-derived xenograft
mouse models

NA Nanog↓, CD44↓, KLF4↓, ALDH1A1↓, ox-LDL induced-
CD36/JAK2/STAT3 axis↓

30 mg/kg/day
HFHC, p.o

Yang et al.,
(2021)

Breast cancer MDA-MB-231 cell-derived
xenograft mouse models

NA Ki67↓, TUNEL H score↑, CD31↓, SMA↑ 30 mg/kg/day
HFHC, p.o

Pelton et al.,
(2014)

Liver cancer PTEN-null mice NA TNF-α↓, IL-1β↓, CCL2↓, F4/80-positive macrophage↓,
Ki67↓, PCNA↓, VEGF↓, CD31↓, Col1a1↓, TIMP- 1↓,
TGF- β↓

50 mg/kg/day.
HFD, p.o

Miura et al.,
(2019)

MUP-uPA mice, DEN-treated
WT mice

NA Col1a1↓, Acta2↓, Spp1↓, Pd-1L (cd274) ↓, Ctla4↓,
entpd2↓, Ly6d↓, Afp↓, Gpc3↓, Birc5↓, Cd44↓

10 mg/kg/day
HFHC, p.o

Ribas et al.,
(2021)

Pancreatic
cancer

PDC-derived xenograft mouse
models

Patient-
derived
cell (PDC)

N1C1L1↓ 5 mg/day. alone, i.p Nicolle et al.,
(2017)

Colorectal
cancer

NPC1L1−/− mice NA p-c-Jun↓, p-ERK↓, Caspase-1 p20↓, β-catenin↓ NA He et al., (2015)

Renal cell
carcinoma

Renca cell-derived xenograft
mouse models

NA CD8+ lymphocyte↑ 30 mg/kg/day.
alone, p.o

Wang et al.,
(2022)

melanoma B16 cell-derived xenograft
mouse models

NA CD8+ lymphocyte↑ 30 mg/kg/day.
alone, p.o

Wang et al.,
(2022)

NA, not available; HFHC, high fat/high cholesterol diet; HFD,:high fat diet.
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reduced the growth of tumors that are stimulated by the HFHC
diet. Specifically, ezetimibe inhibits the expression of ki67 and
CD31, and upregulates the expression of SMA (Pelton et al.,
2014), supporting that hypercholesterolemia is closely associated
with the progression and recurrence of breast cancer (Borgquist
et al., 2017). These findings validate the direct evidence of the
anticancer effects of ezetimibe, and also confirmed that
cholesterol-lowering treatment can suppress angiogenesis and
inhibit tumor growth. Overall, these studies illustrate that in
patients with hypercholesterolemia, the lipid-lowering agents
may be effective and feasible for them to prevent cancer.

Miura et al. found that in HFD-induced hypercholesterolemia
and steatohepatitis-related hepatocellular carcinoma (HCC)
models, ezetimibe protects mice from HCC by reducing serum
and liver cholesterol levels and inhibiting angiogenesis that were
induced by CD31 and VEGF (vascular endothelial growth factor)
(Miura et al., 2019). Notably, inflammation cytokines (TNF-α, IL-
1β, CCL2) and liver fibrosis-related makers (Col1a1, TIMP-1,
TGF-β) are detected in this model. The hepatoma cell
proliferation are simultaneously suppressed by ezetimibe.
Interestingly, ezetimibe cannot inhibit angiogenesis in the
normal diet group, suggesting that fat overload plays an
important role in the anti-angiogenesis effect of ezetimibe
(Miura et al., 2019). It is worth noting that in LNCaP human
prostate cancer xenografts mice, no difference in the expression of
pro-angiogenic factors VEGF or basic fibroblast growth factor

(bFGF) is observed (Solomon et al., 2009). This may be due to the
absence of NPC1L1 in the prostate. NPC1L1 is mainly expressed
in liver and small intestine. Thus, the potential mechanisms of
ezetimibe in the inhibition of HCC may be depended on its
inhibition on HFD-induced angiogenesis, especially in HCC with
hypercholesterolemia.

Anti-Inflammation
Recently, accumulating evidence has revealed that inflammatory
process driven by lipid metabolism disorder is strongly related to
cancer pathogenesis and progression (Rohena-Rivera et al., 2017;
Prevete et al., 2018; Riccardi et al., 2020). Several studies have
determined that ezetimibe, as a potent NPC1L1 inhibitor, has the
potential to regulate lipid metabolism (Tanaka et al., 2020; Xia
et al., 2020) and inflammation (Kim et al., 2017; Yu et al., 2020).
Apart from blocking cholesterol uptake, NPC1L1 inhibition is
also involved in the regulation of other lipids, including
triglyceride (TG), phospholipid (PL), high-density lipoprotein
(HDL), and LDL, which can prevent HFD-induced
hypercholesterolemia and fatty liver (Davies et al., 2005; Jia
et al., 2010). Moreover, in vivo knockdown of NPC1L1 has
been shown to reduce plasma lipid levels, inflammatory cell
infiltrating lymphadenectasis, and colitis-associated colorectal
tumors by reducing the expression of pro-inflammatory
markers, including phosphorylated c-Jun (p-c-Jun),
phosphorylated extra-cellular signal-regulated kinase (p-ERK),

FIGURE 1 | A brief summary of the role of ezetimibe in anti-cancer. Ezetimibe reduces high levels of circulating cholesterol by inhibiting the absorption of dietary
cholesterol in the small intestine and biliary free cholesterol back into the liver and exhibits its anti-cancer ability through five primary mechanisms, including anti-
angiogenesis, stem cell inhibition, anti-inflammation, immune enhancement, and anti-proliferation.
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and Caspase-1 p20 (He et al., 2015). Furthermore, compared with
adjacent colons, NPC1L1 knockout significantly downregulates
the expression of β-catenin (He et al., 2015). β-catenin has been
reported to promote colorectal tumorigenesis (Cho et al., 2020;
Tian et al., 2020). Another study revealed that in guinea pig model
fed with HFD, ezetimibe could suppress almost all hepatic nuclear
factor kappa-B (NF-κB) activation that are induced by lipid
accumulation and inflammatory response in hepatic tissue
(Fraunberger et al., 2017).

Gallbladder stone, which can damage the gallbladder
epithelium and initiate chronic inflammation, is the main
cause of gallbladder cancer (GBC) (Lammert et al., 2016).
Previous observations have shown that ezetimibe could
completely prevent the occurrence and development of
chronic inflammation, metaplasia and dysplasia by reducing
the level of interstitial macrophage and the infiltration of
polymorphonuclear cell and CD8+T cell (Rosa et al., 2020). In
addition, estrogen is considered as a critical driver for gallstone
formation in male prostate cancer patients who are treated with
estrogen (Henriksson et al., 1989). It has been reported that
ezetimibe can prevent the estrogen-mediated lithogenic actions
on gallstone formation in mice, which may provide an efficacious
novel strategy for the prevention of cholesterol gallstones in high-
risk subjects, especially for prostate cancer patients who are
exposed to high levels of estrogen (de Bari et al., 2014). Taken
together, ezetimibe reduces the occurrence and development of
cancer by inhibiting lipid accumulation, suppressing leukocyte
infiltration and decreasing the expression of inflammatory
cytokines, including p-c-Jun, p-ERK, Caspase-1 p20, and NF-
κB. Additionally, ezetimibe may prevent gallbladder cancer and
reduce the side effect of estrogen in the treatment of prostate
cancer by reducing the formation of gallbladder stones.

Immune Enhancement
Lipotoxicity induced by excessive cholesterol is one of the most
critical drivers in the pathogenesis and progression of
nonalcoholic fatty liver disease (NAFLD), which can progress
to nonalcoholic steatohepatitis (NASH) and even HCC (Ioannou,
2016). As the final stage of NAFLD, HCC is the main cause of
adult morbidity and mortality worldwide. NASH is the key risk
factor for HCC (El-Serag and Kanwal, 2014; Forner et al., 2018).
Recent reports suggest that cholesterol rather than hepatic
steatosis promotes the development of NASH to HCC.
Ezetimibe prevents HFHC diet-induced liver fibrosis,
tumorigenesis, and NASH-driven HCC by inhibiting the
intestinal absorption of dietary cholesterol and liver cholesterol
content in diethylnitrosamine (DEN)-treated wild-type (WT)
mice and transgenic MUP-uPA mice (Ribas et al., 2021). More
specifically, the mechanism is that ezetimibe reduces the
expression of involved genes in fibrogenesis (Col1a1, Acta2,
and Spp1) and immune checkpoints (cd274, also known as
Pd-1L, Ctla4, and entpd2), as well as the mRNA expression of
HCC-related markers (Ly6d, Afp, Gpc3, Birc5, and Cd44) (Ribas
et al., 2021). Zhang et al. report that ezetimibe drives serum
cholesterol-lowering, promotes antitumor immunity and
extenuates prostate tumor growth and metastasis by
suppressing protein kinase B (Akt) phosphorylation and

mammalian target of rapamycin complex 2 (mTORC2)
signaling in lymphocytes, and by enhancing CD8+

lymphocytes memory function and tumor infiltration (Wang
et al., 2022). Moreover, ezetimibe promotes fatty acid
oxidation by increasing the expression of carnitine palmitoyl-
transferase 1A (CPT1A) in CD8+ lymphocytes, which is
associated to mTOR pathway and central CD8+ memory cells.
This work also confirmed that cholesterol-lowering interventions
reduce the growth of other tumors, including melanoma and
renal cell carcinoma, in a CD8+ lymphocyte-dependent manner.
It is worth noting that another study demonstrates that in
streptozotocin and HFD-induced NASH-derived HCC model
mouse (STAM mice), ezetimibe can suppress the progression
of hepatic steatosis but ezetimibe itself alone is not strong enough
to inhibit hepatic tumorigenesis (Orime et al., 2016). However,
this experiment only evaluates the incidence of hepatic tumors in
the 11-week early stage STAM mice models, so it cannot
represent the long-term anticancer effects of ezetimibe.
Therefore, more in vitro and in vivo experimental data are
needed to comprehensively describe the anticarcinogenic effect
and the potential molecular mechanism of ezetimibe.

The Inhibition of Cancer Stem Cells
Ezetimibe is also involved in inhibiting cancer stem cells, which
are closely related to tumor invasion and treatment resistance
(Milanovic et al., 2018). In the hypercholesterolemic urinary
bladder cancer (UBC) mouse model, ezetimibe significantly
suppress HFHC-induced serum lipid (TC, LDL-C, and ox-
LDL), and decrease the percentage of cancer cells (CK5+,
CK14+, and p-STAT3+) and cancer stemness markers
(ALDH1A1, CD44, KLF4, and Nanog) [1]. This work further
investigates the role of hypercholesterolemia in UBC progression,
and suggests that the increase of plasma ox-LDL is related to
hypercholesterolemia and UBC progression, and promotes
cancer stem cells via scavenger receptor B2 (CD36)/janus
kinase 2 (JAK2)/signal transducer and activator of
transcription 3 (STAT3) axis (Yang et al., 2021). Figure 2
shows an overview of the main anticancer mechanisms of
ezetimibe.

Other Mechanisms
Epidemiological and preclinical observations have suggested
that cholesterol-lowering plays a role in reducing the
development and progression prostate cancer (Alfaqih et al.,
2017; Revilla et al., 2021). Cholesterol is an important
precursor for de novo androgen synthesis (Kothandapani
et al., 2021). Similarly, androgen also plays a critical role in
the pathogenesis and development of prostate cancer (Dai
et al., 2017). Previous researches have displayed that ezetimibe
is as effective as finasteride, a potent prostatic androgen
dihydrotestosterone inhibitor, in reducing prostate growth
and reversing the enlarged-prostate shrinkage to normal
size by decreasing circulating cholesterol levels in the
hamsters model of benign prostatic hyperplasia (BPH)
(Pelton et al., 2010). Lower urinary tract symptoms (LUTS)
are often accompanied by BPH progression. Unlike ezetimibe,
clinical studies have revealed that statins cannot inhibit LUTS
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in male patients with BPH (Kramer et al., 2022). Moreover, in
the tumor suppressor gene phosphatase and tensin homolog
(PTEN)-null prostate cancer mouse model, ezetimibe reduces
plasma cholesterol, inhibits cancer cell proliferation with
impaired ki67 expression, promotes tumor apoptosis,
attenuates tumor androgens, and slows tumor growth
(Allott et al., 2018). This is consistent with a previous study
that shows ezetimibe to inhibit the growth of prostate cancer in
LNCaP xenografts model (Solomon et al., 2009). These results
further demonstrate the key role of ezetimibe in prostate
cancer. Nevertheless, the exact molecular mechanism of
ezetimibe in prostate cancer has not been fully clarified. In
addition, a previous study specifically shows that circulating
cholesterol-lowering therapy by ezetimibe cannot slow down
the tumor growth of prostate cancer in LAPC-4 xenografts
model (Masko et al., 2017). Although serum cholesterol
concentrations decrease, the cholesterol levels in tumors
increase significantly after ezetimibe treatment. The
mechanism of drug resistance is to counteract the effect of
serum cholesterol-lowering therapy through the elevation of
LDLR expression. Recently, a report by Rémy Nicolle and
colleagues shows that compared to NPC1L1−/− tumor cells,
ezetimibe could more effectively inhibit the proliferation of
pancreatic tumor cells, indicating that the inhibition of

NPC1L1 by ezetimibe may be an effective method for the
treatment of pancreatic cancer (Nicolle et al., 2017).

SUPPORT OR OPPOSE THE VIEW THAT
EZETIMIBE CAUSES CANCER

The controversy about whether ezetimibe combined simvastatin
can cause cancer comes from a 4-year clinical trial, Simvastatin
Ezetimibe in Aortic Stenosis (SEAS) study (NCT00092677), with
a total of 1873 patients (Rossebø et al., 2008). In this trial,
compared with the placebo group, the dramatic decrease in
LDL cholesterol caused by ezetimibe and lipid-lowering
therapy seems to increase the incidence rate of cancer (Drazen
et al., 2008). Therefore, the Food andDrug Administration (FDA)
becomes more caution about the safety and effectiveness of the
combination of ezetimibe and simvastatin. However, to date, a
significant correlation between statins and increased cancer risk
has not yet been verified by a large number of clinical data on
statin therapy (Emberson et al., 2012; Ren et al., 2021). Because
there is no long-term safety data from large-scale investigations at
that time, so the suspicion still focused on ezetimibe. The potent
cholesterol-lowering effect of ezetimibe alone or in combination
with simvastatin cannot be denied. In order to validate the

FIGURE 2 | The general map of mechanisms of ezetimibe against cancer.
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reliability, two clinical trials were subsequently performed. One is
the Study of Heart and Renal Protection (SHARP)
(NCT00125593) with 9,264 patients (mean follow-up,
2.7 years) and the other is the Improved Reduction of
Outcomes: Vytorin Efficacy International Trial (IMPROVE-IT)
(NCT00202878) with 11,353 patients (mean follow-up, 1.0 year).
According to these two important studies, there was no credible
evidence for the raised cancer risk related to ezetimibe (Peto et al.,
2008). These results are consistent with a subsequent large-scale
post-marketing analysis of the adverse events reported by patients
with ezetimibe lone or combined with simvastatin (Alsheikh-Ali
and Karas, 2009). Although there is no association between
ezetimibe and the increased cancer risk in SHARP and
IMPROVE-IT trials, the SEAS study indicates that ezetimibe
could disturb the cancerogenic signals. The conclusion from
SHARP and IMPROVE-IT trials also seem to be controversial,
because they are prematurely unblinded to enable their analysis,
and the follow-up time is too short (Taylor and Nissen, 2008).
Unexpected and premature disclosures of the relationship
between ezetimibe and increased cancer risk are also spurred
at least in part by Securities and Exchange Commission (SEC)
regulations (Califf et al., 2009). Also, further studies does not
confirm the possible link between ezetimibe and cancer, that is,
observed in the SEAS trial. The analysis of the above three clinical
trials does not fully prove the hypothesis that ezetimibe will
increase cancer risk due to the credibility-deficiency in ongoing
trials. Even simvastatin and ezetimibe did not reduce the
composite outcome of combined aortic valve events and
ischemic events in patients with aortic stenosis (Rossebø et al.,
2008). Such therapy reduced the incidence of ischemic
cardiovascular events, but did not reduce the events associated
to aortic valve stenosis. So far, this phenomenon cannot be clearly
explained by convincing evidence.

After an additional 21-month follow-up study after the SEAS
trial, researchers further find that ezetimibe and simvastatin do
not increased the risk of cancer or related mortality compared
with the control group (Green et al., 2014). Moreover, in a
prospective systematic analysis of cancer incidences in
IMPROVE-IT with 17,708 patients, Robert P Giugliano et al.
find that simvastatin/ezetimibe therapy has no effect on cancer
risk, and show that such a result might be due to the imbalance of
the cancer events (Giugliano et al., 2020). In a meta-analysis of

large-scale clinical trials, Costas Thomopoulos et al. demonstrate
that ezetimibe/simvastatin is safe in reducing cholesterol level and
will not be accompanied by changes in cancer rate (Thomopoulos
et al., 2015). These results are exciting, but these is also a need for
continuous monitoring of cancer outcomes during the ezetimibe
treatment. Recently, Kobberø Lauridsen et al. reveal that the long-
term genetic inhibition of NPC1L1 (encoding the target of
ezetimibe) did not increase the cancer risk of 67,257 patients,
and showed that the prolonged treatment with ezetimibe is less
likely to increase the risk of cancer (Kobberø Lauridsen et al.,
2017). A subsequent Mendelian randomization study has indeed
agreed with this genetic study (Nowak and Ärnlöv, 2018). Table 2
briefly summarizes human studies of ezetimibe on cancer risk.
The preclinical results of ezetimibe used to evaluate whether
ezetimibe is carcinogenic show that ezetimibe has no structural
alarm of genotoxicity or carcinogenicity. More importantly,
ezetimibe is not carcinogenic in the standard 2-year bioassays
of mice and rats (Halleck et al., 2009). In NPC1L1 knockout mice,
no evidence of ezetimibe-driven tumor is observed, which do not
support the hypothesis of SEAS trial. Overall, after the conclusion
of SEAS trial is released, more and more researchers try to prove
that ezetimibe does not increases the risk of cancer. However, the
experimental data indicating whether ezetimibe is short-term or
long-term carcinogeic and whether it has anticancer effect are still
limited. Therefore, more preclinical experiments and clinical
trials with longer follow-up duration are needed. To date,
there are no clinical studies of ezetimibe alone in the
treatment of patients with cancer, and its clinical efficacy on
cancer remains unclear. However, numerous preclinical studies
have demonstrated some significant therapeutic effects of
ezetimibe in cancer models in vivo and in vitro. Currently,
there are no studies reporting the clinical dose safety of
ezetimibe in cancer patients, and its efficacy on cancers and
safety in experimental animals are still in preclinical studies.
Further clinical trials are required to confirm the efficacy and
safety of ezetimibe in cancer patients.

PERSPECTIVES

Collectively, N1C1L1-mediated exogenous cholesterol uptake is
essential for cholesterol homeostasis, and high levels of

TABLE 2 | Clinical evaluation of ezetimibe on cancer risk.

Trial Patients Follow-
up

Treatment arms Main results References

SEAS 1873 4.0-year ezetimibe 10 mg + Simvastatin 40 mg ezetimibe/simvastatin seemed to
increase cancer risk

Rossebø et al.,
(2008)

SHARP 9,264 2.7-year
(mean)

ezetimibe 10 mg + Simvastatin 20 mg there was no association between
ezetimibe/simvastatin and the increased
cancer risk

Peto et al.,
(2008)

IMPROVE-
IT

11,353 1.0-year
(mean)

ezetimibe 10 mg + Simvastatin 40 mg Peto et al.,
(2008)

Anders et al 1,359 21-month ezetimibe 10 mg + Simvastatin 40 mg ezetimibe/simvastatin did not increased
cancer risk

Green et al.,
(2014)

Robert P
et al

17,708 6.0-year
(mean)

Simvastatin 40 mg alone or ezetimibe 10 mg + Simvastatin 40 mg ezetimibe/simvastatin had no effect on
cancer risk

Giugliano et al.,
(2020)
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circulating cholesterol is an important inducement for the
occurrence and development of cancer. Therefore, ezetimibe, a
drug that reduces cholesterol by inhibiting NPC1L1, is considered
to be an effective and feasible therapeutic approach for cancer.

In the past decade, ezetimibe has shown its potential in the
treatment and prevention of a variety of cancers. It is capable of
inhibiting angiogenesis, inducing apoptosis, suppressing tumor
proliferation, inhibiting inflammation and stemness, and
potentiating immune. However, the specific mechanism of
ezetimibe as a tumor inhibitor is not yet completely
understood. The studies on the anticancer effect of ezetimibe
mainly focus on the cell-based and animal-based preclinical
models. Many studies have shown that ezetimibe has no
inhibitory effect on cancer cells; instead, it mainly depends on
reducing exogenous cholesterol to suppress tumor growth.
Preclinical and clinical studies on the antitumor effect of
ezetimibe are still very limited, and the role of ezetimibe in
many cancer types has not been fully studied. Another
relevant limitation is the lack of specialized epidemiologic and
clinical studies to support its role in cancer. Although previous
studies have shown that ezetimibe combined with simvastatin
increases the risk of cancer, the conclusion of SEAS trial seems
unreliable. More and more evidence supports the role of
ezetimibe in cancer treatment and prevention, especially in
cancers with high serum cholesterol levels. Moreover, no
studies have so far shown significant toxicological side-effects
of ezetimibe in cancer treatment. Nonetheless, more large-scale
epidemiological studies and clinical trials with a longer follow-up
time are needed to understand the safety and efficacy of ezetimibe
in cancers. Taken together, we highlight the potential of ezetimibe
as a future personalized cancer therapeutic agent.

As one of themost common lipids that support the growth and
proliferation of cancer cells, cholesterol is involved in regulating
the rigidity, fluidity, and permeability of the lipid bilayer
membrane. It is a precursor of vitamin D, bile acid and
steroid hormone (such as androgen) (Sezgin et al., 2017). One
of the fundamental characteristics of cancer cells is the enhanced
cholesterol metabolisms, such as high cholesterol absorption and

de novo cholesterol synthesis, which contributes to cancer
progression. Additionally, with regard to immune regulation,
Boliang Li’s team has confirmed that acyl-coenzyme A
cholesterol acyltransferase 1 (ACAT1)-deficient CD8 + T cells
are superior to wild-type CD8+ T cells in controlling the growth
andmetastasis of melanoma inmice (Yang et al., 2016). ACAT1 is
a key regulator of cholesterol modification to cholesteryl ester
(CE), which is stored in lipid droplets. Therefore, targeted therapy
for cholesterol metabolism is considered to be a practical method
for cancer treatment. However, in order to maintain the essence,
that is, the chronic proliferation of cancer cells themselves, cancer
cells may have the specific ability to utilize cholesterol, regardless
of the absorption of cholesterol from the diet and de novo
synthesis of cholesterol, which are blocked by ezetimibe and
statins, respectively. This “specific ability” may be a real killer,
which needs a lot of research to confirm.
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GLOSSARY

ACAT1 acyl-coenzyme A cholesterol acyltransferase 1

Akt protein kinase B

bFGF basic fibroblast growth factor

BPH benign prostatic hyperplasia

CD31 platelet endothelial cell adhesion molecule 1

CD36 scavenger receptor B2

CE cholesteryl ester

CPT1A carnitine palmitoyl-transferase 1A

CVD cardiovascular disease

DEN diethylnitrosamine

ERC endocytic recycling compartment

FDA food and drug administration

GBC gallbladder cancer

HCC hepatocellular carcinoma

HDL high-density lipoprotein

HFD high fat diet

HFHC high fat/high cholesterol diet

HMGCR HMG-CoA reductase

IMPROVE-IT improved reduction of outcomes: vytorin efficacy
international trial

JAK2 janus kinase 2

LDL low-density lipoprotein

LDL-C LDL cholesterol

LDLR LDL receptor

LUTS Lower urinary tract symptoms

mTORC2 mammalian target of rapamycin complex 2

NAFLD nonalcoholic fatty liver disease

NASH nonalcoholic steatohepatitis

NF-κB nuclear factor kappa-B

NPC1 Niemann–Pick type C1

NPC1L1 sterol transporter Niemann-Pick C1-Like 1

ox-LDL oxidized LDL

PCSK9 proprotein convertase subtilisin/kexin type 9

p-c-Jun phosphorylated c-Jun

p-ERK phosphorylated extra-cellular signal-regulated kinase

PL phospholipid

PTEN phosphatase and tensin homolog

SEAS simvastatin ezetimibe in aortic stenosis

SEC securities and exchange commission

SHARP study of heart and renal protection

SMA smooth muscle actin

STAT3 signal transducer and activator of transcription 3

TG triglyceride

TSP-1 thrombospondin-1

UBC urinary bladder cancer

VEGF vascular endothelial growth factor
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