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Abstract
Background. Patients with neurofibromatosis type 1 (NF1) develop benign (BPNST), premalignant atypical (ANF), 
and malignant (MPNST) peripheral nerve sheath tumors. Radiological differentiation of these entities is challenging. 
Therefore, we aimed to evaluate the value of a magnetic resonance imaging (MRI)-based radiomics machine-learning 
(ML) classifier for differentiation of these three entities of internal peripheral nerve sheath tumors in NF1 patients.
Methods. MRI was performed at 3T in 36 NF1 patients (20 male; age: 31 ± 11 years). Segmentation of 117 BPNSTs, 
17 MPNSTs, and 8 ANFs was manually performed using T2w spectral attenuated inversion recovery sequences. 
One hundred seven features per lesion were extracted using PyRadiomics and applied for BPNST versus MPNST 
differentiation. A  5-feature radiomics signature was defined based on the most important features and tested 
for signature-based BPNST versus MPNST classification (random forest [RF] classification, leave-one-patient-out 
evaluation). In a second step, signature feature expressions for BPNSTs, ANFs, and MPNSTs were evaluated for 
radiomics-based classification for these three entities.
Results. The mean area under the receiver operator characteristic curve (AUC) for the radiomics-based BPNST 
versus MPNST differentiation was 0.94, corresponding to correct classification of on average 16/17 MPNSTs and 
114/117 BPNSTs (sensitivity: 94%, specificity: 97%). Exploratory analysis with the eight ANFs revealed intermediate 
radiomic feature characteristics in-between BPNST and MPNST tumor feature expression.
Conclusion. In this proof-of-principle study, ML using MRI-based radiomics characteristics allows sensitive and 
specific differentiation of BPNSTs and MPNSTs in NF1 patients. Feature expression of premalignant atypical tu-
mors was distributed in-between benign and malignant tumor feature expressions, which illustrates biological 
plausibility of the considered radiomics characteristics.

Key Points

• Radiomics allows for sensitive and specific differentiation between BPNSTs and MPNSTs.

• ANFs show intermediate radiomic feature characteristics between BPNSTs and MPNSTs.
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Neurofibromatosis type 1 (NF1) is an autosomal-dominantly 
inherited neurogenetic disorder caused by a mutation of 
the cell growth regulating protein neurofibromin in the NF1 
gene at 17q11.2. With an incidence of about 1:2500–1:3000 
NF1 is considered one of the most common hereditary 
neurocutaneous diseases.1,2

Typically, patients have a predisposition to develop be-
nign peripheral nerve sheath tumors (BPNSTs) of the skin 
(= cutaneous neurofibromas), the subcutis, and the deeper 
soft tissue (= plexiform neurofibromas). The latter are com-
posed of Schwann cells, fibroblasts, mast cells, perineurial 
cells, and a rich network of collagen fibers.3 Based on their 
morphological appearance, different subtypes of internal 
BPNSTs have been described, namely discrete (involving 
only one nerve fascicle) and plexiform (involving multiple 
nerve fascicles) neurofibromas. Due to their increased risk 
of malignant transformation, plexiform neurofibromas are 
of particular clinical relevance.4 Malignant tumors develop 
in about 8%–16 % of NF1 patients during lifetime.5,6 Since 
malignant peripheral nerve sheath tumors (MPNSTs) tend 
to metastasize early and are often resistant to chemo-
therapy, their occurrence serves as the most important life-
limiting factor in NF1 patients.7 Therefore, early detection 
and resection is of high relevance.

Atypical Neurofibromas (ANFs) were first described in 
2011 by Beert et  al.9 as a histopathological intermediate 
tumor type typically located in the deep soft tissue. As pre-
malignant precursors to MPNSTs, ANFs show neither local 
recurrence after previous resection nor the ability to metas-
tasize.8,9 Therefore, early, sensitive, and specific noninva-
sive diagnosis of (pre-)malignant nerve sheath tumors is of 
vital importance for clinical management of NF1 patients.

Magnetic resonance imaging (MRI) serves as the im-
aging modality of choice for long-term monitoring of 
affected NF1 patients with a fat-saturated T2-weighted se-
quence considered as the pivotal MRI sequence.10 In re-
cent years, there has been an increased research interest 
on quantitative imaging parameters for better risk strati-
fication of neurofibromas. For example, a correlation was 
found between high total tumor burden and risk for malig-
nant transformation.11–13 MRI-based “worrisome features” 
include lobulated appearance, irregular tumor margin con-
tours, peritumoral edema, and intratumoral heterogeneity 
including intratumoral hemorrhages or cystic changes.14–16 
In addition to morphological MR imaging, the use of dif-
fusion weighted imaging (DWI)17 and alternative im-
aging modalities, such as positron emission tomography 

(PET)18–20 adds to a more precise tumor characterization by 
providing information about local tumor architecture and 
tumoral metabolism.

Radiomics allows detailed characterization and analysis 
of structures in radiological images by using quantitative 
image features (eg, textures or homo-/heterogeneity of 
signal intensities), which are frequently not visible to even 
radiologically trained eyes. In combination with machine-
learning (ML) techniques, radiomics allows automatic ex-
traction and differentiation of typical radiomics signatures 
or feature expressions.21 Uthoff et  al.22 investigated the 
potential of radiomic features derived from MRI and PET/
CT data for the differentiation of BPNSTs and MPNSTs. 
However, they did not use an ML algorithm and did not in-
clude patients with premalignant ANFs.

The purpose of this study was to evaluate the value of an 
MRI-based radiomics ML classifier for automatic classifica-
tion of BPNST and MPNST in NF1 patients and to explore 
the plausibility of a respective radiomics signature by fur-
ther consideration of premalignant ANFs.

Materials and Methods

This single-center retrospective data evaluation was ap-
proved by the local ethics board with waiver of informed 
consent (WF-039/21). All procedures complied with the 
local data protection guidelines as well as the Declaration 
of Helsinki.

Study Population

Inclusion criteria were diagnosis of NF1 according to 
the NIH criteria23 and availability of high resolution 3T 
MRI examinations with axial T2-SPAIR weighted MRI 
sequences. MRI studies were acquired between August 
2014 and April 2021.

The study population included 36 adolescents and adults 
(20 male; mean age 31.3 years; range 12–54 years) (Table 1). 
The total data set included 117 BPNSTs, 17 MPNSTs, and 8 
ANFs. Tumors were considered benign when no changes in 
size or appearance were present in follow-up examinations 
within ≥ 24 months. All malignant tumors were character-
ized by size progression. Regarding the ANFs, seven out 
of eight patients presented to our institution due to tumor 
size progression and indication for further diagnostics to 

Importance of the Study

Malignant transformation of peripheral nerve sheath tu-
mors represents a major life-limiting factor for patients 
with neurofibromatosis type 1 (NF1). Therefore, early de-
tection of malignant peripheral nerve sheath tumors and 
their premalignant precursor, atypical neurofibromas, is 
of great importance. The exclusive use of morphologic 
tumor characteristics determined by magnetic resonance 
imaging (MRI) has limited diagnostic accuracy. We, 
therefore, assessed the value of radiomics for automatic 

classification of benign, atypical, and malignant periph-
eral nerve sheath tumors in NF1 patients. In summary, 
MRI-based radiomics allows sensitive and specific dis-
tinction of benign versus malignant, and of benign versus 
(pre-)malignant peripheral nerve sheath tumors in NF1 
patients. Hence, MRI-based radiomics machine learning 
classification represents a promising noninvasive diag-
nostic radiological imaging tool to be investigated in a 
larger study population in the near future.
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exclude malignant transformation. For the eighth patient 
no previous imaging was available, because NF1 was diag-
nosed for the first time.

Resected MPNSTs were classified according to the 
grading system of the Fédération Nationale des Centres de 
Lutte Contre le Cancer (FNCLCC).24 Histopathological evalu-
ation after tumor resection served as the reference standard 
for MPNSTs and ANFs. Histopathological reports following 
MPNST resection revealed 1 FNCLCC grade I, 6 FNCLCC 
grade II, and 10 FNCLCC grade III tumors. Considering the 
topographic distribution of the tumors, we observed 29 cer-
vical tumors (20.4%; 24 BPNSTs; 3 MPNSTs; 2 ANFs), 20 tu-
mors of the thorax/axilla (14.1%; 11 BPNSTs; 7 MPNSTs; 2 
ANFs), 29 tumors of the abdomen/retroperitoneum (20.4%; 
27 BPNSTs; 0 MPNSTs; 2 ANFs), 54 tumors of the pelvis 
(38.0%; 51 BPNSTs; 1 MPNST; 2 ANFs), 9 tumors of the lower 
extremities (6.3%; 4 BPNSTs; 5 MPNSTs; 0 ANFs), and 1 
MPNST located at the upper extremity (0.7%).

MRI Data Acquisition

MR imaging was performed at 3T (Philips Ingenia, Best, The 
Netherlands). The imaging protocol included a localizer, 
a coronal T2-weighted turbo spin-echo sequence, and an 
axial T2-weighted turbo spin-echo sequence with fat sup-
pression (spectral attenuated inversion recovery, SPAIR). 
Subsequent analyses were based on the SPAIR sequences 
(TR 3822 ms, TE 80 ms, flip angle 90°, matrix 244 × 215, 
FOV 270 × 270 mm, voxel size 0.7 × 0.7 mm, slice thickness 
3 mm, intersection gap 0 mm).

Tumor Segmentation

MRI data were converted from DICOM into NIfTI using 
SPM12 (Wellcome Trust Centre for Neuroimaging, London, 

United Kingdom) running on Matlab (MathWorks, Inc., 
Natick, Massachusetts, United States; Version R2020a). 
Tumor segmentation was performed manually on the 
T2-weighted SPAIR images using ITK-SNAP 3.8.025 by a ra-
diologist (I.R.) with 3 years of expertise in MRI. Segmented 
data sets were reviewed and, if necessary, manually ed-
ited by a senior physician (J.S.) with 10  years of exper-
tise in MRI and a research focus on multimodal imaging 
techniques in neurofibromatosis spectrum disorders. 
Exemplary MRI-based segmentations of a BPNST, ANF, and 
MPNST are displayed in Figure 1.

ML Analysis Strategy

Radiomics-based differentiation of BPNST and MPNST was 
subdivided into two parts. In the first part, the respective 
two-class classification problem BPNST versus MPNST 
was considered and general feasibility was determined by 
definition of a characteristic signature. In the second part, 
based on the signature, we analyzed signature feature ex-
pressions of ANF in comparison to BPNST and MPNST and 
explored feasibility of ML-based differentiation of BPNST, 
ANF, and MPNST.

Radiomics-based differentiation of MPNSTs and BPNSTs
A standard set of quantitative image features according to 
the PyRadiomics Python package, version 3.0.126 was com-
puted for the individual lesion segmentation masks and 
corresponding T2-weighted SPAIR images. The feature set 
comprised 18 first-order intensity, 14 shape, and 75 texture 
features (107 features in total); due to the limited sample 
size of this proof-of-principle study, wavelet decompos-
itions were not performed to reduce the initial feature 
set size.

In a first step, random forests (RFs; Python scikit-learn, 
version 0.24.2)27 were trained to differentiate BPNST and 
MPNST samples based on the entire 107 features. RFs are 
ML algorithms with comparably low sensitivity to class im-
balance, able to handle large numbers of heterogeneous 
predictors and cluster-correlated observations (here: pa-
tients with multiple lesions).28 This first step primarily 
aimed at identification of relevant features. RF outputs 
were evaluated by leave-one-patient-out cross-validation 
(LOOCV). To account for RF randomness, LOOCV was re-
peated 10 times. Feature importance was evaluated by 
averaging the feature-specific Gini importance26 for the 
134 × 10 = 1340 RFs of the repeated LOOCV. To double-check 
plausibility of feature importance values, a random vari-
able (generated using a normal random number generator) 
was added to the initial feature set and its “importance” 
compared to corresponding image feature values.29

In a second step, a problem-specific radiomics signature 
for differentiation of BPNSTs and MPNSTs was defined that 
consists of a small number of relevant image features. The 
signature feature number was determined by analysis of 
the mean corresponding area under the receiver operator 
characteristic (ROC) curve (AUC) obtained for RF-based 
classification with different feature sets (starting with only 
the single most important feature, and successively adding 
further features according to their importance values de-
rived in the first part of the experiments; evaluation again 

  
Table 1. Demographic and Clinical Characteristics of the NF1 Study 
Population

Parameter Value 

Subjects (n) 36

Age (years, mean ± SD) 31.3 ± 11.3

 (range) 12–54

Sex (m/f) 20/16

Tumor type (n)  

 BPNST 117

  Plexiform/discrete 75/42

 ANF 8

 MPNST 17

Tumor volume (mm3, mean ± SD)  

 BPNST 29017 ± 70894

 ANF 60554 ± 40990

 MPNST 269159 ± 268774

SD, standard deviation; m, male; f, female; BPNST, benign peripheral 
nerve sheath tumor; MPNST, malignant peripheral nerve sheath tumor; 
ANF, atypical neurofibroma.
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by means of repeated LOOCV). The smallest set of most 
important features that achieved AUC values in saturation 
(no additional value of adding further features) defined the 
problem-specific radiomics signature, for which the classi-
fication performance was evaluated in detail.

All experiments were based on RFs with 100 trees. 
Confusion matrices, as well as sensitivity and specificity 
values, correspond to an optimal operating point determined 
according to Youden’s index. For improved interpretability, 
the median image feature values were removed, and the data 
rescaled according to the feature-specific interquartile range.

ANF feature expression and differentiation of BPNST, 
ANF, and MPNST
We hypothesize that extracted radiomics signature is at least 
partly characteristic for the underlying biology of periph-
eral nerve sheath tumors. Therefore, feature expressions of 
ANFs as premalignant precursors to MPNSTs should be in 
between BPNST and MPNST feature expressions. This hy-
pothesis was tested as a first step. Moreover, the potential of 
the radiomics signature for RF-based differentiation between 
BPNSTs, ANFs, and MPNSTs was investigated. Considering 
the small sample sizes of the ANFs and MPNSTs, we resorted 
to the following two-class problems: 1) ANF versus BPNST, 
2) ANF or MPNST versus BPNST (ie, identification of nerve 
sheath tumors in need of further clarification), and 3) MPNST 
versus ANFs. RF training was based on only the image fea-
tures of the defined signature. The validation strategy (re-
peated LOOCV) and algorithm configuration were similar to 
the BPNST versus MPNST experiments.

Results

Radiomics-Based Differentiation of BPNST 
and MPNST

Highest performance for differentiation of BPNST and 
MPNST was achieved with a five features RF classification 

with a ROC AUC value of 0.94 (mean of the repeated 
LOOCV runs; standard deviation (SD) < 0.01). Classification 
based on more than the five most important features did 
not lead to further performance gain, and the combination 
of these features was considered the sought radiomics 
signature for differentiation of BPNSTs and MPNSTs. 
The AUC values for RF-based differentiation of BPNST 
and MPNST adopting a different number of quantitative 
image features (features successively added according to 
their RF feature importance) as well as feature importance 
values can be found in Figure 2. The figure illustrates that 
for five or more features RF classification performance is 
stable. All five signature features were texture features, 
computed based on the gray level co-occurrence matrix 
(GLCM), namely: inverse difference moment normalized, 
correlation, inverse difference normalized, maximal cor-
relation coefficient, and difference average (see van 
Griethuysen et al.26 for details). RF classification based on 
the 5-feature signature led to, on average, correct classifi-
cation of 16 of 17 MPNSTs and 114 of 117 BPNSTs, corre-
sponding to a sensitivity of 94% and a specificity of 97% 
(mean over LOOCV runs; both SD < 1%). The RF predictions 
were very stable for the repeated runs. In 2/10 runs 113/117 
BPNSTs were correctly classified; in the remaining runs, 
114/117. The numbers of the correctly assigned MPNSTs 
did not vary. The ROC curves and the mean confusion ma-
trix for the repeated LOOCV runs are shown in Figure 3.

ANF Feature Expression and Differentiation of 
BPNST, ANF, and MPNST

Analysis of the ANF feature expression showed a consistent 
distribution in between the BPNST and MPNST features 
for all five most relevant features for the differentiation of 
BPNST and MPNST. Thus, image feature expressions of the 
ANFs correspond to the ANF description as intermediate 
tumor type and premalignant precursor of MPNST. The dis-
tributions of the feature expressions for the five features of 
the defined radiomics signature and the BPNST, ANF, and 
MPNST groups are shown in Figure 4. Distributions are 

  

A B C D

Figure 1. Exemplary MRI-based segmentations of benign BPNST, premalignant ANF, and malignant MPNST. (A) Benign discrete cervical 
BPNST with a nodular appearance (arrowhead) in a 39-year-old woman. (B) Benign plexiform BPNST of the neck and shoulder (arrowheads) in a 
37-year-old woman. (C) Premalignant ANF of the neck and shoulder (arrowhead) in an 18-year-old woman. (D) MPNST of the tibia (arrowhead) in 
a 41-year-old woman. Top row: transverse slices of a T2 SPAIR sequence at 3T; lower row: overlay with indicated segmentation of tumors.
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estimated by kernel density estimation based on the obser-
vations of the present data cohort according to Scott.30

The partially overlapping feature expression distri-
butions of the three classes led, however, to decreased 

classification performance when considering ANFs. ROC 
curves and mean confusion matrices for the respective 
classification problems are shown in Figure 3. Automated 
differentiation of ANFs and BPNSTs resulted in an AUC of 
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Figure 2. Area under the receiver operator characteristic curve (AUC) for random forest-based differentiation and radiomic feature impor-
tance. (Left) Area under the receiver operator characteristic curve (AUC) for random forest-based differentiation of MPNSTs and BPNSTs when 
adopting the 1, 2, … up to 10 most important radiomics features of the repeated leave-one-patient-out cross-validation (LOOCV) of the classifica-
tion based on the entire initial feature set (107 radiomics features). Combining the five most important figures for classification stabilizes the AUC 
(ROC AUC value about 0.95); adding more features does not lead to further gain of performance. (Right) Importance of the radiomics features in 
the initial RF experiments. The five most important features, which were subsequently considered the radiomics signature, were all computed 
based on the gray level co-occurrence matrix (GLCM). The random variable was added as a plausibility check; the respective “importance” is, 
as expected, lower than that of most (ie, 106/107) of the considered radiomics features. GLCM, gray level co-occurrence matrix; IDMN, inverse 
difference moment normalized; IDN, inverse difference normalized; MCC, maximal correlation coefficient; GLSZM, gray level size zone matrix; 
LAHGLE, large area gray level emphasis.
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0.91  ±  0.01, corresponding to correct classification of all 
ANFs for all LOOCV runs and, on average, 92/117 BPNSTs 
(sensitivity: 100% ± 0%; specificity: 79% ± 3%); differen-
tiation of the small sample size classes MPNST and ANF 
yielded correct classification of 7/8 ANFs, but only 8/17 
MPNSTs for the selected operating point (AUC: 0.60 ± 0.02; 
sensitivity: 48% ± 13%; specificity: 85% ± 9%). For the dif-
ferentiation of premalignant or malignant tumors and 
BPNSTs, on average, 23 of the 25 lesions “in need of fur-
ther clarification” (ie, MPNSTs or ANFs) were correctly 
classified as such, and 104/117 of the benign tumors were 
classified as BPNSTs (AUC: 0.94 ± 0.01; sensitivity: 91% ± 
3%; specificity: 89% ± 2%).

Discussion

In this proof-of-principle study, we demonstrated the fea-
sibility of an MRI-based radiomics ML classifier for auto-
matic differentiation of BPNST from MPNST in patients 
with NF1. However, differentiation of MPNSTs and prema-
lignant ANFs was not reliably possible due to overlapping 
feature expression distributions. RF-based classification 
adopting a 5-feature radiomics signature resulted in au-
tomated MPNST and BPNST differentiation with a 94% 
sensitivity and 97% specificity. Including ANFs and com-
bining MPNSTs and ANFs to a single class resulted in 

an automated differentiation from BPNSTs with a 91% 
sensitivity and 89% specificity, indicating feasibility of 
radiomics-based identification of neurofibromatosis tu-
mors in need for further clarification, for example, by per-
forming a PET/CT or biopsy.

This single-center study indicates that it is feasible 
to automatically classify BPNST and MPNST based 
on quantitative radiomic features derived from non-
enhanced MRI and that the derived diagnostic accuracy 
is comparable to that of existing NF1 studies. As recently 
reported in a meta-analysis by Martin et al.31, heteroge-
neous pooled diagnostic accuracies were observed with 
respect to MRI-based morphological imaging features for 
the differentiation of BPNSTs versus MPNSTs (33%–99% 
sensitivity, 33%–95% specificity) with absence of target 
sign yielding highest sensitivity. DWI-based differentia-
tion of BPNSTs and MPNSTs revealed comparably high 
diagnostic accuracies with 92% sensitivity and 98% 
specificity.17 Regarding PET/CT pooled sensitivities and 
specificities yielded similar accuracies of standardized 
uptake value (SUVmax) (94% sensitivity, 81% specificity) 
and tumor-to-liver ratio (93% sensitivity, 79% specificity), 
whereas best accuracy was achieved for SUVmax  ≥  3.5 
median cutoff range (99% sensitivity, 75% specificity).31 
However, one disadvantage of PET/CT is the associated 
radiation exposure, especially in this particularly vulner-
able collective of young adults. Our MRI-based radiomics 
BPNST versus MPNST classification with 94% sensitivity 
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Figure 4. Distributions of the defined radiomics signature features of the BPNSTs, the MPNSTs, and ANFs. In line with the clinical interpretation 
of ANFs as a histopathological premalignant precursor, the distributions of the ANF feature (green) lie in-between those of BPNSTs (blue) and 
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and 97% specificity is therefore comparable to other 
approaches.

The difficulties we often face when differentiating 
MPNSTs from ANFs on MRI are due to the nature of these 
tumors, for example, because of focal malignancy in a 
large PNF or overlapping feature expression. This is simi-
larly reflected in the challenging histopathological differen-
tiation.8 Despite morphological and immunohistochemical 
diagnostic criteria, the distinction of ANF from (low-grade) 
MPNST may pose some diagnostic difficulties, making di-
agnosis for even experienced pathologists challenging. 
Criteria for the diagnosis ANF are met when at least two 
worrisome features are present but histologically fall short 
of MPNST as, for instance, nuclear atypia, loss of the CD34+ 
fibroblastic network, hypercellularity, and an elevated mi-
totic index (>1/50 high power fields (HPF) and < 3/10 HPF).8 
Other immunohistochemical markers, such as S100, CD34, 
Ki67 or of p53 as well as the deletion of CDKN2A/B on chro-
mosome 9 (gene locus p21.3) may allow reliable conclu-
sions to be drawn.9,32,33  Therefore, the fact that there is 
also significant overlap in the radiomics feature expres-
sion of these two entities, in particular, underscores the 
plausibility of the distribution of the derived radiomics 
signatures.

In our study, the feasibility of radiomics for NF1 tumors 
was performed based on fat-suppressed T2-weighted se-
quence, which serves as the most important MRI sequence 
for diagnostics in NF1 patients.10 Besides, other MRI 
sequences and imaging modalities have been suggested 
as diagnostically helpful for NF1 tumor differentiation, for 
example, DWI or PET/CT.17,19,20 A texture analysis-based ap-
proach by Cook et al.34 provided evidence that heteroge-
neity and higher-order features derived from 18F-FDG-PET/
CT data can be applied for differentiation of BPNST and 
MPNST. However, like in the study by Uthoff et al.22, these 
authors did not apply ML techniques for automatic tumor 
classification. Future studies should evaluate feasibility of 
radiomics for these different techniques and answer the 
question whether a combination of these techniques to-
wards a multimodal/complementary radiomics approach 
improves classification accuracy of NF1 tumors. Moreover, 
it would be of particular interest to correlate the thera-
peutic course of non-resectable PNFs under MEK inhibitor 
selumetinib therapy with radiomics-based feature expres-
sion for the assessment or prediction of therapy response, 
since previous studies have shown that selumetinib not 
only stops tumor growth but even leads to a tumor size 
reduction.35

In this study, we exclusively evaluated texture param-
eters. In contrast to morphological features such as 
size and shape, a texture-based approach might allow 
better generalizability due to less susceptibility to data 
acquisition-related constraints. For example, during MRI 
data acquisition large plexiform neurofibromas, which can 
often be delineated along the entire plexus, are not com-
pletely captured within one stack in a cranial or caudal 
direction. Artifact-free fusion of these stacks is also not al-
ways possible.

Analysis of tumor volumes extracted from segmentation 
revealed that malignant tumors were significantly larger 
than benign tumors (Wilcoxon rank-sum test, P  <  .001; 
Table 1). This observation is in line with previous work. 

For example, Martin et al.31 reported a pooled accuracy of 
0.71 sensitivity and 0.85 specificity in their meta-analysis 
with respect to the tumor size criterion which was derived 
from investigations from Ahlawat et al., Karsy et al., and 
Matsumoto et  al.36–38 To investigate how well tumor size 
can discriminate between benign and malignant nerve 
sheath tumors a similar methodological setup was used to 
train a logistic regression model to differentiate between 
MPNST and BPNST based on only the tumor size. The 
corresponding ROC AUC was 0.69 (sensitivity: 65%, spec-
ificity: 92%), hence lower compared to the texture-based 
radiomics signature. Premalignant tumors were also sig-
nificantly larger than benign tumors (Wilcoxon rank-sum 
test, P < .001; Table 1). The AUC for differentiation between 
ANF and BPNST based on only the tumor size was 0.75 
(sensitivity: 88%, specificity: 66%) and for differentiation 
of lesions in need for further classification (ANF, BPNST) 
and benign tumors 0.72 (sensitivity: 64%, specificity: 
88%). Again, the values are lower compared to radiomics 
signature-based differentiation. Size differences between 
premalignant and malignant tumors were not significant in 
our population (P = .26).

Our study has the following limitations: first, small 
sample size and a correspondingly small number of target 
lesions for radiomics is a well-known general concern,39 
especially for diseases with low prevalence such as NF1. 
Therefore, a “classical” radiomics approach with a sepa-
rate training and test data set was not feasible, which is 
why a LOOCV suitable for smaller collectives was applied 
in this proof-of-principle study. One consequence to over-
come this problem in the future may be the establishment 
of multisite databases, which would allow further sub-
group analyses considering other relevant factors such as 
age and sex. The proposed radiomics signature could also 
be evaluated for data sets with different technical acquisi-
tion parameters (eg, different field strength). A multimodal 
approach considering other patient-specific and disease-
relevant risk factors for malignant transformation, such 
as genetics, total tumor burden, and other clinical param-
eters11–13,40 might help to optimize personalized treatment 
and risk stratification by means of radiomics and ML. For 
example, in a radiogenomics study, Liu et al.41 found signif-
icant associations of NF1 mutations and radiomic MRI fea-
tures in a genotype-phenotype correlation. In accordance 
with the previously mentioned limitation, the rarity of this 
disease and even rarer occurrence of malignant transfor-
mation of peripheral nerve sheath tumors results in a par-
ticular low number of target lesions of malignant (MPNSTs) 
as well as premalignant (ANFs) lesions. Therefore, having 
only 17 MPNSTs and 8 ANFs in our data set, we cannot 
completely rule out overfitting. A second limitation is the 
class imbalance, although and as already mentioned in 
the methods section, the applied RF model has a compa-
rably low sensitivity to class imbalance and is also able 
to handle cluster-correlations.28 The third limitation is the 
performed manual tumor segmentation approach which 
implies a certain degree of observer dependence within 
the ML process. However, it has been shown that radiomic 
feature expressions including GLCM features as applied 
in this study are comparably stable regarding variations 
in segmentations.42 We have deliberately decided to not 
use a semi-automatic segmentation approach, as this did 
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not seem to work effectively in our hands. For example, 
threshold-based segmentation did not succeed in a correct 
differentiation of nerves and adjacent vessels. Similarly, 
when using semi-automatic segmentation, it is not pos-
sible to exclusively segment the peripheral nerve without 
sparing the adjacent spinal cord. Likewise, threshold-
based segmentation was also not promising in the pelvis 
since the ovaries and seminal vesicles were included in the 
target regions of interest due to similar signal intensities.

The presented results do not allow to draw conclusions 
on whether the performance of ML allows a more reliable 
diagnosis than that of a radiologist. In the future, prospec-
tive studies must therefore evaluate the clinical value of 
radiomics and investigate if it significantly improves radi-
ological diagnosis.

Conclusion

In conclusion, ML using MRI-based radiomics allows sensitive 
and specific differentiation of benign and malignant and be-
nign versus (pre-)malignant peripheral nerve sheath tumors 
in NF1 patients and represents a promising noninvasive diag-
nostic augmented radiological imaging tool. Feature expres-
sion distributions of premalignant atypical tumors illustrate 
biological plausibility of the considered radiomics character-
istics. The presented techniques should be combined with 
established clinical and further image-based biomarkers and 
further validated in larger, prospective multi-center studies.
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