
ORIGINAL RESEARCH ARTICLE
published: 02 March 2015

doi: 10.3389/fphar.2015.00034

Diabetes impairs the vascular effects of aldosterone
mediated by G protein-coupled estrogen receptor activation
Nathanne S. Ferreira 1, Stêfany B. A. Cau 2 , Marcondes A. B. Silva1, Carla P. Manzato1,

Fabíola L. A. C. Mestriner 1, Takayuki Matsumoto 3, Fernando S. Carneiro1 and Rita C. Tostes1*

1 Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
2 Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
3 Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan

Edited by:

Claudio M. Costa-Neto, University of
Sao Paulo, Brazil

Reviewed by:

Wei Ni, Michigan State University,
USA
Jean-loup Bascands, Inserm, France

*Correspondence:

Rita C. Tostes, Department of
Pharmacology, Ribeirao Preto Medical
School, University of São Paulo,
Avenida Bandeirantes 3900, Ribeirao
Preto, São Paulo 14049-900, Brazil
e-mail: rtostes@usp.br

Aldosterone promotes non-genomic effects in endothelial and vascular smooth muscle
cells via activation of mineralocorticoid receptors (MR) and G protein-coupled estrogen
receptors (GPER). GPER activation is associated with beneficial/protective effects in the
vasculature. Considering that vascular dysfunction plays a major role in diabetes-associated
complications, we hypothesized that the beneficial effects mediated by vascular GPER
activation, in response to aldosterone, are decreased in diabetes. Mesenteric resistance
arteries from female, 14–16 weeks-old, control and diabetic (db/db) mice were used.
Phenylephrine (PhE)-induced contractions were greater in arteries from db/db vs. control
mice. Aldosterone (10 nM) increased maximal contractile responses to PhE in arteries from
control mice, an effect elicited via activation of GPER. Although aldosterone did not increase
PhE responses in arteries from db/db mice, blockade of GPER, and MR decreased PhE-
induced contractile responses in db/db mesenteric arteries. Aldosterone also reduced the
potency of acetylcholine (ACh)-induced relaxation in arteries from both control and db/db
mice via MR-dependent mechanisms. GPER antagonism further decreased ACh-induced
relaxation in the control group, but did not affect ACh responses in the diabetic group.
Aldosterone increased extracellular signal-regulated kinase 1/2 phosphorylation in arteries
from control and db/db mice by a GPER-dependent mechanism. GPER, but not MR, gene,
and protein expression, determined by RT-PCR and immunoblotting/immunofluorescence
assays, respectively, were increased in arteries from db/db mice vs. control arteries.These
findings indicate that aldosterone activates both vascular MR and GPER and that the
beneficial effects of GPER activation are decreased in arteries from diabetic animals. Our
results further elucidate the mechanisms by which aldosterone influences vascular function
and contributes to vascular dysfunction in diabetes. Financial Support: FAPESP, CNPq, and
CAPES, Brazil.
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INTRODUCTION
Diabetes represents a major public health challenge. In 2013, 382
million people exhibited diabetes and in 2035 this number will rise
to 592 million (International Diabetes Federation [IDF], 2013).
Vascular dysfunction, or endothelial dysfunction, occurs early in
the pathogenesis of diabetic vasculopathy and is closely implicated
in the complications associated with all forms of diabetes (De
Vriese et al., 2000). In the leptin receptor deficient db/db mouse,
a rodent model of obesity and type 2 diabetes, vascular dysfunc-
tion is characterized by impaired vasodilatation and by increased
responses to vasoconstrictor stimuli (Pannirselvam et al., 2002;
Guo et al., 2005).

Aldosterone, a mineralocorticoid hormone with a key role
in the regulation of hydroelectrolytic balance, has important
effects in the vasculature, contributing to inflammation, oxidative
stress, remodeling, and vascular dysfunction in cardiovascular and
metabolic diseases, including diabetes (Schiffrin, 2006; Briet and
Schiffrin, 2012). Aldosterone effects are associated with genomic

and non-genomic mechanisms following the activation mineralo-
corticoid receptors (MR; Davies and Struthers, 2002; Davies et al.,
2005; Swaminathan et al., 2008). Aldosterone induces activation of
different kinases, including protein kinase C (PKC),phosphatidyli-
nositol 3-kinase (PI3K), tyrosine kinases, epidermal growth factor
receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R),
and mitogen-activated protein kinases (MAPKs; Christ et al., 1995;
Krug et al., 2003; Liu et al., 2003; Callera et al., 2005; Ishizawa et al.,
2005). These pathways are critically involved in pathophysiolog-
ical processes associated with vascular inflammation and injury
(Callera et al., 2011; Whaley-Connell and Sowers, 2011; Bender
et al., 2013). Accordingly, MR antagonists, such as eplerenone
and spironolactone, have been shown to reverse hypertension-
and diabetes-associated vascular dysfunction (Swaminathan et al.,
2008; Schafer et al., 2010; Briones et al., 2012).

Aldosterone also activates G protein-coupled estrogen recep-
tors (GPER) and induces rapid vascular effects. Gros et al. (2011)
showed that aldosterone activates extracellular signal-regulated
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FIGURE 1 | Arteries from leptin receptor deficient db/db mouse display

increased phenylephrine (PhE) contraction compared to control

arteries. The figures show concentration-response curves to PhE. Data
represent the mean ± SEM of the values of contraction (% of 120 mM
KCl-induced contraction). (n = 5–8 per group), t -test, *p < 0.05 vs. control.

kinase (ERK)1/2, myosin light chain (MLC) and induces apop-
tosis in smooth muscle cells of rat aorta via activation of both
GPER and MR. Furthermore, in endothelial cells aldosterone acti-
vates ERK1/2 via GPER, an effect blunted by treatment with G15,
a GPER antagonist (Gros et al., 2013).

G protein-coupled estrogen receptors activation induces
endothelium-dependent as well as endothelium-independent
vasodilatation (Yu et al., 2011) and has been shown to medi-
ate vascular protective effects of estrogen (E2) as well as of
the GPER synthetic agonist G1 (Haas et al., 2007; Meyer et al.,
2010; Lindsey et al., 2011, 2013) and aldosterone (Gros et al.,
2013). Of importance, the GPER synthetic agonist G1 induces
concentration-response dependent dilatation in thoracic aorta
of diabetic ovariectomized rats (Li et al., 2012). Considering the
paucity of information on whether aldosterone effects in resistance
arteries are mediated by GPER activation and if these effects are

altered in pathological conditions, such as diabetes mellitus, this
study addressed the role of GPER activation on the vascular effects
of aldosterone in control and db/db mice. We hypothesized that
the beneficial vascular effects mediated by GPER activation are
decreased in diabetes mellitus.

MATERIALS AND METHODS
ANIMALS
All experimental protocols were performed in accordance with
the Guidelines for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NIH Publi-
cation No. 85–23, revised 1996). Protocols were approved by the
Committee for Animal Research of the Ribeirao Preto Medical
School – University of Sao Paulo, Ribeirao Preto, Brazil (Proto-
col No. 012/2013). Fourteen to 16 weeks-old female control and
db/db mice (purchased from The Jackson Laboratory – Bar Har-
bor, Maine, USA) were used. Mice were housed in individually
ventilated cages (4 mice per cage – 600 cm2) in a room with con-
trolled humidity (50 ± 10%) and temperature (22 ± 2◦C), and
light/dark cycles of 12 h. Animals had free access to food (Nuvi-
lab mice chow pellets, Nuvital, Curitiba, Brazil) and potable tap
water.

ALDOSTERONE INCUBATION PROCEDURES
After euthanasia, mesenteric arteries (MA) were rapidly excised
and cleaned from fat tissue in an ice-cold (4◦C) Krebs–Henseleit-
modified solution [(in mM): 130 NaCl, 4.7 KCl, 14.9 NaHCO3,
1.18 KH2PO4, 1.17 MgSO4·7H2O, 5.5 glucose, 1.56 CaCl2·2H2O,
and 0.026 EDTA], gassed with 5% CO2 /95% O2 to maintain a pH
of 7.4. Second-order branches of MA (≈2 mm in length with
internal diameter ≈150–200 μm) were carefully dissected and
mounted as rings in an isometric Mulvany–Halpern myograph
(model 610 M; Danish Myo Technology – DMT, Copenhagen,
Denmark). Changes in force were recorded by a PowerLab 8/SP
data acquisition system (ADInstruments). Second-order MA were
adjusted to maintain a passive force of 13,3 kPa and allowed to

FIGURE 2 | Aldosterone increases PhE contractions in

arteries from control, but not from db/db mice. The figures show
concentration–response curves to PhE in the presence of aldosterone

(10 nM) in mesenteric arteries (MA) from control (A) and diabetic (B) mice.
Data represent the mean ± SEM of the values of contraction (% of 120 mM
KCl-induced contraction). (n = 5–7 per group), t -test, *p < 0.05 vs. vehicle.
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equilibrate for about 30 min in Krebs–Henseleit solution. After
the stabilization period, arterial integrity was assessed first by
stimulation of vessels with 120 mM of KCl. After washing and
a new stabilization period, endothelial function was assessed by
testing the relaxant effect of acetylcholine (ACh, 10 μM) on ves-
sels contracted with phenylephrine (PhE, 3 μM). MA exhibiting
a relaxant response to ACh greater than 90% were considered
endothelium-intact vessels. All experiments were performed with
endothelium-intact vessels.

Arterial segments were incubated with either vehicle (1%
ethanol) or aldosterone (10 nM) for 30 min to verify acute effects
of the hormone. This concentration was chosen based on pre-
liminary experiments performed with different concentrations of
aldosterone (100 pM–1 μM). In another set of experiments, MA
were functionally evaluated after incubations for 30 min with
a MR antagonist (eplerenone) or a GPER antagonist (G15) in
Krebs–Henseleit solution.

Table 1 | Maximal responses to phenylephrine (PhE) in mesenteric

arteries (MA) from control and db/db mice incubated with vehicle or

aldosterone.

Groups Control db/db

Vehicle 114.9 ± 4.2 (n = 7) 142.8 ± 12.5 (n = 6)

Aldosterone 129.4 ± 2.2 (n = 5)* 134.7 ± 9.4 (n = 7)

The values show % of 120 mM KCl-induced contraction. The data represent the
mean ± SEM of n experiments. t-test, *p < 0.05 vs. Vehicle.

VASCULAR FUNCTION ANALYSIS
Cumulative concentration–response curves to PhE (0.1 nM–
10 μM) and ACh (0.1 nM–30 μM) were performed in MA
incubated with aldosterone (10 nM, for 30 min) or vehicle. To
determine the involvement of MR and GPER on aldosterone
effects, concentration–response curves to PhE and ACh were

FIGURE 3 | Aldosterone increases PhE contraction in arteries from

control mice through G protein-coupled estrogen receptors (GPER)

activation, and by mechanisms that involve GPER and

mineralocorticoid receptors (MR) activation in arteries from db/db

mice. The figures show concentration–response curves to PhE in the
presence of aldosterone (aldo, 10 nM) in MA from control (A,C) and

diabetic (B,D) mice. Effects of eplerenone (10 μM; A,B) or G15 (1 μM; C,D)
on PhE-induced contraction in the absence and presence of aldosterone.
Data represent the mean ± SEM of the values of contraction (% of
120 mM KCl-induced contraction). (n = 5–7 per group). One-way ANOVA
with Bonferroni post-test (*), (#; p < 0.05) vs. vehicle and aldosterone,
respectively.
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Table 2 | Maximal responses to PhE in MA from control and db/db

mice incubated with vehicle or aldosterone in the presence or

absence of mineralocorticoid receptors (MR) and G protein-coupled

estrogen receptors (GPER) antagonists, eplerenone, and G15,

respectively.

Groups Control db/db

Vehicle 112.5 ± 3.2 (n = 7) 142.8 ± 12.5 (n = 6)

Aldosterone (10 nM) 129.1 ± 2.8 (n = 5)* 134.7 ± 9.4 (n = 7)

Eplerenone (10 μM) 117.3 ± 4.6 (n = 3)# 97.9 ± 8.7 (n = 7)*#

Eplerenone (10 μM) +
aldosterone (10 nM)

129.3 ± 5.5 (n = 4)* 101.1 ± 8.8 (n = 7)*#

G15 (1 μM) 104.1 ± 4.5 (n = 4)* 99.3 ± 8.5 (n = 6)*#

G15(1 μM) + aldosterone

(10 nM)

110.3 ± 3.6 (n = 4)# 98.6 ± 8.6 (n = 6)*#

The data represent the mean ± SEM of n experiments. The values show %
of 120 mM KCl-induced contraction. One-way ANOVA with Bonferroni post-test
(p < 0.05). (*), (#) vs. Vehicle and aldosterone, respectively.

FIGURE 4 | Acetylcholine (ACh)-induced vasodilatation is similar in

control and db/db mice. The figures show concentration–response
curves to ACh. Data represent the mean ± SEM. of the values of relaxation
(% of PhE-induced precontraction). (n = 6–7 per group), t -test.

performed either in the absence (control) or in the presence of
eplerenone (10 μM) and G15 (1 μM), respectively. Tissues were
incubated with the antagonists for 30 min prior to the incubation
with aldosterone. Each preparation was tested with a single agent.

QUANTITATIVE REAL TIME PCR (RT-qPCR)
Mesenteric arteries total RNA, extracted with TRIzol (Invitro-
gen®), was treated with DNase I (1 U/μL, Promega) and used
for first-strand cDNA synthesis, accordingly to the manufacturer
instructions. mRNA levels were quantified in triplicate by qPCR
StepOnePlusTM Life Technologies. Specific primers for RT-qPCR
were as follows: mouse MR (Nr3c2) [Mm01241596_m1] and
GPER (Gpr30) [Mm02620446_s1], purchased from TaqManTM

– Life Technologies. PCR cycling conditions included 10 min at
95◦C, followed by 40 cycles at 95◦C for 15 s, 60◦C for 1 min, and
72◦C for 60 s. Dissociation curve analysis confirmed that signals
corresponded to unique amplicons. Specific mRNA expression

Table 3 | pD2 values of acetylcholine (ACh)-induced relaxation in MA

of diabetic and control mice incubated with vehicle or aldosterone.

Groups Control db/db

Vehicle 7.46 ± 0.04 (n = 7) 7.45 ± 0.08 (n = 6)

Aldosterone (10 nM) 7.14 ± 0.06 (n = 5)* 6.83 ± 0.11 (n = 5)*

Eplerenone (10 μM) 6.88 ± 0.09 (n = 4)* 6.77 ± 0.11 (n = 5)*

Eplerenone

(10 μM) + Aldosterone

(10 nM)

7.13 ± 0.07 (n = 5)* 7.14 ± 0.12 (n = 5)

G15 (1 μM) 7.47 ± 0.09 (n = 5)# 7.23 ± 0.13 (n = 5)

G15

(1 μM) + Aldosterone

(10 nM)

6.85 ± 0.08 (n = 4)*& 6.81 ± 0.10 (n = 5)*

The data represent the mean ± SEM of n experiments. One-way ANOVA with
Bonferroni post-test (p < 0.05). (*), (#), and (&) vs. Vehicle, aldosterone and G15,
respectively.

Table 4 | Maximal responses to ACh-induced relaxation in MA from

control and db/db mice incubated with vehicle or aldosterone in the

presence or absence of MR and GPER antagonists, eplerenone and

G15, respectively.

Groups Control db/db

Vehicle 98.25 ± 0.7 (n = 7) 93.3 ± 3.8 (n = 6)

Aldosterone (10 nM) 84.6 ± 2.7 (n = 5) * 89.1 ± 5.5 (n = 5)*

Eplerenone (10 μM) 90.9 ± 5.0 (n = 4) 87.9 ± 0.6 (n = 5)*

Eplerenone

(10 μM) + aldosterone

(10 nM)

96.4 ± 0.6 (n = 5) # 87.7 ± 7.4 (n = 5)

G15 (1 μM) 93.0 ± 1.1 (n = 5) 76.5 ± 7.3 (n = 5)

G15 (1 μM) + aldosterone

(10 nM)

87.8 ± 6.0 (n = 4) 82.2 ± 5.8 (n = 5)*

The values show % of PhE-induced pre-contraction. The data represent the
mean ± SEM of n experiments. One-way ANOVA with Bonferroni post-test
(p < 0.05). (*), (#) vs. Vehicle and aldosterone, respectively.

levels were normalized relative to β-actin (actb) [Mm00607939_s1]
mRNA levels using the comparative 2��Ct method.

WESTERN BLOTTING
Protein expression of MR and GPER and activity of ERK1/2 pro-
tein were determined in endothelium-intact vessels by western
blot analysis. After the incubation protocols were performed, ves-
sels were frozen in liquid nitrogen and proteins were extracted,
separated (40 μg) by electrophoresis on 10% polyacrylamide
gels and transferred to nitrocellulose membranes. Non-specific
binding sites were blocked with 1% bovine serum albumin in
Tris-buffered saline solution with Tween (0.1%) for 1 h at 24◦C.
Membranes were incubated with antibodies (at the indicated dilu-
tions) overnight at 4◦C. Antibodies were as follows: anti-MR
(1:300, Abcam), anti-GPER (1:300, Abcam), anti-ERK1/2 (1:1000,
Cell Signaling), anti-phospho (pERK)1/2 (Thr202/Tyr201; 1:1000,
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FIGURE 5 | Aldosterone decreases ACh potency (or ACh-induced

relaxation) in control and db/db mice. The figures show
concentration–response curves to ACh in the presence of aldosterone

(10 nM) in MA from control (A) and db/db (B) mice. Data represent the
mean ± SEM of the values of relaxation (% of PhE-induced precontraction).
(n = 5–7 per group). t -test, *p < 0.05 vs. vehicle.

Cell Signaling), and anti-β-actin (1:3000, Cell Signaling). After
incubation with secondary antibodies, signals were revealed by
chemiluminescence, visualized by autoradiography and quantified
densitometrically. Results were normalized to β-actin expression
and expressed as units relative to the control.

IMMUNOFLUORESCENCE
Immunofluorescence analysis of the MR was performed fol-
lowing the manufacturer instructions. Formaldehyde-fixed ves-
sels were blocked using TBS, 3% dried milk, 0.1 % Triton
X-100 for 20 min at 22◦C. Samples were then incubated
with the primary antibody (anti-MR receptor antibody 1:200
[H10E4C9F] (ab2774) Abcam) for 1 h at 22◦C, followed by
incubation with the secondary antibody [anti-mouse IgG 1:500
(H + L) HSA, dyLight 549 labeled, KLP, 042-04-18-06], dilu-
tion in HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid].

For immunofluorescence analysis of the GPER, vessels were
fixed with 4% paraformaldehyde for 5 min and blocked with
10% donkey serum in 0.1% PBS-0.3% TritonX for 30 min at
24◦C. Samples were then incubated with primary antibody [anti-
GPER 1:500 (ab39742) Abcam] in 0.3% Triton X with 0.1%
PBS and 10% donkey serum for 1 h at 24◦C, followed by
the secondary antibody (Texas red goat anti-rabbit IgG anti-
body, 1:100 Vector, TI-1000), used at a 1:100 dilution in
HEPES.

Nuclei were counterstained with the blue fluorescent dye
4′,6-diamidino-2-phenylindole [DAPI (1 μg/mL)]. Images were
obtained using a fluorescence microscope (Automated Inverted
Microscope, Leica DMI4000 B). Quantification was performed
in the media and endothelial layers using the Image J program
(1.47t Wayne Rasband, National Institutes of Health, USA). Same
color threshold was used for analysis in all groups. The results
were expressed as fluorescence intensity per area (μm2) relative to
control intensity.

DRUGS
Phenylephrine, ACh, aldosterone, and eplerenone were pur-
chased from Sigma Chemical Co (St. Louis, MO, USA). G15 was
purchased from Calbiochem (Poland).

DATA ANALYSIS AND STATISTICAL PROCEDURES
Contractile responses to PhE are expressed as percentage of
120 mM KCl-induced response. No significant difference was
found in 120 mM KCl contraction between arteries from con-
trol and diabetic mice (p > 0.05). Relaxation to ACh is expressed
as percentage of 3 μM PhE-induced contraction. The individual
concentration–response curves were fitted into a curve by non-
linear regression analysis. pD2 (defined as the negative logarithm
of the EC50 values) and maximal response (Emax) were compared
by t-tests or ANOVA, when appropriated. The Prism software,
version 5.0 (GraphPad Software Inc., San. Diego, CA, USA) was
used to analyze these parameters as well as to fit the sigmoid
curves. Data are presented as mean ± SEM. N represents the
number of animals used. p-values less than 0.05 were considered
significant.

RESULTS
ALDOSTERONE INCREASES PhE-INDUCED VASOCONSTRICTION IN
CONTROL BUT NOT IN db/db MICE
Concentration–response curves to PhE were compared in arter-
ies from spontaneously diabetic (db/db) and control mice. In
the absence of any stimulus, arteries from db/db mice showed
greater PhE-induced maximal contraction than control arteries
(Figure 1). Incubation with aldosterone significantly increased
maximal PhE-induced contraction (% of 120 mM KCl) in
MA from control [Figure 2A; Table 1 (Emax Control–vehicle:
114.9 ± 4.2%; aldosterone: 129.4 ± 2.2%, p < 0.05)], but
not in arteries from db/db mice [Figure 2B; Table 1 (Emax

db/db–vehicle: 142.8 ± 12.5%; aldosterone: 134.7 ± 9.4%,
p > 0.05)].
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FIGURE 6 | Aldosterone decreases ACh-induced relaxation in

control and db/db mice by mechanisms dependent on MR

activation. The figures show concentration-response curves to ACh in
the presence of aldosterone (10 nM) in MA from control (A,C) and
diabetic (B,D) mice. Effects of eplerenone (10 μM; A,B) or G15 (1 μM;

C,D) on ACh-induced relaxation in the presence of aldosterone. Data
represent the mean ± SEM of the values relaxation (% of
PhE-induced precontraction). (n = 4–7 per group). One-way ANOVA
with Bonferroni post-test (*), (#; p < 0.05) vs. vehicle and aldosterone,
respectively.

THE EFFECTS OF ALDOSTERONE ON PhE-INDUCED
VASOCONSTRICTION DEPEND ON GPER ACTIVATION IN CONTROL
MICE AND ON GPER AND MR ACTIVATION IN db/db MICE
In MA from the control group, pharmacological blockade
of MR with eplerenone did not affect the effects of aldos-
terone on PhE-induced maximal contraction [Figure 3A;
Table 2; (Emax; Control–vehicle: 114.9 ± 4.2%; aldosterone:
129.4 ± 2.2%; eplerenone: 124.9 ± 2.2%; eplerenone + aldos-
terone: 123.5 ± 5.0%, p > 0.05)]. However, in the diabetic
group, the increased vascular contraction to PhE was abolished
in the presence of eplerenone, returning PhE-induced contrac-
tion to levels observed in control arteries (Emax; db/db–vehicle:
142.8 ± 12.5%; aldosterone: 134.7 ± 9.4%; eplerenone:
97.9 ± 8.7%; eplerenone + aldosterone: 101.1 ± 8.8%, p < 0.05,

Figure 3B; Table 2), and suggesting a role for the MR in
the increased maximal vasoconstriction to PhE in db/db mice.
The effects of aldosterone were abolished in the presence of
G15, a GPER antagonist, in MA from control mice (Emax;
Control–vehicle: 114.9 ± 4.2%; aldosterone: 129.4 ± 2.2%; G15:
118.0 ± 5.8%; G15 + aldosterone: 105.9 ± 2.1, p < 0.05,
when compare vehicle vs. aldosterone, aldosterone vs. G15
and aldosterone vs. G15 + aldosterone, Figure 3C; Table 2).
In the diabetic group, G15 also decreased PhE maximal con-
traction (Emax; db/db–vehicle: 142.8 ± 12.5%; aldosterone:
134.7 ± 9.4%; G15: 99.3 ± 8.5%; G15 + aldosterone: 98.6 ± 8.6%,
p < 0.05, when compare aldosterone vs. G15 and aldos-
terone vs. G15 + aldosterone, Figure 3D; Table 2). These
results demonstrate that GPER accounts for the effects of
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FIGURE 7 | Aldosterone increases vascular ERK 1/2 phosphorylation in

control and db/db mice. (A) Representative blots of phospho-ERK1/2,
total ERK1/2, and b-actin. The effects of G15 (1 μM) and eplerenone
(10 μM) on aldosterone (10 nM)-stimulated ERK1/2 phosphorylation in MA

in control (B) and db/db (C) mice are also shown. Data represent the
mean ± SEM from three independent experiments. (∗), (&), and (#)
(p < 0.05) vs. control, control aldosterone, and db/db aldosterone,
respectively.

FIGURE 8 | Mineralocorticoid receptors and GPER mRNA expression. The figure shows the values of 2−��Ct for MR (A) and GPER (B) in MA from the
control and diabetic groups. The values were normalized by the corresponding β-actin expression. The data represent the mean ± SEM (n = 3–5 for each
group). t -test, *p < 0.05 vs. control.

aldosterone on PhE maximal contraction in arteries from both
groups.

ALDOSTERONE DECREASES ACh-INDUCED VASODILATION
Acetylcholine induced a similar concentration-dependent
vasodilatation in MA from control and db/db mice (Figure 4).
Aldosterone significantly decreased ACh maximal relaxation and
potency in arteries from control mice (Emax; Control–vehicle:
98.25 ± 0.7%; aldosterone: 84.6 ± 2.7%, p < 0.05, pD2; Control–
vehicle: 7.5 ± 0.04; aldosterone: 7.1 ± 0.06, p < 0.05, Figure 5A,
Tables 3 and 4). Aldosterone also decreased ACh potency in
arteries from db/db mice (Emax; db/db–vehicle: 93.3 ± 3.8%; aldos-
terone: 89.1 ± 5.6%, p > 0.05, pD2; db/db–vehicle: 7.4 ± 0.08;
aldosterone: 6.8 ± 0.11, p < 0.05, Figure 5B).

THE VASCULAR EFFECTS OF ALDOSTERONE ON ACh VASODILATATION
DEPEND ON MR ACTIVATION IN CONTROL AND db/db MICE
In MA of the control group, eplerenone reversed the effects
of aldosterone on ACh responses, returning ACh vasodilatation
to values observed in basal conditions (Emax; Control–vehicle:
98.2 ± 0.7%; aldosterone: 84.6 ± 2.7%; eplerenone + aldos-
terone: 96.4 ± 0.6%, p > 0.05, pD2; Control–vehicle: 7.5 ± 0.04;
aldosterone: 7.1 ± 0.06; eplerenone + aldosterone: 7.1 ± 0.07,
p < 0.05 when compare vehicle vs. aldosterone and aldosterone
vs. eplerenone + aldosterone, Figure 6A; Tables 3 and 4). For
the sake of clarity and to facilitate graphic interpretation, the
effects of the antagonists alone were not displayed (unless they
modified a specific response). In the diabetic group, the effects of
aldosterone were partially reversed in the presence of eplerenone
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FIGURE 9 | Representative immunoblots for MR and GPER protein expression in MA from control and db/db mice. The graph shows the MR (A) or
GPER (B) protein levels, which were normalized to β-actin (MR or GPER/β-actin ratio). The data represent the mean ± SEM (n = 3–4 for each group). t -test,
*p < 0.05 vs. control.

(Emax; db/db–vehicle: 93.3 ± 3.8%; aldosterone: 89.1 ± 5.6%;
eplerenone + aldosterone: 87.7 ± 7.4%, p > 0.05, pD2; db/db–
vehicle: 7.4 ± 0.08; aldosterone: 6.8 ± 0.11; eplerenone + aldos-
terone: 7.14 ± 0.11, p < 0.05 when compare vehicle vs. aldosterone
and vehicle vs. eplerenone + aldosterone, Figure 6B; Tables 3
and 4). GPER antagonism further decreased ACh-induced relax-
ation in the control group (Emax; Control–vehicle: 98.2 ± 0.7%;
aldosterone: 84.6 ± 2.7%; G15 + aldosterone: 87.8 ± 6.0%,
p < 0.05, pD2; Control–vehicle: 7.5 ± 0.04; aldosterone: 7.1 ± 0.06;
G15 + aldosterone: 6.8 ± 0.07, p < 0.05 when compare vehicle
vs. aldosterone, vehicle vs. G15 + aldosterone, and aldosterone
vs. G15 + aldosterone Figure 6C; Tables 3 and 4) but did not
affect ACh responses in the diabetic group (Emax; db/db–vehicle:
93.3 ± 3.8%; aldosterone: 89.1 ± 5.6%; G15: 76.5 ± 7.3%;
G15 + aldosterone: 82.2 ± 5.8%, p < 0.05, pD2; db/db–vehicle:
7.4 ± 0.08; aldosterone: 6.8 ± 0.11; G15 + aldosterone: 6.8 ± 0.09,
p < 0.05 when compare vehicle vs. aldosterone and vehicle vs.
G15 + aldosterone, Figure 6D; Tables 3 and 4). These results
demonstrate that while the MR contributes to the effects of
aldosterone on ACh relaxation, GPER is a counter-regulator of
this deleterious effect of aldosterone in control, but in db/db
mice.

VASCULAR EFFECTS OF ALDOSTERONE AND ITS RECEPTORS WERE
ASSOCIATED WITH GREATER ERK1/2 PHOSPHORYLATION
To gain insight about the different role of MR and GPER on
aldosterone-induced vascular functional changes, we investigated
the involvement of ERK-1/2 pathway. Db/db mice showed greater
expression of the phosphorylated form of ERK1/2 (pERK1/2) in
the MA (Au, control: 99.8 ± 0.4 vs. db/db: 229.4 ± 42.9, p < 0.05,
Figure 7), and aldosterone incubation further increased pERK1/2
expression in control arteries (Au, vehicle: 99.8 ± 0.4 vs. Aldo:
143.5 ± 13.7, p < 0.05) and db/db mice (Au, vehicle: 229.4 ± 42.9
vs. Aldo: 401.9 ± 80.2, p < 0.05, Figure 7A). Aldosterone-induced
EKR1/2 phosphorylation was significantly reduced in control
arteries treated with G15 (Au, Aldo: 143.5 ± 13.7 vs. G15 + aldo:
103.0 ± 18.5, p < 0.05), but not in arteries treated with eplerenone

(Au, Aldo: 143.5 ± 13.7 vs. eplerenone + aldo: 151.5 ± 31.3,
p < 0.05, Figure 7). In db/db arteries, both eplerenone and G15
reduced aldosterone-induced expression of pERK1/2 (Au, Aldo:
401.9 ± 80.2 vs. Eplerenone + aldo: 281.2 ± 26.5 vs. G15 + aldo:
189.4 ± 17.1, p < 0.05, Figure 7B).

MR AND GPER EXPRESSION AND IMMUNOLOCALIZATION IN MA
The mRNA expression of MR and GPER was determined by
quantitative real-time PCR. Vascular mRNA expression of MR
was similar between arteries from control and diabetic mice
(Figure 8A, p > 0.05). On the other hand, MA from db/db mice
displayed a significant increase of GPER mRNA expression com-
pared to control arteries (Figure 8B, p < 0.05). Similar results
were observed in the analysis of MR and GPER protein expression
in MA, as shown in Figure 9. The localization of GPER and MR
receptors in MA from control and db/db mice was determined by
immunofluorescence staining in the media and endothelial layers.
In accordance with results from the mRNA and immunoblot-
ting assays, MR fluorescence intensity was similar in both groups
(Figure 10A), while an increased GPER fluorescence was found
in the media layer in vessels from db/db mice (Figure 10B).
Immunolocalization of MR and GPER in the endothelial layer
were similar in both groups.

DISCUSSION
The present study shows that GPER differentially contributes to
the vascular effects of aldosterone in control and diabetic condi-
tions. Whereas MR mediates aldosterone-induced decreased ACh
relaxation in MA from control and diabetic mice, GPER acti-
vation counter-regulates aldosterone effects in control, but not
in db/db mice. To our knowledge, this is the first demonstra-
tion that aldosterone-induced reduced vasodilation is associated
with loss of GPER protective effects in diabetes. Aldosterone
also increases PhE contraction and ERK1/2 phosphorylation in
MA via GPER activation in control mice and by GPER and
MR-dependent mechanisms in arteries from db/db mice. Of
importance, antagonism of both MR and GPER reverses vascular
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FIGURE 10 | Expression of MR and GPER in MA from control and db/db

mice. Representative photomicrographs (400x) and corresponding graphics
of MR (A) and GPER (B) in MA from control and db/db mice. Graphics on the
left depict expression of receptors in the media layer and on the right, the

receptors expression in the endothelial layer. 4′,6-diamidino-2-phenylindole
(DAPI, blue) was used to stain the nuclei. The elastic lamina autofluorescence
is shown in green. The data represent the mean ± SEM for MR (A) or GPER
(B) immunofluorescence (n = 3–6 per group). t -test, *p < 0.05 vs. control.
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dysfunction, i.e., increased vascular responses to PhE, in dia-
betic mice, suggesting that intrinsic activation of both MR
and GPER contributes to diabetes-associated increased vascular
reactivity.

Aldosterone levels are increased in animal models of dia-
betes (Briones et al., 2012; Jin et al., 2013) as well as in diabetic
patients (Hollenberg et al., 2004; Szymanski et al., 2011), and
a role for aldosterone on diabetes-associated vasculopathies has
been suggested and investigated (McFarlane and Sowers, 2003;
Whaley-Connell and Sowers, 2011; Bender et al., 2013). In nor-
mal conditions, aldosterone acutely produces opposing effects on
vascular reactivity. It induces nitric oxide (NO) generation and
endothelium-dependent vasodilatation and also increases vascu-
lar smooth muscle cell reactive oxygen species (ROS) generation
and vasoconstrictor responses, as revised by Feldam and Gros
(Leopold, 2009; Feldman and Gros, 2013). The rational explana-
tion for these discrepant effects has been based on the activation
of MR located in different cells and/or the activation of different
receptors, MR and/or GPER.

It is generally accepted that the deleterious effects of aldosterone
(e.g., endothelial dysfunction, increased reactivity to constrictor
stimuli, pro-oxidative, and pro-inflammatory effects) are medi-
ated by MR activation. Accordingly, treatment with MR antago-
nists improves vascular function in animal models of diabetes and
in diabetic patients (Schiffrin, 2006; Adel et al., 2014; Garg et al.,
2014). On the other hand, by inducing endothelium-dependent
and endothelium-independent vasodilatation (Yu et al., 2011),
GPER activation, has been associated with vascular protective
effects (Haas et al., 2007; Lindsey et al., 2011; Gros et al., 2013;
Feldman and Gros, 2013; Lindsey et al., 2013).

Considering the vascular protective effects associated with
GPER activation (Gros et al., 2013), and that aldosterone has
been shown to activate GPER (Gros et al., 2011) we hypothesized
that the beneficial effects mediated by vascular GPER activa-
tion are decreased in diabetes. Accordingly, aldosterone decreased
ACh response in arteries from control mice and blockade of
GPER further increased aldosterone-induced impairment of ACh
vasodilation, indicating that GPER activation is important to
counteract effects of aldosterone on endothelial cells. However,
GPER antagonism did not interfere with acute aldosterone effects
on endothelial function in db/db mice. Although expression of
GPER was increased in MA from db/db mice, functional responses
mediated by GPER activation were blunted. Of importance, our
study was performed in resistance arteries, which actively con-
tribute to peripheral resistance control (Christensen and Mulvany,
2001), and are also involved in diabetes-associated vasculopathies.

Our data showing that aldosterone increases PhE-induced
vasoconstriction and vascular ERK1/2 phosphorylation via GPER
activation in control mice and by GPER and MR-dependent
mechanisms in arteries from db/db mice, further confirm a dif-
ferential contribution of MR and GPER to aldosterone vascular
effects in control and diabetic conditions. ERK1/2 activation is
involved in the regulation of essential cellular processes, including
gene expression, vascular smooth muscle cell proliferation, and
contraction (Adam et al., 1995; Katoch and Moreland, 1995).
Aldosterone rapidly induces ERK1/2 phosphorylation in smooth
muscle and endothelial cells in vitro via activation of both MR

and GPER (Gros et al., 2011). In vivo, the pathways involved
in the effects of aldosterone seem to be more complex and
dependent on the vascular bed studied. For instance, aldos-
terone increases angiotensin II (Ang-II)-induced vasoconstriction
in human coronary micro arteries by GPER- and EGFR-dependent
mechanisms, but independently of ERK1/2 phosphorylation. In
addition, aldosterone regulates apoptosis and activation of MLC,
a contraction-promoting protein, in GPER-enriched vascular
smooth muscle cells (Gros et al., 2011), unlinking the classical view
of MR as the major mediator of aldosterone-induced vascular
damage.

Other studies have shown that activation of GPER by its agonist
G1 promotes endothelium-dependent and -independent relax-
ation (Lindsey et al., 2011; Yu et al., 2011), and chronic treatment
with G1 reverses vascular dysfunction in aorta from diabetic
female rats (Li et al., 2012). Together these results suggest that
diabetes-associated vascular dysfunction is partially associated
with decreased GPER activity.

It was recently demonstrated that GPER is expressed in adult
human adrenal cortex and in aldosterone-producing adenoma
cells (Caroccia et al., 2014). Curiously, aldosterone is locally syn-
thesized in resistance arteries by the perivascular adipose tissue
(PVAT; Briones et al., 2012). Therefore, it is possible that GPER
influences the local production of aldosterone in the PVAT and,
consequently, influences vascular contraction. This would explain
the decrease of PhE-responses in db/db arteries exposed to MR and
GPER antagonists, in a condition where no exogenous aldosterone
was added. Nevertheless, this hypothesis remains untested.

Our study has limitations that should be pointed out: (1)
it does not show a direct molecular interaction between aldos-
terone and GPER. This has been questioned in the literature
since recent data show that aldosterone does not inhibit 3H-
estradiol binding in kidney mice or HEK293 cells (Cheng
et al., 2014; Prossnitz and Barton, 2014). (2) It does not
explain the differential GPER-mediated responses in arteries
of diabetic animals (blunted GPER responses to counteract
aldosterone effects on ACh vasodilation vs. a contribution
of GPER to aldosterone-induced greater contractile responses
and ERK1/2 activation in arteries of db/db mice). Although
one possible explanation for these discrepant effects would
be that diabetes is associated with a specific loss of GPER-
mediated effects on endothelial cells, with maintained GPER-
mediated effects on smooth muscle cells, this remains to be
tested.

In the present study we used female mice. Females are more
susceptible to diabetes-associated cardiovascular complications
(Toledo et al., 2003; Goel et al., 2007, 2008). GPER signaling
induced by estrogen is protective, and it is lost in diabetic
females. This effect is aggravated in menopause condition since
premenopausal women have a lower risk of developing cardio-
vascular disease compared to men and postmenopausal women
(Barrett-Connor and Wingard, 1983; Sowers, 1998; McCollum
et al., 2005; Legato et al., 2006). Many studies with diabetic animals
were conducted in ovariectomized rats aiming to demonstrate
the effect of estrogen withdrawn on GPER activation. Responses
elicited by androgens in db/db female mice were not fully com-
parable with those in ovariectomized female diabetic rats perhaps
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because db/db mice normally have low estrogen and high aldos-
terone levels (Garris, 1985; Garris et al., 1986; Jin et al., 2013),
which can generate adaptations that are not known yet.

In summary, our results indicate that aldosterone differentially
activates MR and GPER in arteries from control and diabetic mice.
Activation of GPER by aldosterone triggers opposite effects on
vascular reactivity and the final response depends on the balance
between the vasodilator effects, usually mediated by the endothe-
lium, and vasoconstrictor effects by actions on smooth muscle
cells. In diabetes, where endothelial dysfunction is present, con-
tractile effects prevail and the beneficial effects of GPER in the
vasculature are decreased/lost, supporting our hypothesis that
the beneficial vascular effects mediated by GPER activation are
decreased in diabetes mellitus.

CONCLUSION
The counter-regulatory (beneficial) effects of aldosterone medi-
ated by GPER activation in the vasculature are decreased in
diabetes mellitus, whereas vascular pro-contractile aldosterone
effects are maintained. The mechanisms by which aldosterone
impairs vascular function in diabetes may include a differential
activation of MR and GPER in arteries from control and diabetic
subjects. Our results contribute to understanding the mechanisms
by which aldosterone influences vascular function and contributes
to vascular damage in diabetes.
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