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Traditionally, functional networks in resting-state data were investigated with linear
Fourier and wavelet-related methods to characterize their frequency content by relying
on pre-specified frequency bands. In this study, Empirical Mode Decomposition (EMD),
an adaptive time-frequency method, is used to investigate the naturally occurring
frequency bands of resting-state data obtained by Group Independent Component
Analysis. Specifically, energy-period profiles of Intrinsic Mode Functions (IMFs) obtained
by EMD are created and compared for different resting-state networks. These profiles
have a characteristic distribution for many resting-state networks and are related to
the frequency content of each network. A comparison with the linear Short-Time Fourier
Transform (STFT) and the Maximal Overlap Discrete Wavelet Transform (MODWT) shows
that EMD provides a more frequency-adaptive representation of different types of
resting-state networks. Clustering of resting-state networks based on the energy-period
profiles leads to clusters of resting-state networks that have a monotone relationship
with frequency and energy. This relationship is strongest with EMD, intermediate with
MODWT, and weakest with STFT. The identification of these relationships suggests
that EMD has significant advantages in characterizing brain networks compared to
STFT and MODWT. In a clinical application to early Parkinson’s disease (PD) vs. normal
controls (NC), energy and period content were studied for several common resting-
state networks. Compared to STFT and MODWT, EMD showed the largest differences
in energy and period between PD and NC subjects. Using a support vector machine,
EMD achieved the highest prediction accuracy in classifying NC and PD subjects among
STFT, MODWT, and EMD.

Keywords: resting-state fMRI, empirical mode decomposition, EMD, intrinsic mode function, IMF, group ICA,
functional connectivity, energy-period
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INTRODUCTION

Functionally related regions of the resting brain have been shown
to have a high degree of temporal correlation in blood-flow
fluctuations as measured by blood-oxygenation level-dependent
(BOLD) fMRI signal (Biswal et al., 1995). Using either seed-
based or data-driven methods such as independent component
analysis (ICA) or clustering methods, entire networks that
fluctuate in synchrony have been found to constitute reliable
and reproducible functional networks in the human resting
brain (Beckmann, 2012; Lowe, 2012; Calhoun and de Lacy,
2017). These synchronous fluctuations may represent changes in
local capillary blood flow secondary to fluctuations in neuronal
firing rates within large distributed neural networks. From
electrophysiological studies it is known that neural firing patterns
occur over a wide range of frequency bands in the mammalian
brain (Buzsáki and Draguhn, 2004). However, compared to
the fast-neural firing response, the corresponding hemodynamic
response that is detected in fMRI acts as a low-pass filter, is rather
slow, and reaches a maximum several seconds later.

Frequency-specific analysis of resting-state networks
have been carried out using bandpass filtering where the
frequency intervals were specified using information from
electrophysiological data (Gohel and Biswal, 2015) or simply
by dividing the possible frequency band into equal bands that
were conveniently specified by the user (Wu et al., 2008; Chen
and Glover, 2015). The time-frequency dynamics of resting-state
networks have also been studied using the continuous wavelet
transform and recurring patterns of connectivity determined for
specific frequency values (Yaesoubi et al., 2015).

An alternative method for finding frequency characteristics
in resting-state data is by Empirical Mode Decomposition (EMD)
[Niazy et al. (2011); Song et al. (2014)]. EMD is an adaptive time-
frequency analysis method for studying the naturally occurring
frequency bands in time series (Huang et al., 1998; Huang and
Shen, 2014). EMD is particularly useful for non-stationary signals
(such as fMRI data) and decomposes time series into nearly
orthogonal modes spanning narrow, but partially overlapping,
frequency bands. The oscillatory modes are called intrinsic mode
functions (IMFs) and are obtained by a sifting algorithm. A sifting
algorithm defines a process of how to separate larger features
of a signal from smaller features in analogy to a mechanical
sift. For EMD, the sifting starts by connecting the local maxima
and minima of a signal through cubic splines to form the so-
called upper and lower envelopes. Then, the average of the two
envelopes is subtracted from the original signal, and finally, IMFs
are obtained after applying this sifting process repeatedly. Further
details of the sifting process are provided in Supplementary
Appendix A. Instantaneous frequency-energy information for
EMD can be obtained by applying the Hilbert Transform to IMFs.
Unlike Fourier or wavelet based frequency analysis methods,
neither predefined basis functions, stationarity, nor linearity
are assumed in EMD, which makes it an ideal candidate for
frequency-energy analysis in fMRI.

The purpose of this study is to investigate the frequency and
energy characteristics of the time courses belonging to resting-
state brain networks in fMRI data using EMD as an adaptive

frequency-decomposition method and to compare results with
conventional non-adaptive methods. Resting-state fMRI data
are contaminated by motion, physiological noise, and other
artifacts. These artifacts are difficult to handle and common
artifact correction methods that use linear regression methods
may be insufficient in providing artifact-free data without
affecting the BOLD signal. In fact, in many research studies
claiming high-frequency neural processes in resting-state data,
artificial high frequencies may have been introduced by linear
nuisance regression (Chen et al., 2017). Thus, our imaging data
were not regressed against motion parameters, global signal
or white matter signal. ICA has been shown to be a robust
method when applied to group fMRI resting-state data and
is less sensitive to subject motion. In general, spatial ICA
can provide brain networks and associated time courses (so-
called weights) which are less likely to contain artifacts, because
neural-related signals are separated from different sources of
noise (Beckmann, 2012). With the assumption that temporal
profiles of spatial ICA reflect the underlying BOLD-fMRI time
courses (McKeown et al., 1998), we investigated time courses
associated with standard group spatial ICA brain networks and
compared a decomposition of these time courses using the Short-
Time Fourier Transform (STFT), the Maximal Overlap Discrete
Wavelet Transform (MODWT), and EMD to determine if EMD
has any advantages in characterizing brain networks (compared
to STFT and MODWT). We like to emphasize that our EMD
analysis in not limited to time series derived by ICA. Any resting-
state spatial brain template (obtained by any means) can be used
in a spatial regression application on the raw data to obtain
corresponding time series of the network.

We would like to point out that EMD is not a method that
is intended to replace spatial ICA or spatial clustering, which
are used to obtain components representing brain networks
fluctuating in synchrony. EMD should rather be considered
as a secondary analysis to determine the frequency content of
a signal of interest. In this study, we looked at time courses
derived by group ICA and were interested to analyze these time
courses further to determine the frequency content in specific
frequency bands.

This is the first study where energy-period characteristics
of fMRI resting-state networks are compared in relation to
Gaussian noise data using three techniques, namely EMD, the
Short-Time Fourier Transform (STFT), and the Maximal Overlap
Discrete Wavelet Transform (MODWT). We chose the STFT
(in dyadic frequency bands) and MODWT for comparison with
EMD because 1) all three methods represent a form of a dyadic
filterbank and preserve energy relationships, 2) the STFT is non-
adaptive and based on fixed Fourier basis functions (which can
be considered as a special but restrictive case of EMD); the
MODWT allows more adaptivity but still is model-based by
wavelet basis functions; and EMD is model-free, adaptive, and
entirely data-driven. The advantages the EMD method offers for
fMRI data analysis can be demonstrated through comparison
to STFT and MODWT.

Furthermore, for each resting-state network, the resulting
IMFs from above EMD analysis have very different characteristics
in terms of their energy and period content. To identify similar
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IMFs over all subjects and resting-state networks, we carried out
a clustering analysis and were able to group the resting-state
networks based on their IMF energy and IMF period content into
five different clusters leading to a data-driven characterization of
all resting-state networks.

In a clinical application, we investigated whether STFT,
MODWT, and EMD can find significant differences in temporal
characteristics in a cohort of never-medicated early Parkinson’s
Disease (PD) patients compared to normal controls (NC). Our
benchmark for finding the optimal method is its ability to
compute the largest difference in energy and period information
between normal control and PD subjects. We chose the PD
cohort because studies of the temporal characteristics of fMRI
resting-state brain networks have shown abnormal spontaneous
low-frequency content in PD (Hu et al., 2015) and abnormal
whole-brain temporal network dynamics which correlate with
PD symptoms (Zhuang et al., 2018), while implanted electrode
studies have shown changes in synchronizations within and
between brain regions as well as changes in phase-amplitude
coupling between brain regions which correlate with clinical
symptoms in PD (Yanagisawa et al., 2012; de Hemptinne et al.,
2015). In our recently reported EMD study (Cordes et al.,
2018), we also found that in many resting-state networks
significant differences in temporal characteristics exist between
PD and NC. We reanalyzed the data from this study using
STFT and MODWT and provide a quantitative comparison to
EMD by using a support-vector machine-learning approach to
classify PD and NC.

THEORY

In order to explain the benefits of the EMD method, in
particular how IMFs are computed by a sifting algorithm and
how temporal characteristics (instantaneous energy and period
(inverse frequency)) can be computed from these IMFs by the
Hilbert Transform [for more information see Huang and Shen
(2014)], we will briefly summarize EMD and contextualize this
method within a broader theoretical framework. Given that many
of these relationships are less well-known in the neuroscience
community, we are providing reasonable detail, summaries, and
explanations of these algorithms so that neuroscience researchers
can use our findings to compute IMFs as well as energy
and period characteristics. To provide a comparison to purely
noise data, we show that EMD and white noise have a very
unique relationship to energy and period content. In particular,
log
(
energy

)
vs. log(period) are distributed linearly for white

Gaussian noise. Using these noise characteristics, we can directly
compare how fMRI signals of different resting-state networks
relate to white noise characteristics. We also investigate the
performance of EMD on simulated autoregressive first order
(AR(1)) noise and compute the sensitivity of log

(
energy

)
and

log
(
period

)
to changes in the AR(1) coefficient for STFT,

MODWT and EMD. We explicitly show that log
(
period

)
depends strongly on the AR(1) coefficient when EMD is used.
Furthermore, we also provide a more complicated simulation
involving nonstationary data consisting of a superposition of

three sine waves where amplitude and frequency changes in a
nonlinear way with time, and we show how EMD separates these
simulated data into three IMFs by ranking the instantaneous
frequencies at each time point. Finally, we highlight that EMD
is an approximate type of a dyadic filterbank decomposition
where the decomposition is adaptive depending on the data and
introduce STFT and MODWT as comparable but non-adaptive
methods of dyadic filterbank decompositions.

Empirical Mode Decomposition (EMD)
and Intrinsic Mode Functions (IMFs)
EMD is a method that is defined by an algorithm to decompose
a time series, whether nonstationary or nonlinear, into a set of
IMFs. This decomposition is based on local characteristics of
the time series. The Hilbert Transform is applied to the IMFs
to compute instantaneous amplitude and frequency. Whereas
Fourier and wavelet transforms use preassigned basis functions,
the EMD basis functions are the data-derived IMFs. The EMD
method operates at the scale of one oscillation and is adaptive
to the local frequency content. An IMF represents a simple
oscillatory mode but is more general than a harmonic function
of one frequency component. In fact, an IMF can have variable
amplitude and frequency content (in a narrow frequency band
depending on the IMF index) along the time axis.

In general, an IMF is a function that must satisfy two
conditions: (1) For the entire time series, an extremum must be
followed by a zero crossing. (2) The mean value of the upper
envelope (defined by the local maxima) and the lower envelope
(defined by the local minima) is zero at every time point. A signal
x(t) can be decomposed in terms of its K IMFs fk(t) by

x (t) =
K∑

k =1

fk(t)+ rK (t) (1)

where K is the number of IMFs, fk(t) is the k-th IMF and rK(t)
is a small monotone residual (trend) function. Supplementary
Appendix A lists the basic algorithm for obtaining the IMF
decomposition of a signal (A1). Furthermore, useful relationships
regarding how instantaneous frequency and amplitude of IMFs
are computed, are shown (A2). An illustration of EMD applied to
a non-stationary signal can be found in A3 and the corresponding
figure (Figure A1) in the Supplementary Appendix.

Energy vs. Period Relationship of
Intrinsic Mode Functions (IMFs)
The time series in fMRI data are known to contain structured as
well as white noise sources. Since the IMFs are basis functions
that are derived from the data rather than functions that satisfy
given analytic expressions, it is important from a statistical
perspective to understand the IMFs of simulated noise data so
that IMFs of noisy signals can be compared to IMFs of pure noise
data. Comparison to simulated noise data provides a reference
standard of results obtained by EMD and allows a statistical
significance to be associated with IMFs. Of particular importance
is the mean energy as a function of the mean inverse of the
frequency (mean period) for each IMF (Wu and Huang, 2004):
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the mean energy per time point, Ek, of the k-th IMF, fk(t), is
defined by the mean instantaneous squared amplitude of the IMF
per time point. This definition leads to

Ek =
1

N

N∑
t =1

fk(t)2 (2)

where N is the number of data points and the total energy per
time point of the original time series is normalized to 1 resulting
in
∑
k

Ek = 1. The mean period, Tk, is defined by the mean value

for the inverse of the instantaneous frequency obtained from the
Hilbert Transform (Eq. A2), i.e.,

Tk =
1
N

N∑
t =1

1
νk(t)

. (3)

However, due to outliers in the estimation of the instantaneous
frequency spectrum (especially for frequencies close to zero),
Eq. 3 does not provide robust values of Tk. Instead, we determine
the density of νk(t) using kernel density estimation (with a
Gaussian kernel), compute the cumulative density function (cdf )
of the frequency distribution, and then discard all frequencies for
which cdf (νk) < 0.001 and cdf (νk) > 1− 0.001. From the
density h(νk), we calculate a more robust estimate of Tk by

Tk =
∫

1
νk

h(νk)dνk

∫ h(νk)dνk
(4)

where the integration is over all non-discarded frequencies νk.
For white Gaussian noise it has been shown (Wu and Huang,
2004) that:

log (Ek) = 0.12− 0.934 log (Tk) ≈ −log(Tk). (5)

Thus, y = log (Ek) as a function of x = log (Tk) is distributed
approximately along the diagonal line y = −x for all IMFs
of white noise data. The relationship in Eq. 5 is valid for a
unit sampling rate.

Quasi-Dyadic Filter Properties of EMD
A dyadic filterbank is defined as a ratio-of-2 frequency-band
decomposition of a signal such that the frequency range of
the different bands contains the intervals [ νNQ

2 , νNQ] for band
1, [ νNQ

4 ,
νNQ

2 ] for band 2, . . ., etc, where νNQ is the maximum
frequency (Nyquist frequency). The MODWT and other discrete
wavelet transforms typically represent exact dyadic filterbanks.
EMD can also be considered as a tool that is equivalent to a
dyadic filterbank in the frequency domain (Flandrin et al., 2004;
see also Wu and Huang (2010) for other filterbank properties
in relation to sifting operations). The corresponding IMFs are
nearly orthogonal and differ in frequency content by a factor of
approximately 2, which has been shown for a variety of broad-
band noise data. However, for more complicated data such as
fMRI data, this factor may vary depending on the frequency
content since EMD is an adaptive method. For dyadic filter
decompositions, in general, the first decomposition (such as
IMF1 in EMD) has the highest frequency content and constitutes

the widest frequency band whereas the last decomposition
(IMFK in EMD) has the lowest frequency content and represent
the smallest frequency band. Because of the quasi-dyadic filter
property, frequencies that are similar and differ by less than a
factor of about 2 cannot be separated into different IMFs for data
with broad-band frequency content. To establish the advantage of
EMD over other dyadic filterbank methods, especially for white
noise and AR(1) noise in relation to fMRI data, it is instructive to
compare the filter-band properties of EMD, MODWT and STFT,
as we show later.

Other Time-Frequency Methods to
Obtain Energy-Period Relationships of
fMRI Time Courses
To compare results obtained with EMD, we compute energy-
period relationships with the STFT and the MODWT using the
orthogonal and compact supported Daubechies db6 wavelets,
which are commonly used in time-frequency analysis. Energy-
period characteristics computed with these EMD, STFT and
MODWT methods are compared using both simulated white
Gaussian noise and also AR(1) noise time series.

Short-Time Fourier Transform (STFT)
The STFT of a discrete signal x (t) is defined by

X (t, ν) =
∞∑

τ =−∞

x (τ) w (τ− t) e−i2πντ, (6)

where t, τ are discrete time points, ν a frequency value, and
w(t) represents a window function. The spectrogram of the
STFT is given by |X (t, ν)|2 and can be conveniently computed
in MATLAB1 by the spectrogram function for a given set of
parameters (window length, overlap of windows, number of FFT
points). The result is a time-frequency spectrum with energy of
the frequencies as the third dimension at each time point. To
obtain energy-period information that allows a comparison to
EMD, we compute a dyadic decomposition of the spectrogram.
In the k-th dyadic frequency band specified by the interval
1νk = [

νNQ
2k ,

νNQ
2k−1 ] with νNQ =

1
2TR as the Nyquist frequency,

we compute the instantaneous energy by

Ek(t) =

∑
ν∈1νk

|X (t, ν)|2∑
ν |X (t, ν)|2

(7)

and obtain the average energy by Ek =
1
N

N∑
t =1

Ek(t). Similarly,

we define the instantaneous frequency νk(t) in the k-th
dyadic frequency band 1νk by computing the energy-averaged
frequency component according to

νk(t) =

∑
ν∈1νk

ν |X (t, ν)|2∑
ν |X (t, ν)|2

(8)

The average period Tk can then be computed by Eq. 4 from
Eq. 8. In this study we chose 64 time points for the window

1www.mathworks.com
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size, an overlap of 50% for adjacent windows, and 512 Fourier
points in the spectrogram function. We empirically identified
these parameters as reasonable for our purposes.

Maximal Overlap Discrete Wavelet Transform
(MODWT)
The MODWT is an energy-preserving wavelet transform that
produces coefficients related to variations of a time series over
a set of dyadic frequency scales. Energy and period information
are computed similarly as for EMD. Compared to the discrete
wavelet transform, the MODWT is well defined at each time
point and yields K detail functions fk(t) for k = 1, . . . , K
at scales 21 to 2K and one approximation function gK(t) at
scale 2K . Instantaneous frequency spectra can be computed
by applying the Hilbert Transform to the MODWT detail
coefficients for a given dyadic level (see for example Olhede and
Walden, 2004), allowing a comparison with the EMD method
for investigating average energy and period content for a dyadic
filter decomposition of resting-state time courses. There are
several different wavelets that can be used to obtain a dyadic
frequency decomposition. We chose the popular Daubechies db6
wavelet for the MODWT analysis. From the wavelet transform,
the projections of the signals into different dyadic wavelet
subspaces can be obtained by the Multi-Resolution Analysis
function MODWTMRA in MATLAB. The original signal can
be reconstructed by the sum of the signal projections using the
MATLAB function MODWTMRA.

Wavelet coefficients or multiresolution analysis functions
obtained by the MODWT are different from IMFs obtained
by EMD. Contrary to IMFs, these functions cannot be locally
represented by a single cosine function with time-varying
frequency and amplitude characteristics where an extremum is
always followed by a zero crossing, which leads to differences
in the estimation of instantaneous frequency profiles for EMD
and MODWT using the Hilbert Transform (see Figure A2 in the
Supplementary Appendix). In the following, we use the term
Wavelet synonymously with MODWT, for simplification.

MATERIALS AND METHODS

Subjects
Subjects included 22 healthy undergraduate students (age 18–
25, mean 23 years) with previous fMRI experience from the
University of Colorado at Boulder. The local ethics committee
approved the study protocol under IRB 13-0034, and all subjects
provided written consent for the study. All subjects were right-
handed. For fMRI, subjects were instructed to rest, keep eyes
closed, and be as motionless as possible. Subject performance
was monitored by a camera attached to the bore, and subjects
were questioned after scanning regarding their wakefulness. Data
where subjects fell into sleep were discarded and scanning was
repeated on a different day.

fMRI Acquisition
fMRI was performed in a 3.0 T Trio Tim Siemens MRI
scanner equipped with a 32-channel head coil using the

Center for Magnetic Resonance Research (CMRR) Simultaneous
Multi Slice Multi Band (SMS MB) GE-EPI sequence with
imaging parameters: MB 8, no parallel imaging, TR 765 ms,
TE = 30 ms, flip 44 deg, partial Fourier 7/8 (phase),
FOV = 19.1 × 14.2 cm, 80 slices in oblique axial orientation,
resolution 1.65 mm × 1.65 mm × 2 mm, BW = 1724 Hz/pixel
(echo spacing = 0.72 ms), 2380 time frames (30 min scanning
duration). A single band reference image was also generated
with the CMRR sequence. For distortion correction, two SE-
EPI scans with same and opposite phase encodings were
collected (same resolution, echo spacing and bandwidth as
the GE-EPI). A 2D anatomical co-planar high resolution
(0.4 mm × 0.4 mm × 1.5 mm) T2-weighted image and a 3D
high resolution (1 mm× 1 mm× 1 mm) T1-weighted MPRAGE
image were also collected.

Data Preprocessing
Due to the short TR and multiband factor of 8, no slice-
timing correction was performed to prevent sinc interpolation
artifacts. All resting-state GE-EPI data and SE-EPI data were
realigned to the single band EPI reference image in SPM12.2

Distortion correction was carried out with the topup routine
in FSL3 to correct for the distortion in the phase encoding
direction of the GE-EPI data. All fMRI data were normalized
to the MNI-152 2 mm template using Advanced Normalization
Tools (ANTS) software4 and spatially smoothed with an 8-mm
Gaussian filter (which we found to be appropriate, given the
increased white noise level of the data due to the multiband factor
of 8, to prevent splitting and pixelated appearance of group ICA
networks). The time series data of each subject were detrended
by regression with discrete cosine wave functions (Frackowiak
et al., 2004) to remove signal instabilities less than 0.01 Hz that
were most likely introduced by heating of the preamplifier and
the cooling cycle of the gradients (frequencies less than 0.01 Hz
are of no known interest for fMRI resting-state networks). After
detrending, the means of the time series data were removed
and the obtained time series were variance normalized. Since
motion estimation of the raw time series was small (rms motion
<0.6 mm) for all subjects, we did not carry out an explicit motion
regression to avoid frequency contamination of the data, since
motion regression can induce high-frequency contamination
(Chen et al., 2017).

Frequency-Energy Characteristics of ICA
Brain Networks
To carry out group ICA in a reasonable time with limited
memory resources, data for each subject were reduced in the
temporal domain to 200 components using Principal Component
Analysis (PCA) and then stacked temporally. Then, a final PCA
reduction on the stacked data to 30 components was done.
Group spatial ICA (based on the FastICA algorithm with tanh
nonlinearity (Hyvärinen, 1999)) was applied to obtain the major
resting-state networks using customized code in MATLAB. We

2www.fil.ion.ucl.ac.uk/spm/
3fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup/
4stnava.github.io/ANTs/
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obtained 30 ICA components representing possible resting-
state networks. Though the intrinsic dimensionality of fMRI
resting-state data is unknown, our previous work (Cordes and
Nandy, 2006) indicated that choosing a number much larger
than 30 ICA components usually leads to splitting of traditional
(low frequency) networks (like the DMN), whereas a number
smaller than 30 does not provide a good representation of
most common resting-state networks. Using spatial regression
of the resting-state ICA group maps on the full (unreduced)
group time series data, the group time series for all ICA
components were obtained and associated with each subject
after individual variance normalization (Beckmann et al., 2009;
Filippini et al., 2009).

Once the spatial group ICA maps were obtained, the
time series of the spatial ICA maps were decomposed into
IMFs using EMD. For EMD we used the publicly available
software package from P. Flandrin5 and limited the analysis
to IMF components which covered the range of frequencies
from 0.01 Hz to the Nyquist frequency (0.65 Hz). Since
EMD is adaptive, the frequency partitioning of the time
courses depends on the particular resting-state network. IMFs
that cover frequencies less than 0.01 Hz are shown in
some of the figures but were not used for any type of
characterization of resting-state networks. In fact, IMFs with
index number larger than 9 have mean frequencies within
the very low drift range of fMRI signals (less than 0.01 Hz),
have very low mean energies and are in general of no known
importance in the characterization of low-frequency resting-
state brain networks.

EMD is a local approach that is accurate over the period
of 1 oscillation. As a consequence, IMFs at a time point t
are determined using only information in a narrow interval
(depending on the frequency content) of time point t. Thus,
EMD can be applied on the concatenated group time series
profiles rather than the individual subject-specific profiles
with similar results when EMD is applied to the individual
time series (with the exception of edge effects that occur
at the beginning and end of each time series). After the
IMFs are obtained, the corresponding IMF group spatial
maps are calculated by temporal regression. The group spatial
IMF maps resemble the spatial characteristics of each IMF.
To obtain instantaneous frequency characteristics, the Hilbert
Transform is applied to each IMF. The corresponding spectrum
of each IMF is obtained with a standard kernel density
estimation algorithm in MATLAB to study the frequency
characteristics. Comparison of energy-period profiles of resting-
state networks were then carried out using EMD, STFT,
and MODWT methods.

Clustering of Components Based on the
Energy vs. Period Relationship
For EMD, we calculated for each IMF the average energy and
period for each subject according to Eqs. 2, 4. Then, for each
temporal profile of a resting-state ICA component, we defined a
corresponding feature vector in IMF feature space that contains

5perso.ens-lyon.fr/patrick.flandrin/emd.html

the average logarithmic energy and period information of all
IMFs across all subjects according to

fp =
[
log(E(1)

1p ), . . . , log
(

E(1)
9p

)
, . . . , log(E(22)

1p , . . . , log
(

E(22)
9p

)
,

. . . , log(T(1)
1p ), . . . , log

(
T(1)

9p

)
, . . . , log(T(22)

1p ), . . . , log
(

T(22)
9p

) ]
,

(9)

where E(n)
kp and T(n)

kp correspond to the average energy and
average period of the p-th ICA component (network) of
the n-th subject for IMFk, respectively. Since we have 22
subjects and 9 IMFs per subject, this feature vector has
22 × 9 × 2 = 396 entries for EMD. The feature matrix X
contains the feature vectors of 30 ICA components, and thus
has the dimension 30 × 396. For the other 2 methods (STFT,
MODWT) we proceeded in a similar manner for forming
the feature vectors. However, the number of components for
STFT and MODWT is reduced to 7 because components
larger than 7 are already in the drift range (T > 100 s).
For all 30 ICA components, we combined the feature vectors
into a similar feature matrix and carried out a K-means
clustering using the squared Euclidean distance measure to
obtain characteristic logarithmic energy-period profiles for
each of the three analysis methods. The optimal number
of clusters, KC, is determined by using a cross-validation
approach with the leave-one-out method. In particular, K-
means is run for a particular K on the feature matrix
where one point xi (one arbitrary row of the feature
matrix) is deleted. Note that this K should not be confused
with the previous notation for the number of IMFs. The
minimum squared distance of the i-th left-out point (with
I = total number of points) to the K centroids c(i)

k for
k = 1 to K is calculated, and the process is repeated using
a different left-out point. The average of the minimum
squared distances is then the cross-validation error CVE (K)
given by

CVE (K) =
1
I

I∑
i =1

mink∈{1,...,K}d
(

xi, c(i)
k

)2
(10)

and can be plotted as a function of K. The first local minimum
of CVE (K) as K is increased starting from 1 then provides a
cross validation measure to find an optimal number of clusters
KC. Alternatively, the point of maximum curvature of CVE (K)
can be used as well to determine KC. For the Boulder data, both
values coincided.

To visualize the clustering results in a low-dimensional space,
we use PCA applied to the feature matrix X (containing 30 ICA
components x 396 energy/period features for EMD or 30 ICA
components x 308 energy/period features for STFT/MODWT).
We computed eigenvalues and eigenvectors by solving the
eigenvalue equation

XTX V = V3 (11)

where the matrix V (size 396 × 30 for EMD, size 308 × 30 for
STFT and MODWT) represents the 30 different eigenvectors in
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its columns and 3 is the associated diagonal eigenvalue matrix.
The transformed feature matrix in PCA space then becomes

X̃ = XV (12)

and has the dimension of 30 resting-state networks×30 principal
components. For a low-dimensional graphical representation of
the feature matrix using PCA, we provide figures using only the
first two PCA components (with the largest eigenvalues). Figure 1
shows a flow chart of the entire data analysis.

Clinical Application to Early-Stage
Never-Medicated PD (PPMI Data)
We reanalyzed clinical data from our recently published EMD
study (Cordes et al., 2018) by using the STFT and MODWT
method as a comparison to EMD. These data were obtained
from the publicly available anonymized Parkinson’s Progression
Markers Initiative (PPMI) database (Marek et al., 2011). We
included 18 NCs (14 Male (M); age: 64.25 ± 9.78 years
(mean ± SD), years of education 16.72 ± 2.67 years) and 18
newly diagnosed, early-stage, and never medicated PD subjects

FIGURE 1 | Flow chart of the data analysis.
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(10 M; age: 57.11 ± 11.63 years; years of education: 17.00 ± 2.77
years; disease duration: 0.83 ± 0.84 years) in our analysis.
Differences in gender, age, and years of education were not
statistically significant. Briefly, all subjects underwent resting-
state fMRI scans on 3T Siemens scanners (8 min 24 s, EPI, 210
time points, TR = 2,400 ms, TE = 25 ms, FOV = 22.4 cm, flip
angle = 80deg, resolution = 3.3 mm3

× 3.3 mm3
× 3.3 mm3,

40 axial slice). The first 5 time points (12 s) were removed
to allow the MR signal to achieve T1 equilibrium. EPI data
were slice-timing corrected and realigned to the mean echo-
planar image in SPM126, further co-registered to the subject
T1 space, and then normalized to the standard MNI-152
2 mm-template using ANTs software. fMRI data were further
spatially smoothed using an 8 mm 3D-Gaussian filter and
drift frequencies less than 0.01 Hz were removed. Group
ICA was performed by stacking all data (NC+PD) in the
temporal domain to obtain 30 resting-state networks. Then,
similar to the resting-state analysis, spatial regression was used
on the networks of the group time series data to obtain
the time series for the NC group and for the PD group.
STFT, MODWT, and EMD were used to decompose the time
series of the resting-state networks into components covering a
frequency range from 0.01 Hz to the Nyquist frequency (0.5/TR)
of the data. For each component and method, the average
instantaneous energy, period, and their standard deviations were
computed for NC and PD.

To quantify the significance of the energy-period
relationships, we carried out a leave-one-out classification
with a support vector machine (SVM). The input to the SVM
contained log(energy) and log(period) feature vectors for
decompositions 1 to 5. One subject was left out in the training of
the SVM and the prediction accuracy (PA), defined by

PA = p
(
correct classification

)
= p (NC) p (NC|NC)+ p (PD) p (PD|PD) , (13)

was computed on the left-out group member. In this equation,
p (NC) = 0.5 and p (PD) = 0.5 are the prior probabilities
since the groups were balanced. The conditional probability
p (NC|NC) : = p(classified as NC | true label is NC) refers to
the scenario that the group member was labeled NC and the
classification resulted in the label NC. A similar definition holds
for p (PD|PD) : = p

(
classified as PD | true label is PD

)
. The

approach was repeated for all possible leave-one-out
combinations (i.e., 36 times) to arrive at an average prediction
accuracy. The null distribution for the leave-one-out method is
obtained by a random permutation of the class labels and follows
a binomial distribution with probability density

p
(
k
)
=

(
36
k

)(
1
2

)k (1
2

)36−k
(14)

where k ∈ {0, 1, 2, . . . , 36} is the number of successes to
obtain the classification of PD in 36 trials. The corresponding

6http://www.fil.ion.ucl.ac.uk/spm/

prediction accuracy at level 1- α is PA =
K̂
36 where K̂ =

arg min
K

K∑
k =0

p(k) ≥ 1− α.

RESULTS

Energy-Period Relationship of White
Gaussian Noise and AR(1) Noise:
Comparing STFT, MODWT and EMD
Noise in short TR fMRI data is dominated by white Gaussian
noise and strong autoregressive noise (Chen et al., 2019). We
simulated 1000 Gaussian white noise time series data ε(t) with
the same high-resolution TR (765 ms) and number of data points
as the fMRI data to represent a simple noise process and used
EMD to obtain the first 9 IMFs. Average energy and period were
calculated according to Eqs. 7, 9. We repeated the simulation
for different autoregressive Gaussian noise processes of order
1 (AR(1)) to show the effect of strong first-order temporal
correlations on the energy-period relationships of IMFs. In
particular, we created time series data according to the model

η (t) = φ η (t − 1)+ ε(t), (15)

where we chose the autocorrelation strength φ ∈

[−0.8, −0.7, . . . , 0.8] to obtain different AR(1) noise. Figure 2
(top) shows the energy-period relationship for a small sample of
the different noise processes (using φ = {0,−0.3, 0.3}). Each
data point in the figure represents a feature point derived from
the IMF time series. All energy-period data points belonging
to a specific IMF form an oval-shaped cluster of points. With
increasing AR(1) coefficient, the energy-period spectrum is
shifted upward for IMFs 2–9, whereas for IMF1 the shift is
downward toward the diagonal line. The blue dotted lines
represent 5% and 95% of the energy-period distribution for
all IMFs. We also compare these results with the MODWT
according to Section “Maximal Overlap Discrete Wavelet
Transform (MODWT)” for the first nine detail functions that
corresponds to dyadic frequency bands. The periods for the detail
functions are larger for the same detail index when compared
to the IMF with the same index (Figure 2, second from top).
Finally, we compute logarithmic energy-period relationships
in dyadic frequency bands by using the STFT according to
Eqs. 4, 7, and 8 (Figure 2, third from top) and also show the
spectrogram using the STFT (Figure 2, bottom). The period
for each frequency band is fixed and only the energy varies.
To show the differences in the profiles for average logarithmic
energy Ek and period Tk in Figure 2, we provide in Figure 3
a comparison of the three methods for white noise data, as a
function of the decomposition level k and a function of the
AR(1) coefficient. After a 2-parameter (A, B) least square fit of
the energy data using the linear parameterization

log Ek = A+ Bk, (16)

which is equivalent to Ek = abk (for constants A =

log a, B = log b), and similarly for the period Tk data, we
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FIGURE 2 | Comparison of energy-period relationship of different noise processes [Gaussian anticorrelated AR(1) noise (left), Gaussian white noise (middle),
Gaussian correlated AR(1) noise (right)] for 1000 simulated time series data (TR 0.765 s, 2367 time points). Energy-period information was obtained using different
analysis methods. Top: Empirical Mode Decomposition (EMD) determines Intrinsic Mode Functions (IMFs) of which the first 9 IMFs were used to obtain
energy-period information. The blue dotted lines represent the 5 and 95% of the energy-period distribution for all IMFs. Second from top: The Maximal Overlap
Discrete Wavelet Transform (MODWT) leads to similar energy-period profiles for the first nine detail functions. Third from top: Energy-period relationship in dyadic
frequency bands determined by the Short-Time Fourier Transform (STFT). Bottom: Spectrogram using the STFT. The horizontal lines indicate the different dyadic
frequency bands. Hot (yellow) color indicates larger intensity (energy). The larger frequency bands have larger energy content. Note that a negative AR(1) process
leads to high-frequency noise whereas a positive AR(1) leads to low-frequency noise indicated by the yellow color.
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FIGURE 3 | Comparison of the average energy and period distributions for simulated Gaussian white noise (top) and AR(1) noise (bottom) for AR(1) values
φ = {−0.8,−0.4, 0, 0.4, 0.8} as a function of the decomposition level (component) and for three different analysis methods: Empirical Mode Decomposition
(EMD, green), Maximal Overlap Discrete Wavelet Transform (Wavelet, red), and Short-Time Fourier Transform (STFT, blue). For EMD the different components are the
IMFs, whereas for the wavelet transform the detail levels are the components, and for STFT the different dyadic frequency intervals are the components. The
numbers in the figure indicate the values of the AR(1) coefficient. The black horizontal line corresponds to the 0.01 Hz line indicating the border to the drift frequency
range in fMRI. Components with periods above this line are most likely associated with artifacts and are of no interest in this study. Note that log(period) shows
approximately linear dependence as a function of the components for all methods. In particular, the AR(1) coefficient associated with the lines for log(period)
increases in the direction of the arrow (toward larger periods). The log(period) dependence on the AR(1) coefficient is largest for EMD (see large spread of the 5 green
lines) and very small for STFT and wavelet, especially for components larger than 1 (with a spread close to zero for the 5 red lines (or 5 blue lines)). Also, the lines for
EMD have a smaller slope when compared to STFT and MODWT. The energies for STFT and MODWT are the same (red and blue energy curves overlap).

determined a and b (from parameters A, B) and obtained
approximately the following relationships for white Gaussian
noise:

 Ek(STFT)

Ek(MODWT)

Ek(EMD)

 =

 0.50k

0.50k

0.71∗0.57k

 and

 Tk(STFT)

Tk(MODWT)

T(EMD)

 =

 1.07∗1.96k

1.32∗1.98k

1.43∗1.76k

 (17a)

This analysis shows that EMD deviates from a perfect dyadic
decomposition of the time series (since for EMD the factor 1.76

is significantly different from 2, whereas for STFT and MODWT
the factor is very close to the expected value of 2). Similarly, for
white noise the energy content by EMD is reduced by a factor of
0.57 with each decomposition level, which is different than the
expected value of 0.5 (for STFT and MODWT). A consequence
of the reduced factor of 1.76 for EMD is that the drift frequency
range for fMRI data (which is about 0.01 Hz) is obtained for a
larger k. For example, the STFT and MODWT methods achieve a
period larger than 100 s for k ≥ 7 whereas for EMD the value is
k ≥ 8.

Next, we investigated the energy and period relationships
for AR(1) noise. Since log(period) shows an approximate linear
dependence on the components for all AR(1) noise scenarios, we
expanded our model to determine the dependence of log(period)
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on the AR(1) coefficient φ. A suitable model is given by log Tk =

A+ B k+ C φ+ D k φ with constants A, B, C, D. We obtained
the following relationships

 log (Tk) (STFT)

log(Tk)(MODWT)

log (Tk) (EMD)



=

 0.0680+ 0.6707k+ 0.1048 φ− 0.0178 kφ
0.2742+ 0.6811 k+ 0.2233 φ− 0.0400 kφ
0.3235+ 0.5671 k+ 0.2570 φ+ 0.0277kφ

 .(17b)

We define the log(period) noise sensitivity, ST
k , to the AR(1)

coefficient φ by calculating

ST
k =

∣∣∣∣∂ log(Tk)

∂φ

∣∣∣∣ . (18)

We found that on average (over all components) the noise
sensitivity is approximately ST

k (STFT)

ST
k (MODWT)

ST
k (EMD)

 =

 0.04
0.09
0.40

 . (19a)

Thus, EMD is more than 4 times as sensitive as MODWT
and 10 times as sensitive as STFT to the strength of noise
correlations (φ). Similar computations can also be carried out
for log(energy) sensitivity SE

k , however, the relationships are more
complicated since the log(energy) dependence for AR(1) noise
has significant nonlinear contributions (see Figure 3). We carried
out a numerical differentiation to determine SE

k and obtained SE
k (STFT)

SE
k (MODWT)

SE
k (EMD)

 =

 1.8
1.8
1.5

 , (19b)

which shows that log(energy) computed by EMD is by a
factor of about 0.37 less sensitive to the AR(1) coefficient
than STFT and MODWT.

Energy-Period Relationship of a Typical
Resting-State Network: The Default
Mode Network (DMN)
Figure 4 shows the results obtained for the DMN using
EMD applied to the concatenated network time courses of all
Boulder subjects. The concatenated time series of the DMN
was decomposed by EMD into nine IMFs, and the IMFs for
each subject were extracted. We chose to use the concatenated
time profile rather than conducting EMD for each individual
subject because the concatenated approach appeared to be more
stable for EMD by reducing the variance of parameters of
interest (i.e., log(energy) and log(period)) slightly. Then, the
corresponding frequency distribution was estimated using Eqs.
A1–A3. The computed time series and frequency distribution
are shown in Figures 4A,B, respectively. IMF1 has a wide
high-frequency spectrum, whereas the higher-order IMFs have

a narrow-band low-frequency spectrum. Average energy and
period were calculated for each subject according to Eqs. 2, 4.
Figure 4C shows the logarithmic energy vs. period relationship of
the IMFs of the DMN superimposed on the white noise spectrum
(black dots). IMFs with the same index have the same color and
consist of 22 subject-specific points with narrow spread in period
(Figure 4C). For each IMF, we also calculated the corresponding
spatial map by regression using the concatenated IMF for all
subjects (Figure 4D). The DMN is seen clearly in IMFs 2–7,
whereas the DMN is incompletely obtained from IMFs 1,8,9.
A listing of the peak frequency, FWHM, frequency range of the
first nine IMFs, and the spatial similarity of each IMF to the group
ICA map is provided in Supplementary Material 1 for the DMN.

Comparison of Energy-Period Profiles
for Five Common Networks That Differ in
Their Frequency Content
Figure 5 shows a comparison of energy and period profiles using
the STFT, MODWT and EMD applied to the DMN, Executive
Control Network (ECN), Inferior Prefrontal Network (IPF), right
Inferior Temporal Network, and Cerebellar Network 1 (CBN1).
These networks were chosen based on their different frequency
content. For example, the DMN is mostly characterized by
low frequencies (large periods) whereas the CBN1 has a large
contribution of high frequencies (low periods). The other chosen
networks are in between these extreme characteristics. Since
the frequency content is different for different networks and
EMD is an adaptive method, the number of decompositions
(components) obtained by EMD (but not for STFT and
MODWT) is in general different for different networks. Thus,
the STFT and MODWT methods give six important components
for all five networks with frequency range larger than 0.01 Hz,
whereas the number of components (IMFs) for EMD is different
for the five networks. In particular DMN has six, ECN and IPF
have seven, rITL has eight, and CBN1 has nine IMFs.

Figure 6 compares the energy profiles, averaged over all
subjects (computed from Figure 5). The DMN and ECN
show a bell-shaped curve for the different decomposition
levels, whereas for IPF, rITL and CBN1 the energy is more
flat for the first few decompositions 1 to 5. For these five
networks IMF1 (component 1 in green curve in Figure 6)
has the highest energy compared to the first component of
STFT and MODWT (for example the DMN has log (E) =
−3.60 for EMD,−3.95 for MODWT,−4.00 for STFT).

Figure 7 compares the period profiles, averaged over all
subjects (computed from Figure 5). Using EMD, the profiles for
the networks of DMN, ECN, IPF, rITL, and CBN1 have very
different slopes for the different decomposition levels, showing
that EMD is a network-specific frequency-adaptive decomposition
method contrary to STFT and MODWT. Specifically, the
period of the IMFs decreases from DMN, ECN, IPF, rITL, to
CBN1 (in this order). The corresponding slopes m of the line
log (Tk) = const. + mk are approximately 1.8 (DMN), 1.75
(ECN), 1.7 (IPF), 1.6 (rITL) and 1.5 (CBN1), showing that
the EMD decomposition becomes less dyadic for networks with
high frequency contents. Table 1 provides the goodness of fit
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FIGURE 4 | Decomposition of the default mode network (DMN) using empirical mode decomposition. The time courses for all subjects were concatenated. Top left
figure (A) shows the first nine intrinsic mode functions (IMFs). The corresponding frequency distributions are shown in figure (B). IMF1 has a wide high-frequency
spectrum whereas the higher-order IMFs have a narrow-band low-frequency spectrum. The figure on the top right (C) shows the energy-period relationship of the
IMFs of the DMN superimposed on the white noise spectrum (black dots). Each colored dot represents a subject. The black vertical line corresponds to the
drift-frequency cut-off of 0.01 Hz. Information to the right of this line correspond to scanner-related artifacts and is of no interest in this study. In the bottom figure (D),
the spatial components associated with each IMF are shown. The DMN is seen more clearly in IMFs 2–7 than in IMFs 1,8,9.
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FIGURE 5 | Comparison of energy and period profiles using three different analysis methods (Short-Time Fourier Transform (STFT), Maximal Overlap Discrete
Wavelet Transform (MODWT), Empirical Mode Decomposition (EMD)) applied to five different resting-state networks (Default Mode Network (DMN), Executive Control
Network (ECN), Inferior Prefrontal Network (IPF), right Inferior Temporal Network, Cerebellar Network 1 (CBN1). As before (see Figures 2, 4), the black dots
represent a data decomposition of white Gaussian noise. Dots of the same color correspond to the same component of the decomposition, i.e., dyadic frequency
interval decomposition for STFT, detail level decomposition of the wavelet transform, and intrinsic mode function (IMF) decomposition for EMD. There are 22 dots
with the same color corresponding to the 22 subjects studied. The vertical line corresponds to the cut-off frequency of 0.01 Hz, and information to the right of this
line (i.e., frequencies lower than 0.01 Hz) is of no interest in this study. Note that these 5 networks were chosen to be representative networks of the clusters 1 to 5 in
Figure 10.

Frontiers in Neuroscience | www.frontiersin.org 13 May 2021 | Volume 15 | Article 663403

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-663403 May 15, 2021 Time: 15:18 # 14

Cordes et al. Energy-Period Profiles of Brain Networks

FIGURE 6 | Comparison of energy profiles averaged over all subjects using Short-Time Fourier Transform (STFT), Maximal Overlap Discrete Wavelet Transform
(MODWT), and Empirical Mode Decomposition (EMD) for the different resting-state networks from Figure 5. Note that these 5 networks were chosen to be
representative networks of the clusters 1 to 5 in Figure 10.

information for R2, which is close to 1 for all networks, justifying
our parameterization of log (Tk). We also investigated whether
the lines for the five networks are significantly different from each
other. Table 2 shows the statistics (p value and effect size) for
comparing DMN vs. ECN, ECN vs. IPF, IPF vs. rITL, and rITL
vs. CBN1 over all subjects. Only EMD gave a very significant
difference (p < 0.001) with a medium or large effect size for
these comparisons.

Clustering of Energy-Period Profiles of
All ICA Components
Figure 8 shows the results of the K-means clustering according
to the method described in Section “Clustering of Components
Based on the Energy vs. Period Relationship.” The number of
clusters found by applying criteria given in Eq. 10 is four for
STFT, five for MODWT, and five for EMD (see Supplementary
Material 2). For EMD nine intrinsic mode functions (IMFs)
were used in the clustering, whereas for the STFT and MODWT
methods seven detail components were suffient in the clustering

because the energy of components higher than seven was
essentially zero unlike EMD.

We plotted the transformed feature matrix X̃ (see Eq. 12) for
the first two principal components as a 2-dimensional (2-dim)
scatter plot for STFT, MODWT, and EMD, and indicated the
cluster membership of each resting-state network according to
the results from K-means clustering (Figures 9A–C). Different
cluster memberships are shown in different colors. The EMD
method shows that the 30 resting-state networks are found along
the diagonal line and that all five clusters are well separated
in this 2-dim PCA plot. We further illustrate in Figure 9C
that for EMD the 1st PCA component of the data provides
already a clear separation of the different clusters contrary to
the STFT and MODWT methods. In Figures 9D,E, we show
scatterplots of the decomposition level of the first eigenvector
for each method by using Eq. 12 to obtain log

(
period

)
and

log(energy) information averaged over all subjects. We also
indicate the direction of frequency increase and energy increase
for Figure 9D, which follows directly from the relationship of the
term X̃(:, 1) = XV(:, 1) to the term V(:, 1) (first eigenvector) as
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FIGURE 7 | Comparison of period profiles averaged over all subjects using
Short-Time Fourier Transform (STFT), Maximal Overlap Discrete Wavelet
Transform (MODWT), and Empirical Mode Decomposition (EMD) for the
different resting-state networks from Figure 5. Different resting-state
networks show deviations to a perfect dyadic decomposition for EMD.
Low-frequency networks (for example DMN) show the least deviation of EMD
with STFT and MODWT, whereas high-frequency networks (for example
CBN1) show largest deviations (similar to Figure 3). Note that these 5
networks were chosen to be representative networks of the clusters 1 to 5 in
Figure 10. See also corresponding Tables 1, 2.

TABLE 1 | R2 goodness of the linear fit for log Tk for the different resting-state
networks in Figures 5, 7.

STFT Wavelet EMD

DMN 0.998 0.981 0.993

ECN 0.999 0.982 0.988

IPF 0.999 0.985 0.987

rITL 0.999 0.982 0.990

CBN1 0.998 0.973 0.981

A linear model was used for fitting the period log Tk to k according to log Tk =

k A+ B+ ε, where A and B are regression coefficients and ε is an error term.

shown in Figure 9E. Figure 9 most accurately illustrates the most
significant differences between EMD, STFT, and MODWT.

Figure 10 shows the spatial maps of the ordered ICA
components according to K-means clustering in 2D PCA
space (compare Figure 9C). The color-framed ICA components
correspond to the five major clusters in Figures 8, 9C for the
EMD method. The numbering of the ICA components from 1
to 30 is obtained by ordering the ICA components according
to the position of the network in Figure 9C using the EMD
method along the diagonal line of scatter points. Once the
largest Euclidean distance of scatter points in Figure 9C is
determined, the end points define ICA component #1 which is
chosen as the lower right scatter point in Figure 9C, and #30
which is the upper left scatter point in Figure 9C. All other

TABLE 2 | Cohen’s effect size and p value for pairwise comparison of log Tk for
the different resting-state networks in Figures 5, 7.

STFT Wavelet EMD

DMN vs. ECN f2 = 0.0026 f2 = 0.0421 f2 = 0.0924 (*)

p = 0.53 p = 0.01 p = 3 × 10−5 (*)

ECN vs. IPF f2 = 0.0492 f2 = 0.0187 f2 = 0.1525 (*)

p = 0.01 p = 0.09 p = 1 × 10−7 (*)

IPF vs. rITL f2 = 0.0446 f2 = 0.0063 f2 = 0.5315 (*)

p = 0.01 p = 0.33 p = 6 × 10−20 (*)

rITL vs. CBN1 f2 = 0.0203 f2 = 0.0008 f2 = 0.7084 (*)

p = 0.08 p = 0.72 p = 1 × 10−24 (*)

The significance that adjacent networks in Figure 7 are different was computed by
an F test of a linear difference fit using log Tk (network 1)− log Tk (network 2) =

k A+ B+ ε over all subjects, where A and B are regression coefficients and ε is
an error term. Only EMD shows a very significant difference (p < 0.001) with a
medium or large effect size (indicated by a star). In general, f2

≈ 0.12
= 0.01 is

considered a small effect size, f2
≈ 0.252

= 0.0625 a medium effect size, and
f2
≈ 0.42

= 0.16 a large effect size (en.wikipedia.org/wiki/Effect_size#cite_note-
CohenJ1988Statistical-8). The 5 networks were chosen to be representative
networks of the clusters 1 to 5 in Figure 10, i.e., DMN (cluster 1), ECN (cluster
2), IPF (cluster 3), rITL (cluster 4), CBN1 (cluster 5).

ICA components are characterized according to the Euclidean
distance measured from the first data point in the direction of
the last data point. Identified networks are listed on the right in
Figure 10; a blank entry indicates that the network is unknown
(to us) and has not been studied (to our knowledge). Some
of the unknown networks may be due to artifacts and more
detail on the networks is provided in Supplementary Material
3, where the major brain regions of each ICA component are
listed according to the Automatic Anatomic Labeling (AAL) Atlas
(Tzourio-Mazoyer et al., 2002). Some of the ICA components
are listed as artifacts when the artifact was easy to identify. For
example, ICA component #4 is most likely a motion artifact and
ICA component #10 a mathematical artifact originating from the
variance normalization of the original time series. Furthermore,
it can be seen that only white matter regions in the interior of
the brain are affected by ICA #10. ICA components #16 and #21
also involve white matter regions of the brain as well, which may
indicate that these components are also artifacts.

Clinical Application to Early-Stage
Never-Medicated PD (PPMI Data)
In the Supplementary Material 6 we show the spatial maps
and corresponding energy-period profiles for six resting-state
networks for the three different methods (STFT, MODWT and
EMD). The six studied networks are the executive control
network (ECN), the parietal network (PAR), the cognitive control
network (CCN), the (inferior) prefrontal cortex network (PFC),
and the left/right frontoparietal networks (lFPN, rFPN). These
networks were chosen based on our research on dynamic
functional connectivity analysis in PD (Zhuang et al., 2018)
and shown to be part of an exclusive backbone network in
a sub-sample of PD (Mishra et al., 2020). While all of these
networks show spatial and temporal differences, the most
significant differences in log(period) between NC and PD were
found by EMD. We indicated mean differences (over subjects)
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FIGURE 8 | K-means clustering of the energy-period profiles for all 30 ICA components, where each ICA time series was decomposed into components using three
different analysis methods (Short-Time Fourier Transform (STFT), Maximal Overlap Discrete Wavelet Transform (MODWT), and Empirical Mode Decomposition
(EMD)). The vertical black line indicates the frequency cut-off value of 0.01 Hz, and the black dots indicate the profile of Gaussian white noise. The red line for STFT
and Wavelet consists of 6 components each, whereas the redline of EMD spans 9 IMFs. Summary: Note that STFT and Wavelet use the same number (i.e., 7) of
decompositions to reach the 0.01 Hz line for all clusters. EMD, however, is cluster-specific and adapts its number of IMFs to the frequency content of the clusters.
Thus, EMD uses 7 IMFs to reach the 0.01 Hz line for the low-frequency cluster 1, and 9 IMFs for the high-frequency cluster 5. For clusters 2 to 4, the number of
IMFs used by EMD is in-between, depending on the frequency content of the clusters.
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FIGURE 9 | Strong Relationship of EMD to Principal Component Analysis (PCA). Top: (A,B,C) PCA of the feature data matrix obtained by the Short-Time Fourier
Transform (STFT), the Maximal Overlap Discrete Wavelet Transform (MODWT), and Empirical Mode Decomposition (EMD). The scatter plots show the first and
second PCA component values for 30 resting-state networks that were classified into four clusters by STFT (A), five clusters by the MODWT (B), and five clusters by
EMD (C). Networks belonging to the same cluster have the same color. Bottom: (D) Relationship of the value of first PCA component to frequency and energy
content (see downward pointing arrow) of the clusters using different methods (STFT, MODWT, and EMD). (E) Feature values for log(period) and log(energy)

corresponding to the first eigenvector for each decomposition level (IMFs 1–9 for EMD, 1–7 for STFT and MODWT), averaged over all subjects. Note that the
contribution to the energy is largest for IMFs 1–6 of the EMD method among the three methods. Summary: Note that the clusters determined by EMD (C) show a
strong (almost linear) relationship in the 2-dim PCA plot, which is not the case for STFT (A) and Wavelet (B). Also note that EMD has a strong frequency and energy
relationship to PCA (D). As shown in panel (D), EMD provides the largest separation in frequency and energy content of the clusters of ICA networks compared to
STFT and Wavelet methods. In fact, clusters identified by EMD are characterized by increasing frequency and energy content with increasing cluster number (i.e., the
higher the cluster number, the higher will be its frequency content), whereas the corresponding figures for STFT and Wavelet are rather flat and uninformative of the
frequency content.

of | log
(
period

)
[NC])− log

(
period

)
[PD] | ≥ 0.1 within the

energy-period plots and marked significant differences (p < 0.05)
by a star. For the STFT method, there were no differences ≥
0.1 found in log(period) for any of the components. For the
MODWT, only two networks showed differences in period (ECN
with component #5 and PFC with component #2) whereas
EMD showed differences in period for all six networks and all
IMFs with index > 1. Furthermore, the periods of the low-
frequency IMFs (index > 1) were found to be larger in PD

for most networks, and the amplitude of oscillations of the
IMFs as measured by the energy were found to be generally
smaller in PD for many of the IMFs. We did not label significant
energy differences (see Supplementary Material 6) to preserve
simplicity, though energy differences are clearly visible.

For the machine-learning application, average prediction
accuracies were determined for log(T) data, log(E) data,
and both log(T) and log(E) data of all six resting-state
networks combined and for each method (STFT, MODWT,
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FIGURE 10 | Ordered ICA components according to K-means clustering of
the energy-period relationships of IMFs using EMD. The color-framed ICA
components correspond to the five major clusters in Figures 8, 9C for the
EMD method. The numbering of the ICA components from 1 to 30 was
chosen by ordering the ICA components according to the value of the 1st
PCA component of Figure 9C (from largest value to smallest value). Identified
networks are listed on the right; a blank entry indicates that the network is
unknown (to us) or has not been studied. Some of the unknown networks
may be due to artifacts. Anatomical regions are listed for each network in
Supplementary Material 2. Low frequency networks most studied in recent
literature belong to clusters 1 and 2.

EMD) (Figure 11A). Furthermore, network-specific prediction
accuracies were computed and are shown for EMD only in
Figure 11B. The null distribution of the prediction accuracy
was also computed using permutation analysis, and the
thresholds for the 50, 95 and 99 percentiles were determined
to be PA = 0.50, 0.64, 0.69, respectively. Figure 11A shows
clearly that EMD has the highest prediction accuracy (0.92)
among the three methods using the combined resting-state
networks. For EMD, the prediction accuracy is well above
the 99 percentiles of the null distribution. For the individual
networks in Figure 11B, we determined that prediction
accuracies using period information are either close to or
above the 95 percentiles of the null distribution, whereas
for energy values only the prefrontal cortex network (PFC),
executive control network (ECN), parietal network (PAR), and
cognitive control network (CCN) are significant (above the
95 percentiles of the null distribution). Combining period
and energy information yields significance for all of the six
networks individually.

DISCUSSION

Technical Aspects of Applying EMD to
fMRI Data and Simulated Data
Advantages of Using EMD and Hilbert Transform in
fMRI
EMD is essentially a sifting algorithm that estimates the local
mean of a time series and subtracts it successively until criteria
are satisfied that define an IMF. An IMF is defined as a basic
oscillatory function, where each extremum is followed by a zero
crossing. Since the IMF is oscillating and has a local mean equal
to zero, the Hilbert Transform is well defined and produces
meaningful non-negative instantaneous frequencies.

Unlike Fourier or wavelet transforms, neither stationarity nor
linearity of a time series are assumed when using the EMD
and Hilbert Transform. There are also no a priori defined basis
functions used for EMD, rather the data are used to determine
their underlying basis functions constituting the IMFs. Fixed
basis functions are useful when the underlying physical process
of a time series is known, which is rare for non-stationary
data. EMD determines the IMFs of the data, providing a local,
adaptive, data-driven description of the oscillatory components
more appropriate for fMRI signals.

More specifically, the EMD method provides IMF basis
functions, which are extensions of Fourier basis functions where
amplitude and frequency no longer are constants: instead,
amplitude and frequency are time-dependent leading to simple
oscillatory functions, where each extremum is followed by a
zero crossing. These characteristics allow instantaneous time-
frequency information to be obtained by using the Hilbert
Transform. For the MODWT transform, in contrast, the wavelet
coefficients and the reconstructed multi-resolution functions
do not show the features of simple oscillating functions but,
rather they can have so-called riding waves where two or
more adjacent extrema occur without zero crossing in between.
Due to these riding waves, there is more than one simple
instantaneous frequency value involved such that a computation
of the instantaneous frequency value by the Hilbert Transform is
only approximate at locations with riding waves.

Furthermore, in applying EMD to fMRI data, we found that
IMF1 usually represents essentially high frequency oscillations.
Of note, due to its additivity property, EMD can compute
these high frequency oscillations in a local neighborhood and
subsequently remove them from the data at a local level.
This approach is quite different than, for example, low-pass
Fourier filtering, because local non-stationary information is
taken into consideration by EMD whereas low-pass filtering
using stationary transforms removes non-stationary aspects of
the signal by smoothing.

Computation of Average Energy and Average Period
of Each IMF
After applying EMD and Hilbert Transform to fMRI data, we
obtained the instantaneous period and energy of each IMF. The
relationship between average energy and average period is then
computed to evaluate the energy-period characteristics of each
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FIGURE 11 | Prediction accuracy of PD vs. NC using a support vector machine and the leave-1-out method applied to 6 brain networks (ECN, PAR, CCN, PFC,
lFPN, rFPN) (see Supplementary Material 6). Black line, dash-dotted line and dotted line represent the prediction accuracy of the null (permutation) distribution at
the 99 percentile, 95 percentile and 50 percentiles. (A) Data for all 6 networks were combined. EMD (with all 5 IMFs combined) shows the highest prediction
accuracy for period (log(T)) information (blue), for energy (log(E)) information, or both period and energy (log(T),log(E)) information combined. Overall, the Short-Time
Fourier Transform (STFT) shows lowest prediction accuracy and the Maximal Overlap Discrete Wavelet Transform (MODWT) performs intermediate.
(B) Network-specific prediction accuracies for EMD (with all 5 IMFs combined). Period information of all 6 networks are either very close or above the 95 percentiles
of the null distribution. For energy values, only the prefrontal cortex network (PFC), executive control network (ECN), parietal network (PAR) and cognitive control
network (CCN) are significant (above the 95 percentiles of the null distribution) whereas the right and left frontoparietal networks (lFPN, rFPN) do not reach
significance. Combining period and energy information yields significance for all of the 6 networks.

IMF. The calculation of the average energy density of the IMFs
is straightforward, whereas the average period is more difficult to
compute. A simple approximation exists to determine the average
period T by the relationship

T =
length of signal
# of zero crossings

2

. (20)

This definition is only approximately true, however: particularly
for the higher IMFs which contain larger periods, this leads
to significant errors because this approximation does not take
non-stationary local properties of the signal into consideration
(Wu and Huang, 2004). Determining the average period via
the instantaneous frequency relationship by using the Hilbert
Transform is more accurate (Huang and Shen, 2014).

Period Characteristics Computed by EMD Show
Higher Sensitivity to the Type and Amount of
Correlations in Simulated Time Series When
Compared to STFT and MODWT
In our AR(1) noise simulation we have shown that the lines
for log(period) computed by EMD have a smaller slope and
larger offsets than STFT and MODWT. Furthermore, and more
importantly, the lines for log(period) vary significantly as a
function of the AR(1) coefficient φ using EMD but not for STFT
and MODWT. Since the AR(1) coefficient determines the type
(i.e., positive or negative) and also strength of correlations in a
time series, which in turn leads to different amounts of high and

low frequencies in the data, EMD is a far more sensitive method
than STFT and MODWT to detect small differences in frequency
content in data.

Energy-Period Characteristics of
Resting-State Networks Are Different
From Gaussian White Noise
The energy-period relationships of the IMFs for resting-
state networks are quite different from Gaussian white noise
properties. In general, the intermediate IMFs bulge out above the
diagonal white noise line defined by log (E)+ log (T) ≈ 0 and
signify networks with strong positive autocorrelations.

Identifying ICA Networks With Similar
Energy-Period Relationships With
K-Means Clustering
Clustering of the shape of these energy-period profiles leads to
well-defined ordering of ICA components. Initially, the order of
the group ICA components determined from the data do not have
any particular order after ICA, which is quite different than a
PCA decomposition where components can be sorted based on
the magnitude of their eigenvalues.

Using K-means clustering in IMF feature space, we obtained
five major clusters and were able to characterize each network
component according to the form of the energy-period
relationship using the two largest PCA components. It is
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interesting to see that cluster 1 (with the largest profile difference
compared with white noise) contains those traditional resting-
state networks that have been most often described in the
literature, whereas clusters 4 and 5 contain networks that
have cerebellar and subcortical features. These clusters have a
profile closer to, but still different from, the white noise line
but have unfortunately generated little interest in the scientific
community. Since clusters 4 and 5 contain higher frequencies (as
we showed in Section “Comparison of Energy-Period Profiles for
Five Common Networks that Differ in their Frequency Content,”
Figure 9D) than the traditional resting-state networks and EMD
provides a unique characterization of these networks (Figure 9C),
the appearance of these networks as distinct clusters highlights
a strength of the EMD method in characterizing resting-state
networks with higher frequency content.

Justification of Same Feature Space in K-Means
Clustering Among Different Subjects
A concern about using EMD feature space in the k-means
clustering method is whether frequency and energy content of the
kth IMF with subject 1 is comparable with frequency and energy
content of the same kth IMF of subject 2. Conventionally, for a
Fourier frequency-based analysis, the components of a feature
vector are ordered according to information about frequency 1,
frequency 2, frequency 3 and etc. Therefore, for a Fourier-based
ordered feature vector, each component of the feature vector is
associated with the same frequency value for all subjects, resulting
in feature vectors where each component has a precise meaning
related to the chosen frequency partitioning. In the following, we
would like to point out that (1) the same associations exist for
EMD based features, and (2) why an EMD-type feature vector
may lead to a better description of features in the data than a
Fourier-based feature vector.

First, our assumptions are that resting-state data in a group
of young healthy subjects have similar brain networks which can
be extracted by a group ICA analysis (which is supported by
extensive literature in this area), and that EMD for data with the
same underlying signal distributions has the property of being
a quasi-dyadic filtering method. Consequently, the notion that
the IMF1 of a subject could become IMF2 in another subject is
inconsistent with similar group data. Furthermore, and perhaps
most important as demonstrated in the experimental evidence
given in this study, all data points for the same IMF from all
subjects are clustered together, suggesting that the same indexed
IMF is comparable across all subjects. For example, Figure 4C
shows that all 22 subject-specific data points are very close
together for IMF1 (22 dark blue dots), IMF2 (22 orange dots),
IMF3 (22 yellow dots), etc, and all different colored points are
well separated and do not overlap. This behavior is true not only
for the default mode network, but for all ICA brain networks
investigated in this study. Even for the higher-order noisy ICA
networks that contain high frequency information, the mean
period characteristics are well separated for different IMFs, and
the mean periods of IMFk never overlap with mean frequencies
of IMFm when k is unequal to m. This separation of features for
different orders k of IMFs can be attributed to the small spread of
period information among subjects. Whereas the energy spread

log(Ek) can be up to 2 units, the period spread log(Tk/s) is not
more than 0.2 units for IMFs 1 to 7 among the 22 subjects.
Finally, the k-means clustering that we propose is a clustering in
an adaptive feature space. The feature vector we chose is defined
in the IMF index space and we cluster according to component
entries of features of IMF1, features of IMF2, features of IMF3, etc.

Comparisons of Clustering Performances Among
Features Derived From EMD, STFT, and MODWT
The energy and period relationships as a function of the
component (detail) level corresponding to the dyadic
decomposition give identical straight lines with the same
slope for the MODWT and STFT methods, whereas EMD
produces an adaptive curve that shows decreased periods (higher
frequency content) for the IMFs with larger index depending on
the data. The period spacing for the different detail levels is the
same for STFT and approximately the same for the MODWT.
However, the MODWT detail-level decomposition shows some
variation in period for each subject. In contrast, the EMD method
leads to an adaptive purely data-driven decomposition in period
content which is also different for different brain networks.
Thus, the EMD approach retains potentially important and
physiologically relevant features of brain networks that are lost
with STFT and MODWT.

Clustering of energy-period features in IMF feature space
shows that the so-called traditional networks such as DMN and
ECN of clusters 1 and 2 have characteristic bell-shaped profiles
with large positive autocorrelations across decomposition levels,
whereas the high-order clusters 4 and 5 show more flat profiles
closer to the Gaussian noise line (Figure 5). The period as a
function of the decomposition level for all clusters has the same
slope for STFT and MODWT, but for EMD this slope is unlike
the different clusters. Here, IMF low-frequency content is largest
for traditional networks in cluster 1 (for example the DMN)
and decreases as the cluster number increases (for example the
cerebellar networks in cluster 5 (for example CBN1) have smallest
slope in Figure 7 indicating high frequency content). Cluster 5
clearly shows that the largest contribution to the energy content is
related to IMF1, which has high-frequency content and very likely
corresponds to high-frequency physiological processes. Using the
STFT and MODWT, a much lower energy content is extracted for
their first high-frequency component. For all other components,
the energy extraction by EMD is reversed and IMFs 2–4 have
lowest energy content. Though IMFs 1 to 4 have profiles close
to the white noise diagonal line, the higher-order IMFs 5 to 9
are significantly different from white noise characteristics (see
profiles of CBN1). In particular, EMD leads to a significant
high-frequency shift of these higher order IMFs, which is not
the case for STFT and MODWT. For example, EMD leads to
an IMF6 that has log (T/s) = 3.2 whereas the corresponding
decomposition using STFT and MODWT has log (T/s) ≈ 4.2.
This shift increases with increasing IMF index. Overall, before
we reach the drift frequency range (f < 0.01), we obtain nine
decompositions using EMD instead of the six derived from STFT
or MODWT. Thus, EMD shows its most adaptive behavior for
cluster 5 leading to very different temporal characteristics of the
IMFs than decompositions by STFT and MODWT.
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PCA Decomposition of Energy-Period Feature Space
and Relationships to K-Means Cluster Number
A low-dimensional PCA decomposition of the feature vectors
is also instructive and shows that only EMD provides a
significant monotone relationship of the value of the 1st PCA
component as a function of the cluster number. Since all
resting-state data points occupy the smallest region in PCA
space (Figure 9C), the clusters are clearly separable in low-
dimensional PCA space for EMD, but not for the STFT and
MODWT methods. This figure suggests that EMD (among
the three methods) provides a representation of the different
types of resting-state networks leading to well-defined clusters.
The significance of this statement is that physical quantities
derived from EMD are more sensitive to features in the data,
which we demonstrate in the clinical application using machine-
learning (see also Section “Identifying ICA Networks with Similar
Energy-Period Relationships with K-Means Clustering”). The
well-defined clusters provide information of the amount of high-
frequency content of the networks belonging to the clusters.
For example, Figure 7 shows 5 networks that are representative
of the 5 clusters (cluster 1 (DMN), cluster 2 (ECN), cluster
3 (IPF), cluster 4 (rITL), cluster 5 (CBN1)), where each IMF
has increased frequency (lower period) with increasing cluster
number. Thus, the networks belonging to cluster 1 are low-
frequency networks without much frequency content above
0.1 Hz whereas the networks of cluster 5 have significant high-
frequency content.

Furthermore, since each eigenvector of the feature matrix is
linearly related to the PCA component values (from Eq. 12),
a decrease of the 1st PCA component is associated with a
differential increase in energy and a decrease in period. Thus,
for the EMD method, larger cluster numbers are associated with
networks that operate at higher frequencies and larger energy
content, whereas the MODWT and STFT methods lead to weaker
relationships due to the smaller slope of 1st PCA component as
a function of the cluster number (as shown in Figure 9D). In
particular, for a PCA component to become smaller, it can be
deduced from Figure 9E that | log

(
period

)
| and | log

(
energy

)
|

need to decrease. Since log
(
period

)
> 0 and log

(
energy

)
< 0,

it follows due to monotonicity of the logarithmic function
for energy > 0 and period > 0 that period needs to decrease
and energy needs to increase. Therefore, a decrease of the
first PCA component will lead to an increase in energy and a
decrease in period, i.e., an increase in frequency. Using EMD,
we find that the 1st PCA component decreases monotonically
with increasing cluster number (Figure 9D). Thus, energy and
frequency content increase in EMD with increasing cluster number.
This relationship is strongest for EMD, weaker for the MODWT
method, and weakest for the STFT method. The scatter plot
of Figure 9E shows how the energy and period are affected
for each decomposition level. For example, an increase in
energy is largest for IMFs 1–6 of the EMD method when
increasing the cluster number. This energy increase is smaller
for STFT and MODWT methods for the same decomposition
levels. The sum of these findings together demonstrates that
EMD has significant advantages in characterizing brain networks
compared to STFT and MODWT.

Frequency Range of Resting-State Brain
Networks (Comparison to Niazy et al.,
2011)
Niazy et al. (2011) used EMD to study the frequency content
of the time courses associated with four major resting-state
networks (DMN, VIS, AUD, MOT) for a small group of normal
subjects using a TR of 3 s. EMD applied to these data gave
four IMFs that covered the frequency bands (approximately)
0.004 Hz–0.01 Hz, 0.01 Hz–0.02 Hz, 0.02 Hz–0.05 Hz and
0.06 Hz–0.15 Hz. Overall, we agree with the findings from Niazy
et al. and other studies (for example Boyacioglu et al., 2013) that
the majority of frequency components for these four primary
networks is mostly in the low frequency range below 0.1 Hz.
Our analysis shows that IMFs 3–7 have significant energy and
frequency content in the 0.01 Hz–0.2 Hz range for most of
the traditional networks associated with clusters 1–2. For the
DMN, however, the frequency range when weighted by the
energy density is more limited because IMF2 has low energy
density. We found that the DMN has peak frequency content
spanning the interval of 0.02 Hz–0.09 Hz, which is covered
by IMFs 3–6. However, IMF2 (though having far less energy
density than IMF3) with peak frequency 0.21 Hz can produce an
acceptable map of the DMN since the DICE similarity coefficient
is 0.68 [see spatial IMF maps and computation of the DICE
similarity coefficient (Figure 4D and Supplementary Material
1)]. On the contrary, IMF1 contains high-frequency noise sources
that are not related to features of the DMN. Taken together,
these findings indicate that the DMN is characterized mostly
by low frequency information and frequencies much larger than
0.2 Hz will not yield maps that resemble the DMN. For other
recent applications of EMD in neuroscience, please see the
Supplementary Material 4.

EMD-Derived Features Contain More
Clinical Meaningful Information
We applied the proposed frequency analysis methods to resting-
state fMRI data from PD subjects. Energy-period characteristics
profiles have been derived using EMD (the proposed method),
STFT and MODWT. Performances of these features in bringing
clinically meaningful information are compared. In PD, changes
in whole-brain functional connectivity have been recently
observed affecting wide-spread cortical regions. For example,
Tang and Eidelberg described a so-called PD-related cognitive
pattern (Eidelberg, 2012) and de Schipper et al. (2018) found
PD-related changes in resting-state functional connectivity in
frontoparietal brain regions. In another study involving motor
and depressive symptoms in PD, Song et al. (2015) found
unique associations of fMRI band signals obtained with EMD
in specific cortical and subcortical brain regions. Qian et al.
(2017) investigated frequency-specific brain networks in PD
with and without depression and found significantly disrupted
nodal topological characteristics (reduced regional efficiency)
in frequency bands 0.02 to 0.05 Hz, spanned by IMF3 (for
data acquired at TR = 2 s) in the visual association cortex in
the non-depressed PD group. We demonstrated that in early-
stage, never-medicated PD there are significant differences in
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the temporal and energy characteristics of several traditional
resting-state networks when EMD is applied, which cannot
be found with STFT and MODWT. Specifically, using STFT,
MODWT, and EMD, we have analyzed the first five components
(decomposition levels) of the ECN, PAR, CCN, PFC, lFPN, and
rFPN networks in terms of their average energy and average
period content and found that the EMD method provided the
most significant differences between PD and NC among the
three methods studied. Most of the obtained EMD IMFs in
PD for PAR, CCN, PFC, lFPN and rFPN showed oscillations
with significant increased period (decreased frequency) and
decreased energy content. Importantly, despite a lack of a priori
modeling or analytic assumption, the data-driven EMD approach
demonstrates a reduction in network frequency and energy in PD
consistent with our hypothesis, and which is consistent with (but
expands upon) other imaging and electrophysiological studies
(Mazzoni et al., 2012; Prashanth and Strafella, 2012; Cagnan
et al., 2015). We have obtained consistent features of energy and
period for all subjects using EMD, as shown by the increased
difference in mean values and the small standard deviations
about the mean values. Though all three analysis methods share
a frequency decomposition feature exhibiting an exact or quasi
dyadic filterbank decomposition, only EMD provides a model-
free, adaptive, and entirely data-driven method to decompose
time series. The computed prediction accuracies using machine
learning provide evidence that EMD is a superior time series
analysis method to classify NC and PD subjects based on energy-
period relationships, which cannot be achieved using Fourier and
wavelet-based methods.

Limitations and Future Directions
General Limitations
For noisy time series with limited duration, the EMD method
could yield non-orthogonal IMFs that give rise to a covariance
matrix with significant non-diagonal contributions. These effects
occur only for the higher IMFs that represent very low
frequencies, however, and are seen when the number of cycles
of these very low frequencies are not sufficiently covered by the
length of the data. In our case, this effect is not an issue because
we high-pass filtered the data to eliminate frequency processes
less than 0.01 Hz and our data length (30 min resting-state
data) covered a large number of periods for the lowest possible
frequency considered (period T = 100 s). However, for other
data lengths of only a few minutes (not an uncommon duration
in fMRI literature) the computation of the higher IMFs (8, 9)
may lead to non-orthogonal components. Thus, resting-state data
with a duration of sufficient length (about 10 min or larger)
should be collected to prevent problems of non-orthogonality
of the higher IMFs if very low frequency information is to
be investigated.

A limitation of EMD is that the IMFs obtained are specific to
the sampling rate (TR in fMRI). Thus, the IMFs do not represent
TR-independent oscillations of the brain but are more related
to a quasi-dyadic bandpass filtering decomposition. Thus, IMFs
for data obtained with a TR = 2 s will usually not correspond
to any IMFs for data obtained at a TR = 0.765 ms, even if

the data come from the same source or subject. For example,
the mean log periods (log(Tk)) obtained for Gaussian white
noise IMFs (indices k = 1 : 7) sampled at TR = 0.765 ms
or TR = 2.0 s yield {1.06,1.48,2.01,2.54,3.09,3.67,4.27} and
{2.02,2.45,2.97,3.50,4.06,4.63,5.23}, respectively. These numbers
are clearly different. Since the underlying process is white
noise, these numbers, however, are still equivalent and can
be converted to unit sampling frequency (1 Hz) by simply
subtracting the value log (TR) resulting in the same exact
values given by {1.33,1.75,2.28,2.81,3.36,3.93,4.53}. For real data,
though, there is no correspondence because of frequency aliasing
which depends on the TR. Even when frequency aliasing
does not occur as in low-pass filtering operation on data,
obtained IMFs are different compared to the unfiltered data.
For example, the mean log periods obtained for the DMN
network IMFs for the Boulder data before and after low-pass
filtering with cut-off frequency 0.25 Hz using a continuous
wavelet filter (time-bandwidth parameter = 50 of the Morse
wavelet with symmetry parameter gamma = 3) yield for the
first few IMFs the values {1.21,1.70,2.37,2.97,3.58,4.15,4.65} and
{1.96,2.58,3.17,3.85,4.38,4.85}, respectively. Note that none of the
log period values obtained before low-pass filtering is identical
or close to any of the values obtained after low-pass filtering
even though only high frequencies above 0.25 Hz have been
removed from the data and the entire low-frequency spectrum
is the same. Thus, IMFs for wide-spectrum data with different
upper frequency value (0.65 Hz vs. 0.25 Hz) do not represent
characteristic TR-independent frequency components of brain
networks in fMRI but are more related to a (quasi) TR-dependent
dyadic decomposition. However, as we have shown in Figure 7,
the frequency decomposition by EMD is not exactly dyadic but
adaptive and depends on the frequency content of the specific
network time series in question. This behavior is quite different
from temporal ICA since independent components representing
low-frequency networks are not related to the sampling rate or a
low-pass filtering operation on the data (if the cut-off frequency
is large enough such as 0.25 Hz).

In this study we used only static variables, namely the
mean value of energy and period derived over instantaneous
time-dependent quantities. Thus, this study does not address
fMRI dynamics occurring in resting-state data. However, EMD
shows also promise in dynamic variables in fMRI, for example
computation of optimal instantaneous window sizes in dynamic
functional connectivity analysis, as we have shown recently
(Cordes et al., 2018).

Artifacts Introduced by EMD
At endpoints and gaps in the data, EMD produces artifacts
because spline interpolation is not possible due to missing local
neighborhood information of data points. In general, higher
order IMFs with larger periods are more affected by missing data
or endpoints. This effect, however, can be easily mitigated by
adding data in the reverse order. This technique is called data
mirroring and provides local neighborhood information so that
EMD does not find singularities at these points. After the IMFs
are obtained, the mirrored data segments are removed from the
IMFs. We excluded these endpoint artifacts in the data.

Frontiers in Neuroscience | www.frontiersin.org 22 May 2021 | Volume 15 | Article 663403

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-663403 May 15, 2021 Time: 15:18 # 23

Cordes et al. Energy-Period Profiles of Brain Networks

Another potential problem leading to artifacts is the so-called
mode mixing. In our analysis, we have not observed mode mixing
in our ICA time series. For more information on this topic, please
see Supplementary Material 5.

Future Directions
Analysis of motion artifacts in the data revealed that the
average motion in the young healthy cohort data was small
(root mean square (rms) motion 0.6 mm or less). Due to
the relatively-small motion and, more importantly, to avoid
contaminating the data by introducing high-frequencies by
common regression approaches (Chen et al., 2017), we have
not carried out any motion correction in this study except the
initial realignment. Furthermore, correction for physiological
(heart rate and respiratory rate) noise or global signal regression
was not performed to keep the preprocessing steps as simple as
possible. However, how the EMD results are affected by motion
regression and by physiological noise correction are important in
the analysis of resting-state data and will be further investigated
in future studies.

CONCLUSION

We have studied resting-state networks using EMD to obtain
instantaneous time-frequency-energy information. IMFs and
associated spatial maps provide a data-driven decomposition
of resting-state networks, free from a priori assumptions
or modeling. We investigated the average energy-period
relationship of IMFs of group ICA networks to better characterize
temporal properties of networks and found that the IMFs of
BOLD data provide characteristic energy-period profiles that
allow a data-driven arrangement of all resting-state networks
when compared to profiles of pure noise. Such an arrangement
is not possible using the STFT and MODWT methods, which are
non-adaptive decomposition methods, although both methods
provide a dyadic frequency decomposition similar (but not
identical) to EMD.

Focusing our temporal analysis on traditional functional
networks (clusters 1 and 2 in Figure 9C) showed that mostly
low frequencies in the 0.02–0.06 Hz range similar to many other
studies (for example, see: Achard et al., 2006) contributed to the
networks, and none of these networks could be associated with
any significant high-frequency content. For the DMN, the largest
supported frequency was 0.21 Hz. Along with these traditional
networks, we also found high-frequency networks (clusters 3,4,5
in Figure 9C) which had a significant energy content above
0.1 Hz up to the Nyquist frequency. These networks have
been rarely studied, some may be related to physiological noise
or represent artifacts, and only sparse information is available
about their function in the literature and further studies are
warranted in this regard.

In a clinical application to early PD, we used EMD to study
the energy and period content of IMFs for typical resting-state
networks. Compared to STFT and MODWT, EMD showed the
largest differences between PD and NC subjects. Furthermore,
most IMFs of the PAR, CCN, PFC, lFPN, and rFPN resting-state

networks were found to have decreased frequency (increased
period) and reduced energy content in PD (compared to NC) as
hypothesized. Using a support-vector machine classifier showed
that EMD achieves highest prediction accuracies. Obtained
results expand the current understanding of network dynamics
in PD, and further studies are planned to investigate network
dynamics and energy-period profiles correlated with clinical
phenotype, disease progression, and response to treatment in
PD. Energy-period relationships using EMD represent a novel
approach to understanding functional networks in PD, which in
turn could lead to development of a clinically useful in vivo assay
of PD network physiology which is urgently needed in this field.
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