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Abstract

Introduction: Reproducibility and replicability of results are rarely achieved for digital

biomarkers analyses. We reproduced and replicated previously reported sample size

estimates based on digital biomarker and neuropsychological test outcomes in a hypo-

thetical 4-year early-phase Alzheimer’s disease trial.

Methods: Original data and newly collected data (using a different motion sensor)

came fromtheOregonCenter forAging&Technology (ORCATECH).Given trajectories

of thosewith incidentmild cognitive impairment andnormal cognitionwould represent

trajectories of the control and experimental groups in a hypothetical trial, sample sizes

to provide 80% power to detect effect sizes ranging from 20% to 50%were calculated.

Results:For the reproducibility, identicalP-values and slopeestimateswere foundwith

both digital biomarkers and neuropsychological test measures between the previous

and current studies. As for the replicability, a greater correlation was found between

original and replicated sample size estimates for digital biomarkers (r= 0.87, P< .001)

than neuropsychological test outcomes (r= 0.75, P< .001).

Discussion: Reproducibility and replicability of digital biomarker analyses are feasible

and encouraged to establish the reliability of findings.

KEYWORDS

early prevention, linear mixed-effect models, mild cognitive impairment, randomized controlled
trials, technology assessment

1 INTRODUCTION

Although billions of dollars are spent on preclinical or early-phase

Alzheimer’s disease (AD) drug development and hundreds of clinical

trials, most drugs are still in the pipeline.1 In this climate, the prospect

of advancing new trials at tremendous additional cost is daunting.

Much of this expense in AD trials lies in their inefficiency. Lengthy

follow-up and large sample sizes are required to detect treatment

effects with sufficient statistical power. A review concludes that exist-

ing 2-year AD trials often recruit 1200 to 2300 participants to reli-
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ably determine the efficacy of a trial.2 Approximately 30,000 partici-

pants were required for new drugs in the pipeline in 2020.1 With the

increases in AD cases and costs burdening the health-care system and

caregivers, newmethodologies are needed to facilitate the progress of

AD research.

Digital biomarkers may offer a solution to improve the efficiency

of AD trials. Various digital biomarkers have been shown to corre-

late with neuropsychological outcomes, imaging markers of neurode-

generation, and post mortem neuropathology.3 For example, in-home

gait speed, sleep, and computer use collected from infrared passive
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sensors (for gait or sleep analysis) or computer monitoring software

(for computer use) were associated with global cognition, memory,

attention, and processing.4–6 Computer usage collected from software

was associated with hippocampal and medial temporal lobe volumes

in cognitively intact older adults.7 A composite, as well as individ-

ual measures of digital biomarkers (mobility, cognition, socialization,

and sleep) was correlated with greater neuritic plaque severity and

Braak score.3 We previously demonstrated that these biomarkers can

differentiate older community-dwelling adults with normal cognitive

function from those with progression to mild cognitive impairment

(MCI).8,9 Importantly, using these digital biomarkers and the subject-

specific thresholds derived from data collected during a short duration

of time at baseline, markedly lower sample sizes (compared to con-

ventional cognitive tests) were projected to be needed in hypotheti-

cal preclinical AD trials.10 Fewer than 100 participants are needed to

detect a 30% effect size with 80% power over 4 years using a single

digital biomarker, compared to 1912 participants needed with a cogni-

tive test. In other words, the digital markers derived from the in-home

sensor platform yielded a> 10-fold reduction in sample size needed to

obtain required power. These promising results may change the design

of future interventions and drug trials. However, the reproducibility of

the findings needs to be carefully evaluated before adopting this new

paradigm.

Reproducibility and replicability in science establishes the reliabil-

ity and validity of findings and experiments. According to the National

Academies of Sciences, Engineering, and Medicine, the definition of

reproducibility refers to “instances in which the original researcher’s

data and computer codes are used to regenerate the results,” while

replicability refers to “instances in which a researcher collects new

data to arrive at the same scientific findings as a previous study.”11 A

replicability crisis has been noted, suggesting that researchers are fre-

quently not able to reproduce or replicate the findings generated from

other researchers.12 Evenwhen results are replicated,most replication

effects are smaller than the original study. Many studies point out that

replication is susceptible to biases caused by the number of subjects,

the selection of subjects, and publication bias.13,14 Thus, reproducing

and replicating findings from previous studies has become important

to increase the rigor of science and reduce study biases with a priori

analytical plans.

The purpose of this work was to reproduce and replicate the study

conducted by Dodge et al.,10 by estimating the sample sizes needed

for a hypothetical 4-year preclinical AD trial with three measurement

outcomes: (1) trajectories of in-home digital biomarkers using the data

as observed (continuous outcomes), (2) trajectories of in-home dig-

ital biomarkers using the likelihood of experiencing deviations from

subject-specific-thresholds defined at baseline as outcomes (subject-

specific threshold model), and (3) conventional neuropsychological

tests obtained using standard methods (i.e., annual assessment). The

current analyses used the original data (collected between 2007 and

2012) from the above study to reproduce the results and also aimed to

replicate the original results by using new digital biomarker data (col-

lected between 2015 and 2018) collected with a new motion sensor.

To evaluate the success of replication, we adopted the method of the

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the efficacy of

existing Alzheimer’s disease (AD) trials (number of sub-

jects and duration of trials) and the reproducibility and

replicability of these studies. While many studies have

reported the sample size needed for various assessments

adopted in the AD trials (digital biomarkers; neuropsy-

chological tests), few publications investigated the repro-

ducibility and replicability of findings.

2. Interpretation: Our study demonstrates that sample

sizes needed with outcomes generated with high-

resolution digital biomarkers (walking speed and com-

puter use) are reproducible and replicable in early-phase,

hypothetical AD trials, while the replicability of conven-

tional neuropsychological tests is less robust.

3. Future directions: The article proposes a promising

paradigm of using digital biomarkers for AD research

because of its reliability in detecting early behavioral

changes beforemild cognitive impairment. The replicabil-

ity of digital biomarker analysis is encouraged to increase

the rigor of future AD science.

Open Science Collaboration to compare the concordance between the

original and replicated findings.15

2 METHODS

2.1 Participants

Data came from a longitudinal aging study, the Oregon Center for

Aging & Technology (ORCATECH) Life Lab (OLL). Details of the proto-

col and in-home sensor platformhavebeenpublished elsewhere.16 The

study protocol was approved by the Oregon Health & Science Univer-

sity Institutional Review Board (IRB #2765). All participants provided

written informed consent. In both the original and new studies, the

inclusion criteria were participants aged 65 and above, living indepen-

dently, and not demented. The original data were collected between

2007 and 2012. The new data used to examine replicability were col-

lected between 2015 and 2018. Forty-one older adults (36%) included

in the new study were also in the original study (Figure 1). The diagno-

sis ofMCIwas defined as a Clinical Dementia Rating (CDR) score of 0.5

collected during the annual in-home clinical evaluation.

2.2 Home-based digital biomarkers

The passive infrared (PIR) motion sensors were used to estimate par-

ticipant walking speed. For both studies, daily walking speed was
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F IGURE 1 Comparison of the original and new studies

estimated using the time it would take a participant to walk beneath

four motion sensors aligned and evenly spaced on the ceiling. The

validity of using PIR motion sensors in measuring gait speed was

tested in a previous study.17,18 While in the original study X10 (https:

//www.x10.com/ms16a.html) motion sensors were used, NYCE (www.

nycesensors.com/product/motion-sensor) motion sensors were used

in the new study. The X10 motion sensors report the presence on a

continuous basis, and the NYCE motions sensors report the beginning

time and ending time of detected presence. A more in-depth descrip-

tionof thealgorithmused toextractwalking speed fromthePIRmotion

sensors has been discussed previously.18 Daily home computer usage

was collected using commercial software (WorkTime) installed on par-

ticipants’ desktops.8 All the sensor data were collected using a wire-

less hub computer (original study: Globalscale DreamPlug, new study:

Raspberry Pi 3 Model B) placed in each home. Sensor data were auto-

matically uploaded from each hub computer to secure ORCATECH

servers. Data collected after MCI incidence were excluded. All data

were unobtrusively and continually collected with an average duration

of 900 days (range: 97–1123 days) per participant in the current study.

2.3 Annual neuropsychological tests

Seven neuropsychological tests were collected from annual home

visits, including: Category Fluency (animal + vegetable) (language-

based executive function),19 Trail Making Test A,20 Trail Making

Test B (executive function),20 Wechsler Adult Intelligence Scale–Digit

Symbol (attention, processing speed, working memory, visuospatial

processing),21 Logical Memory Immediate Recall (learning),22 Logi-

cal Memory Delayed Recall (memory),22 and Boston Naming Test

(language).23

2.4 Statistical analysis

First, longitudinal linear mixed effects models were fit to examine the

slope difference between cognitively intact and incident MCI groups

on continuous variables (walking speed, walking speed variability,

computer usage, all neuropsychological tests) without using subject-

specific thresholds. Daily digital biomarker data (walking speed, com-

puter usage) were processed as weekly mean and variability data,

while neuropsychological test data were processed as yearly data. The

models included random intercepts with group (cognitively normal vs.

MCI converters) and time (days from baseline) being fixed-effect vari-

ables, and an unstructured covariance structure. Including non-linear

terms and/or random slopes did not improve the model fit based on

the Bayesian information criteria (BIC); therefore, we only included

random intercepts without non-linear terms in the models. Using the

missing at random (MAR) assumption, where missingness depends on

observed variables (a reasonable assumption for our data), the mod-

elling approach we used (linear mixed effects models) provided valid

estimates.

The second modelling approach was to generate individual-specific

thresholds using subject-specific baseline distribution on walking

speed, walking speed variability, and computer usage. We calculated

each participant’s distributions of weekly mean walking speed, weekly

walking speed variability, and weekly computer usage using the data

observed during the first 90 days. This step generated individual-

specific distributions of each activity and several measures of their

variability (such as the subject-specific lowest 10th, 20th, 30th per-

centile, etc.) at baseline. We then defined weekly walking speed, walk-

ing speed variability, and computer usage data as either belowor above

pre-defined thresholds (YES/NO; 0/1) for eachweek using the baseline

thresholds defined above. We used generalized linear mixed effects

models with outcomes being the likelihood of experiencing values

below the “subject-specific” lowest 10th, 20th, 30th, 40th, and 50th per-

centile thresholds (forwalking speed and computer usage) and the like-

lihood of experiencing values above the “subject-specific” highest 60th,

70th, 80th, and 90th percentile thresholds (for walking speed variabil-

ity) using a logit link. Generalized linear mixed effects models included

group (cognitive normal vs. MCI converters) and time (days from base-

line) variables as fixed-effect variables and a random intercept because

as with the mixed effects models, model fitness (BIC) did not improve

by adding random slopes. This approach estimated the likelihood of

having individual-specific low-performance thresholds over time. We

expected that those who develop clinical MCI later were more likely

to experience worse outcomes over time defined by subject-specific

threshold (e.g., low threshold for computer usage, high threshold for

walking speed variability). Analytical approaches used were described

in detail in the original study.10

2.4.1 Sample size calculation

Percentages of effect sizes (20%, 30%, 40%, and 50%) were used to

estimate sample sizes needed for a hypothetical 4-year trial to achieve

80% power. Here, a 30% effect size indicated the hypothetical pre-

clinical AD trial could reduce 70% of the discrepancy on the out-

comebetween treatment and placebo groups. The percentage of effect

sizes followed previous studies estimating the sample size needed for

https://www.x10.com/ms16a.html
https://www.x10.com/ms16a.html
http://www.nycesensors.com/product/motion-sensor
http://www.nycesensors.com/product/motion-sensor
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TABLE 1 Baseline characteristics of the new data collected between 2015 and 2018 (the same data for the original study collected between
2007 and 2012 are included in the supporting information)

All Cognitively normal MCI converter

Characteristics [n (%)] 114 (100) 96 (84.2) 18 (15.8)

t-statistics/χ2-
statistics P

Age [mean (SD)] 84.54 (7.95) 83.84 (7.99) 88.13 (6.92) t(109) = -2.13 .04

Female [n (%)] 86 (75.4) 71 (74.0) 15 (83.3) χ2 (1) = 0.42 .52

Years of education [mean (SD)] 15.66 (2.56) 15.73 (2.62) 15.33 (2.28) t(109) = 0.60 .55

Duration of follow-up in days 898.52 (246.85) 927.10 (224.60) 734.60 (308.70) t(99) = 2.89 .005

Duration of follow-up in days beforeMCI

incidence

641.40 (476.85)

In-home continuouslymonitored data

Meanwalking speed (cm/s) 68.33 (21.47) 69.32 (21.21) 62.51 (22.81) t(101) = 1.14 .26

Mean daily computer usage (min) 109.89 (124.58) 110.00 (116.50) 109.60 (161.70) t(95) = 0.01 .99

Neuropsychological tests

Category Fluency (animals+ vegetables) 33.32 (10.00) 35.08 (9.48) 24.22 (7.51) t(109) = 4.58 <.001

Trail Making Test A 42.11 (16.13) 39.98 (14.69) 52.67 (19.08) t(105) = -3.17 .002

Trail Making Test B 102.61 (48.05) 95.84 (41.91) 137.70 (62.59) t(97) = -3.35 .001

Digit Symbol 41.81 (10.63) 42.84 (10.64) 35.38 (8.36) t(92) = 2.41 .02

LogicalMemory Immediate Recall 14.43 (4.19) 14.92 (3.81) 11.89 (5.18) t(109) = 2.91 .004

LogicalMemory Delayed Recall 13.70 (4.42) 14.40 (4.10) 10.11 (4.39) t(109) = 4.01 <.001

BostonNaming (30 items) 27.06 (2.85) 27.39 (2.66) 25.39 (3.24) t(108) = 2.82 .006

Abbreviations:MCI, mild cognitive impairment; SD, standard deviation.

preclinical AD trials.24 Using five parameters derived from the mod-

els mentioned above (intercept, group intercept, slope estimate, group

effect on slope and variance, and covariance matrices of these vari-

ables) and a parameter of time (1456 days = 7 days x 52 weeks x 4

years), Monte Carlo simulation of linear mixed effect models and gen-

eralized linear mixed effects models were conducted. A rejection rate

(i.e., null hypothesis was rejected at alpha = 0.05) at 80% over 1000

iterations of modelling simulation was used to determine the sample

size estimates.

2.4.2 Reproducibility indices

Reproducibility is “the ability to generate the same experiments or

findings based on the same approach and data.”11 The same dataset,

analytical approaches, and code from the original study were used to

examinewhether identical findings could be found.P-values, slope esti-

mates, and sample size estimates were compared between the original

and reproduced results. Analyses were conducted by an independent

(from theoriginal study) analyst (C.-Y.W) using the same software pack-

age (SAS).

2.4.3 Replicability indices

Replicability is “the ability to replicate study results using newly col-

lecteddata.”11 Newly collecteddatawereused toexaminewhether the

findings couldbe replicated. Four indiceswereused toexamine the suc-

cess of replicationbetween theoriginal andnewresults: (1) the concor-

dance of a significant alpha, P-value (P < .05) using Cohen’s kappa, (2)

the concordance of slope estimates using Spearman’s correlation, (3)

the percentage of estimates where original slope estimates lay within

the 95% confidence interval (CI) of new estimates, and (4) the con-

cordance of sample size estimations using Spearman’s correlation.15

Because 41 participants were in both the original and new studies (Fig-

ure 1), we conducted sensitivity analyses by including a covariate indi-

cating the overlapped participants and the interaction with time in the

new study and examined whether the results changed. The main con-

clusions did not differ; therefore, we report the results without these

covariates in the subsequent section.

3 RESULTS

Table 1 shows the baseline characteristics of participants from the new

data. The same data for the original study derived from the previous

publication is included in supporting information. Among 114 older

adults cognitively healthy at entry, 18 (15.7%) developed MCI during

the follow-up period. The mean age of participants in the original and

new studies were 84.42 (standard deviation [SD] = 5.07) and 84.54

(SD=7.95), respectively. In the original study 15.1%of the participants

were male, and in the new study 24.6% were male. The duration of

follow-up was 3.8 years in the original study and 2.5 years in the new

study. A total of 11,822 and 7,348 weeks of walking speed and com-

puter usage data were used in the current analysis. The proportion of
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F IGURE 2 95% confidence interval (CI) of original and new slope estimates of digital biomarkers.WS, walking speed; Com_use, computer
usage;WS_var, walking speed variability;WS_10, walking speed: likelihood of 10th percentile low;WS_50, walking speed: likelihood of 50th

percentile low; Com_30, computer usage: likelihood of 30th percentile low; Com_40, computer usage: likelihood of 40th percentile low;WS_var_70,
walking speed variability: likelihood of 70th percentile high;WS_var_80, walking speed variability: likelihood of 80th percentile high.

missing data for the weekly walking speed and computer usage data

was 6.1% and 22.4%, respectively.

3.1 Reproducibility results

The original study was reproducible. Identical P-values, slope esti-

mates, and sample size estimateswere foundwithbothdigital biomark-

ers and neuropsychological test measures.

3.2 Replicability results

3.2.1 Digital biomarkers

Table 2 shows the replicated results of digital biomarkers. A substantial

agreement in the significance of P-values was found between original

and new results in which eight out of nine P-values agreed in signifi-

cance (Cohen’s kappa = 0.78, P = .32; walking speed variability likeli-

hood of having 70th percentile: P-value of 0.07 in newdata, and P-value

of 0.0009 in old data). A strong correlationwas found between original

and new slope estimates (interaction parameters; Spearman’s r= 0.97,

P< .001). All theoriginal slopeestimateswerewithin the95%CIof new

slope estimates (Figure 2).

3.2.2 Neuropsychological tests

Table 3 shows the replicated results of neuropsychological tests. A high

agreement in the significance of P-values was found between the orig-

inal and new results. All seven P-values agreed in significance (Cohen’s

kappa = 1). A moderate correlation was found between the original

and new slope estimates (interaction parameters; Spearman’s r= 0.68,

P = .09). All the original slope estimates were within the 95% CI of the

new slope estimates (Figure 3).

3.3 Sample size estimates

3.3.1 Digital biomarkers

A strong correlation was found between the original and new sam-

ple sizes (Spearman’s r = 0.87, P < .001). As expected, when the

group differences were statistically significant (i.e., higher signal-to-

noise ratio indicated by P-value listed the last column of Table 2),

the estimated sample sizes were similar regardless of using the orig-

inal or the new data sets. On the other hand, estimated sample sizes

can differ largely for the outcomes for which we did not find sig-

nificant group differences. For example, the likelihood of having low

computer usage time, defined using subject-specific computer usage

time at baseline, exhibited significant group differences in trajecto-

ries; hence, the sample sizes needed to achieve a 30% effect size with

80% statistical power in original and new studies were 26 and 38 sub-

jects, respectively. Similarly, for the likelihood of having high walking

speed variability, 86 and 52 subjects were needed in the original and

new studies, respectively. On the other hand, when walking speed—

which did not exhibit statistically significant group differences—was

analyzed in linear mixed effects models (i.e., non–subject-specific

models), then the estimated sample size differed largely: 41,156

versus 2,739.
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TABLE 3 Replicability results of neuropsychological test outcomes

Results from new data Results from original data

Clinical trial sample size estimate (estimation

based on 4 years of follow-up)

Clinical trial sample size estimate (estimation

based on 4 years of follow-up)

P-values of the
interaction term

Outcome

Treatment

effect size

20%

Treatment

effect size

30%

Treatment

effect size

40%

Treatment

effect size

50%

Treatment

effect size

20%

Treatment

effect size

30%

Treatment

effect size

40%

Treatment

effect size

50%

New

data

Original

data

Category Fluency

(animal+ vegetable)

25696 11421 6424 4112 8050 3578 2013 1288 .66 .43

Trail Making Test A 8337 3705 2085 1334 6800 3022 1700 1088 .45 .39

Trail Making Test B 9675 4300 2419 1548 7500 3334 1876 1200 .49 .43

Digit Symbol 13677 6079 3420 2189 75900 33734 18976 12144 .65 .80

LogicalMemory

Immediate Recall

1593 708 399 255 4900 2178 1226 784 .09 .32

LogicalMemory Delayed

Recall

2058 915 515 330 4300 1912 1076 688 .14 .28

BostonNaming (30

items)

19234 8549 4809 3078 26800 11912 6700 4288 .59 .66

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Cat_Flu TMT_A TMT_B Dig_Sym LMIR LMDR Boston

Sl
op

e 
es

tim
at

e

Neuropsychological test outcomes

Original study New studyF IGURE 3 95% confidence interval (CI) of
original and new slope estimates of
neuropsychological tests. Cat_Flu, Category
Fluency; TMT_A, Trail Making Test A; TMT_B,
Trail Making Test B; Dig_Sym, Digit Symbol;
LMIR, Logical Memory Immediate Recall;
LMDR, Logical Memory Delayed Recall; Boston,
Boston Naming Test.

3.3.2 Neuropsychological tests

A moderate correlation was found between original and new sample

sizes (Spearman’s r= 0.75, P< .001).

4 DISCUSSION

To use digital biomarkers in clinical trials as key outcomes and formon-

itoring disease progression, replicating results using different sensors

and different participants is important. The results of this study sug-

gest that the sample sizes neededwith outcomes generated using high-

resolution digital biomarkers with subject-specific threshold models

are reproducible and replicable. Clinically relevant activity collected

passively by an in-home sensor platform which can generate subject-

specific thresholds within a short duration of time (e.g., 90 days) are

viable complements to future AD and related trials to reduce cost and

increase the efficiency of trials.

The extent of replication was different in two outcome measures.

One digital biomarker outcome (walking speed variability: likelihood of

70th percentile high;P< .001)was significant in theoriginal studywhile

the replication finding (P= .07) was not significant at the pre-specified

alpha level. This was the only replication criteria for which a digital

biomarker performed worse than the cognitive tests. The National

Academies of Sciences, Engineering andMedicine and others have sug-

gested that the significance of P-value should not be overly interpreted

when the P-value is close to .05 in the replicability studies.11,25 Instead,

a combination of multiple replicability indices can better inform the
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reliability of the study. Looking at the multiple replicability criteria,

there was more variation in the replicability results of neuropsycho-

logical tests (moderate correlations in slope and sample size estimates)

than the digital biomarkers (strong correlations in slope and sample

size estimates). This variability may come from multiple sources, such

as practice or learning effects because participants have been admin-

istered the cognitive tests over several years. Other factors, includ-

ing the timing of the assessment (morning vs. afternoon) or the test-

ing environment may affect consistency. This suggests a further value

of the continuous everyday digital measures for longitudinal observa-

tional studies and clinical trials, inwhich the unobtrusive passive digital

metrics provide objective responses that are not susceptible to classic

learning effects.

Although from correlational statistics we showed replicability,

we noticed relatively large discrepancies in estimated sample sizes

between original and new study results in some neuropsychological

tests and digital biomarkers. While Trail Making Tests A and B (TMT-

A, TMT-B) demonstrated excellent replicability in sample sizes, the

results of Digit Symbol and Category Fluency varied between origi-

nal and new studies. Plausibly, across older adults with subtle cognitive

decline, the impairment in attention or language executive (Digit Sym-

bol; Category Fluency) are more variable while the impairment in the

complex executive function (TMT-A, TMT-B) are more prevalent and

progressive. As for the digital biomarkers, we found significant group

differences in trajectories for computer usage and walking speed vari-

abilities when subject-specific threshold models were applied, regard-

less of original or new data sets. For these outcomes, we also found

high replication in estimated sample sizes.We recommend future real-

worldpreclinicalADtrials toadopt subject-specific thresholdmodels10

as proof-of-concept studies.

The digital measures can also be considered to complement episod-

ically captured cognitive tests by providing a measure of functional

change that can augment interpretation of the conventional assess-

ment. Thus, digital biomarkers offer advantages beyond reducing sam-

ple sizes. For early phase trials, the instant and delayed effects of

drugs can be measured through high-resolution digital biomarkers,

accompaniedwithmedication adherencemeasures using an electronic

pillbox.26,27 Assessment of function at home may be useful in inter-

preting cognitive tests on a particular testing day such as the effect of

poor sleep preceding testing.5 Further, these digital biomarkers rep-

resent changes in health and function, which can be a surrogate mea-

sure of biological disease progression7 and uncover the unclear mech-

anisms of drug ingredients in delaying cognitive decline. Because these

digital biomarkers reflect ecologically valid real-time conditions, this

paradigm may also indicate or minimize the potential harm that trials

bring to participants (e.g., overdose, side effects).

There are some limitations in these studies. We had a small sample

size for both original and new data sets; therefore, it was not feasible

to exclude 41 overlapping subjects for the statistical analyses. Notably,

the 41overlapping subjects had different sensorswhen contributing to

the replication cohort and thus were contributing different data. Our

sensitivity analysis also showed that using a model with an indicator of

these overlapping subjects did not alter the results. Compared to the

original study, this new study has a shorter average duration of follow-

up. This may explain the attenuated P-values in the new study com-

pared to the original study. Oftentimes, a shorter follow-up duration

may require a larger sample size to achieve sufficient statistical power.

Yet, the replication results of digital biomarkers are similar to the origi-

nal study in subject-specific threshold models, especially in computer

usage. This suggests that digital biomarkers may differentiate cogni-

tively intact versus MCI-emergent cases even earlier (2–3 years) than

the original study (4 years) with a similar sample size. Another limita-

tion is the method to collect computer usage time. Computer usage

is estimated by the total time spent on desktop or laptop computers.

As personal devices diversify and increase in popularity among the

aging population, future studies will need to collect total time in using

a potential array of computing devices. Because these measures are

individualized, the difference in devices used across participants may

not make a difference in intra-individual use metrics over time as long

as the same device use profile is retained within a participant during a

study. This issue will require empirical analysis with new data. Finally,

determining consistency between two inferences can be approached

in many ways, such as heterogeneity tests between original and new

studies.

In summary, this study demonstrates that the sample sizes needed

using in-home digital biomarkers with subject-specific thresholds

as outcome measures are replicable. Using several in-home digital

biomarkers to track neurological changes over time may not only

improve the efficiency of trials, but at the same time offer additional

value such as indicating adverse effects, providing ecologically valid

functional performance data, and further facilitating the study of bio-

logical mechanisms.
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