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A stochastic model explains 
the periodicity phenomenon 
of influenza on network
Hong Yang1,2 & Zhen Jin1,2*

Influenza is an infectious disease with obvious periodic changes over time. It is of great practical 
significance to explore the non-environment-related factors that cause this regularity for influenza 
control and individual protection. In this paper, based on the randomness of population number and 
the heterogeneity of population contact, we have established a stochastic infectious disease model 
about influenza based on the degree of the network, and obtained the power spectral density function 
by using the van Kampen expansion method of the master equation. The relevant parameters are 
obtained by fitting the influenza data of sentinel hospitals. The results of the numerical analysis 
show that: (1) for the infected, the infection period of patients who go to the sentinel hospitals is 
particularly different from the others who do not; (2) for all the infected, there is an obvious nonlinear 
relationship between their infection period and the visiting rate of the influenza sentinel hospitals, the 
infection rate and the degree. Among them, only the infection period of patients who do not go to the 
sentinel hospitals decreased monotonously with the infection rate (increased monotonously with the 
visiting rate), while the rest had a non-monotonic relationship.

Influenza is an respiratory infection caused by a virus. Since the outbreak of the Spanish flu in 1918, there has 
been a large amount of literature on influenza, among which mathematical model is a very important tool for 
studying influenza1–4. The traditional deterministic mean-field model5–8 regards different populations as uni-
formly mixed and ignores the differences in the contact process and behavior among individuals. In general, this 
contact process can be viewed as a network in which nodes represent individuals and edges represent contacts 
between individuals. Network has its unique topology structure, such as degree k (i.e. the number of edges 
connecting to one node), degree distribution (i.e. P(k) denotes the probability that a randomly chosen node in 
the network has degree k), clustering coefficient (i.e. the average probability that two neighbors of a node are 
themselves neighbors) and so on9,10. The topological structure of complex network may lead to some results of 
overthrowing the traditional, for instance, there is no epidemic threshold in a scale-free network which follows 
a degree distribution of power-law ( P(k) ∝ k−γ when 1 < γ ≤ 3 ), for the SIS model11 raised by Pastor. So far, 
there are many epidemic disease modelling methods based on different features of the network, such as pairwise 
model12, edge-based compartmental modelling13, degree-based modelling14 and effective degree modelling15.

The recurrent of epidemic brings a big challenge for people to treat the disease16. Many diseases exhibit the 
phenomenon of annual, biennial, multi-annual and irregular oscillations, such as measles, whooping cough, 
influenza and so on. The prediction of these diseases by using deterministic dynamic model satisfactorily both the 
internal mechanism and persistence properties exhibited by case report remains elusive, especially the multi-year 
periodicity phenomenon, which can be regarded as the comprehensive results of nonlinear dynamics, random 
factors and seasonal forcing17. Many works of literature related to seasonal cases using the deterministic dynamic 
model where the contact rate is temporal18,19, and the period is artificial, yet, the endogenous period is not always 
fixed at 1 year in reality. By using some methods, such as Fourier transform and wavelet analysis, which are used 
in the following part, we can get the endogenous frequency of these case data, which better conforms to the 
actual situation and helpful in controlling a pandemic.

In addition, noise is usually considered a nuisance, yet it is unavoidable in reality. However, many researches 
show that it may play a constructive role. Noise interacting with the deterministic dynamic system may lead to 
some different results: (1) extinction20, the disease may die out even though the basic reproduction number R0 
is larger than one in the deterministic system; (2) fluctuation21, the autonomous system is allowed to remain 
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oscillation around the unique nonzero stable equilibrium, which is one of the main themes of this paper; (3) 
stochastic phase transition22, the system is caused to shift between different attractors.

Distinction from the general Susceptible-Infectious-Recovered-Susceptible model for influenza, which is 
abbreviated as SIRS, we divide the infected people into two part: ones who go to the sentinel hospitals (H) and 
the others (I) who do not. In this paper, we consider the SHIRS model based on the degree to describe analytically 
the fluctuations produced by demographic stochasticity, in which, the method called van Kampen’s system-size 
expansion23 is used. The power spectral densities (PSD) of the number of infected and susceptible individuals 
can be derived to describe the effect of stochastic amplification and heterogeneity by using this method, which 
based on individual-based formulation has been applied to epidemiology24,25. However, the researches which 
involve in the relevant work on network are still relatively few.

The influenza week data from the sentinel hospitals of Taiyuan since 2013–2016 have a period of semi-annual 
to annual through wavelet method26,27 illustrated by Fig. 1. To investigate the relationship between the multi-span 
phenomenon of period and network structure, we first develop a fully stochastic heterogeneous SHIRS model. 
Then, the PSD is obtained from the Langevin equations by Fourier transformation which provides a prediction 
for the dominant period of the flu, and the sensitivity of parameters is analyzed, in which the values of the cor-
responding parameters are obtained from the part of data mentioned above by using least square estimation. 
Finally, we discuss the limitations and extensions of this method. Our analysis sheds new light on the importance 
of heterogeneity for influenza outbreaks and persistence.

The stochastic SHIRS model on network
Stochastic modelling.  In this paper, we divide the population N into four classes, in which S denotes the 
number of individuals who are susceptible to disease, but are not yet infected at the moment; H or I represents 
the size of those who are infected with the disease and are able to transmit disease to the susceptible people by 
contacting with them, the only difference between them is whether to go to the sentinel hospitals, in which H 
denotes the infected people who have gone to the sentinel hospitals, yet I not; R is the size of people who have 
recovered from the infected and immune to the disease.

The number of contacts (i.e. the degree) is extraordinary different because of the diversity of factors between 
people like age, profession and so on. For example: people in school due to the factors of enormous population 
density has a higher degree. So degree is a important indicator to depict the heterogeneity. Similar to the model-
ling method proposed by Pastor11,14, we mark off the whole population into n groups according to the degree, 

Figure 1.   Temporal periodicity analysis of influenza in Taiyuan using the wavelet method. (a) Weekly infective 
number of influenza from 2013 to 2016 of Taiyuan sentinel hospitals. (b) The wavelet spectrum analysis 
corresponds to time series of the data of (a). High power values are colored in yellow, orange and cyan denote 
intermediate power, blue denotes low one. Note the black line is the 95% confidence level. Only patterns within 
these lines which can neglect the edge effects are considered reliable. (c) The average wavelet spectrum (blue 
line) and the corresponding 95% confidence contour(red).
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i.e. N = N1 + ...+ Nn , in which, Nk is the size of population with degree k, (k = 1, 2, ..., n) . P(k) = Nk
N  is the 

degree distribution of the network, 〈k〉 is the mean degree, i.e. �k� =
n
∑

k=1

kP(k) , similarly, �k2� =
n
∑

k=1

k2P(k) is the 

secondary moment of the degree distribution.
Based on the classification of disease we mentioned above, people in one group can be divided to four classes: 

Sk ,Hk , Ik ,Rk , in which Sk denotes the number of the susceptible people with degree k, and Hk , Ik ,Rk have the 
similar meanings. We assume the total population size and degree distribution do not change with time, which 
implies that the Nk is a constant. By using the relationship expression: Rk = Nk − Sk −Hk − Ik , we can obtain 
the recovered individual Rk under the new (Sk ,Hk , Ik) framework, so the state of the system can be defined by 
the three integers (Sk ,Hk , Ik).

Though the deterministic ordinary differential equation can be viewed as the approximate solution of the 
stochastic differential equation when the number of population is large, the stochastic modelling method is more 
accurate, in which continuous time Markov modelling is used in our paper.

At first, we should understand the whole transfer processes of the disease and the corresponding transfer 
rate, which has been listed in Table 1. Figure 2 has shown the schematic diagram of our model, from which we 
can know people in one compartment may enter into another due to the three processes:

Infection  Sk may become infected by contacting with a infected individual in any group. i.e. Sk
ρβkSkθ−−−−→Hk , 

Sk
(1−ρ)βkSkθ−−−−−−−→Ik , where ρ is the proportion of infected people who have go to the sentinel hospitals, β is the 

probability of infection per contact, if the correlation of the states of the diseases and the degree have been 
neglected, under this condition, θ which means the probability of any chosen edge being connected to infected 
has the following form:

Because of the Markov property, the current system state just depends on the one of last time, so we use T(δ′|δ) 
to denote the transfer rate of the system state changing from δ to δ′ , then the transition rate of the infection 
process can be written as:

(1)θA �

n
∑

m=1

mHm

n
∑

m=1

mNm

, θI �

n
∑

m=1

mIm

n
∑

m=1

mNm

, θ � θH + θI ,

Table 1.   List of transition rates.

Event Transition Rate

Infection
Sk → Sk − 1 , Hk → Hk + 1 ρβkSkθ

Sk → Sk − 1 , Ik → Ik + 1 (1− ρ)βkSkθ

Recovery
Hk → Hk − 1 γ1Hk

Ik → Ik − 1 γ2Ik

Lose immunity Sk → Sk + 1 α(Nk − Sk −Hk − Ik)
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Figure 2.   Schematic diagram of the SHIRS based on degree, the parameters meaning are listed in Table 2.
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Recovery  Infective people can move out this compartment because of recovery over time, Hk
γ1−→Rk , Ik

γ2−→Rk , 
where γ1 and γ2 are recovery rates. This transition rate can be denoted as:

Lose immunity  The recovered people will lose immunity after some time, Rk
α−→Sk , in which, α is the rate of lose 

immunity. The corresponding transition rate of this process is:

Now, this continuous time Markov process can be modeled using a master equation, which has the general 
form:

This equation describes the process of state transition of the system: some system states shift from δ′ to δ , mean-
while δ changes to the other system state δ′ , p(δ, t) is the probability of the system state in the δ at time t. The 
explicit form of the master equation involving the three processes is given below:

The deterministic limit system.  From the last section, the master equation has been obtained, which 
contains all information of the system, in this section, we will study the deterministic limit system correspond-
ing to the (6).

For the mean values

may be obtained by multiplying Eq. (6) by Sk ,Hk , Ik in turn, and then summing over all the states of the system, 
the mean field theory takes the explicit form: 

 When we substitute these transition rates of Eqs. (2)–(4) into the above and introduce the corresponding density 
variables in the limit Nk → ∞,

(2)
T(Sk − 1,Hk + 1, Ik|Sk ,Hk , Ik) = ρβkSkθ ,

T(Sk − 1,Hk , Ik + 1|Sk ,Hk , Ik) = (1− ρ)βkSkθ .

(3)
T(Sk ,Hk − 1, Ik|Sk ,Hk , Ik) = γ1Hk ,

T(Sk ,Hk , Ik − 1|Sk ,Hk , Ik) = γ2Ik .

(4)T(Sk + 1,Hk , Ik|Sk ,Hk , Ik) = α(Nk − Sk −Hk − Ik).

(5)
dp(δ, t)

dt
=

∑

δ′ �=δ

T(δ|δ′)p(δ′, t)−
∑

δ′ �=δ

T(δ′|δ)p(δ, t).

(6)

dp(Sk ,Hk , Ik , t)

dt
= T(Sk ,Hk , Ik|Sk + 1,Hk − 1, Ik)p(Sk + 1,Hk − 1, Ik , t)

+ T(Sk ,Hk , Ik|Sk + 1,Hk , Ik − 1)p(Sk + 1,Hk , Ik − 1, t)

+ T(Sk ,Hk , Ik|Sk ,Hk + 1, Ik)p(Sk ,Hk + 1, Ik , t)

+ T(Sk ,Hk , Ik|Sk ,Hk , Ik + 1)p(Sk ,Hk , Ik + 1, t)

+ T(Sk ,Hk , Ik|Sk − 1,Hk , Ik)p(Sk − 1,Hk , Ik , t)

− [T(Sk − 1,Hk + 1, Ik|Sk ,Hk , Ik)+ T(Sk ,Hk , Ik − 1|Sk ,Hk , Ik)

+ T(Sk ,Hk − 1, Ik|Sk ,Hk , Ik)+ T(Sk − 1,Hk , Ik + 1|Sk ,Hk , Ik)

+ T(Sk + 1,Hk , Ik|Sk ,Hk , Ik)]p(Sk ,Hk , Ik , t).

�Sk� =
∑

Sk ,Hk ,Ik

Skp(Sk ,Hk , Ik , t), �Hk� =
∑

Sk ,Hk ,Ik

Hkp(Sk ,Hk , Ik , t),

�Ik� =
∑

Sk ,Hk ,Ik

Ikp(Sk ,Hk , Ik , t)

(7a)

d�Sk�
dt

=
∑

Sk ,Hk ,Ik

{ − T(Sk − 1,Hk , Ik + 1|Sk ,Hk , Ik)p(Sk ,Hk , Ik , t)

− T(Sk − 1,Hk + 1, Ik|Sk ,Hk , Ik)p(Sk ,Hk , Ik , t)

+ T(Sk + 1,Hk , Ik|Sk ,Hk , Ik)p(Sk ,Hk , Ik , t)},

(7b)

d�Hk�
dt

=
∑

Sk ,Hk ,Ik

{T(Sk − 1,Hk + 1, Ik|Sk ,Hk , Ik)p(Sk ,Hk , Ik , t)

− T(Sk ,Hk − 1, Ik|Sk ,Hk , Ik)p(Sk ,Hk , Ik , t)},

(7c)

d�Ik�
dt

=
∑

Sk ,Hk ,Ik

{T(Sk − 1,Hk , Ik + 1|Sk ,Hk , Ik)p(Sk ,Hk , Ik , t)

− T(Sk ,Hk , Ik − 1|Sk ,Hk , Ik)p(Sk ,Hk , Ik , t)}.
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The corresponding deterministic equations of sk , hk and ik can be obtained:

in which θ has the following equivalent form:

It is easy to obtain that for the system (9), the basic reproduction number R0 = [ ρβ
γ1

+ (1−ρ)β
γ2

] �k
2�

�k�  is the criti-
cal threshold, which means the average number of secondary infections caused by one infected individual in a 
susceptible population.

Theorem 2.1  For the system (9), the following situations hold 

(1)	 when R0 < 1 , the disease-free equilibrium E0(1, 0, 0) is locally asymptotically stable;
(2)	 when R0 > 1 , the system has a unique epidemic equilibrium E∗(s∗k , h

∗
k , i

∗
k ) in which,

h∗k has no concrete expression, but it satisfies the conditions below:

and the disease is permanent.

The proof of the theorem is given in the supplementary, and in which

The periodicity in different groups.  Through the above analysis, we know that for the deterministic 
system (9), when R0 > 1 , the disease ultimately fixed in the point of E∗ , yet, the influenza exhibits oscillating 
phenomenon in reality by the influence of noise even neglecting the seasonal factor, which can be seen from the 
Fig. 3. Hence we use the van Kampen’s system-size expansion method to obtain the higher-order terms which 
can be used to investigate the perturbations around the steady-state solution of the deterministic system.

Firstly, the new continuous random variables xk , yk , zk are brought in , which have the following relationship 
between the discrete variables Sk ,Hk , Ik and the corresponding density variables sk , hk , ik

The variables xk , yk , zk are corrections of sk , hk , ik , which are in Nk
− 1

2 terms and can be viewed as the fluctuations 
around the epidemic equilibrium to be the order of Nk

−1 , from the aspect of central-limit theorem.
Second, in order to study the property of the fluctuation, we define a new probability distribution function 

π(xk , yk , zk , t) = p(Sk ,Hk , Ik , t) , the following equation can be obtained by using the chain rule:

The detailed derivation process of (13) is given in the supplementary.
By introducing the step operators below,

(8)sk = lim
Nk→∞

�Sk�
Nk

, hk = lim
Nk→∞

�Hk�
Nk

, ik = lim
Nk→∞

�Ik�
Nk

.

(9)

dsk

dt
=− βkskθ + α(1− sk − hk − ik) = f1(sk , hk , ik),

dhk

dt
=ρβkskθ − γ1hk = f2(sk , hk , ik),

dik

dt
=(1− ρ)βkskθ − γ2ik = f3(sk , hk , ik),

(10)θh = θH =
n

∑

m=1

mP(m)hm

�k�
, θi = θI =

n
∑

m=1

mP(m)im

�k�
, θ = θh + θi .

s∗k =
γ1γ2

βkθh∗k (ργ2 + (1− ρ)γ1)
h∗k , i

∗
k =

(1− ρ)γ1

ργ2
h∗k ,

(11)1 = h∗k[1+
γ1

ρα
+

(1− ρ)γ1

ργ2
+

γ1γ2

βkθh∗k (ργ2 + (1− ρ)γ1)
]

θ∗h =
n

∑

m=1

mP(m)h∗m
�k�

, θ∗i =
n

∑

m=1

mP(m)i∗m
�k�

, θ∗ = θ∗h + θ∗i .

(12)

Sk/Nk = sk + xk/
√

Nk ,

Hk/Nk = hk + yk/
√

Nk ,

Ik/Nk = ik + zk/
√

Nk .

(13)
dp

dt
=

∂π

∂t
−

√

Nk
∂sk

∂t
×

∂π

∂xk
−

√

Nk
∂hk

∂t
×

∂π

∂yk
−

√

Nk
∂ik

∂t
×

∂π

∂zk
.
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the Eq. (6) with transition rates can be rewritten as

Expanding the step operators ε±1
Sk

 , ε±1
Hk

 and ε±1
Ik

 in a power series in Nk
− 1

2

and then substituting the (2)–(4), (12) and (16) into (15), making a comparison with (13) order by order yields 
the so-called macroscopic Eq. (9) to leading order and the following Fokker-Plance equation (FPE):

(14)

ε±1
Sk

f (Sk ,Hk , Ik) = f (Sk ± 1,Hk , Ik),

ε±1
Hk

f (Sk ,Hk , Ik) = f (Sk ,Hk ± 1, Ik),

ε±1
Ik

f (Sk ,Hk , Ik) = f (Sk ,Hk , Ik ± 1),

(15)

dp(Sk ,Hk , Ik , t)

dt
= [(ε+1

Sk
ε−1
Hk

− 1)T(Sk − 1,Hk + 1, Ik|Sk ,Hk , Ik)

+ (ε+1
Sk

ε−1
Ik

− 1)T(Sk − 1,Hk , Ik + 1|Sk ,Hk , Ik)

+ (ε+1
Hk

− 1)T(Sk ,Hk − 1, Ik|Sk ,Hk , Ik)

+ (ε+1
Ik

− 1)T(Sk ,Hk , Ik − 1|Sk ,Hk , Ik)

+ (ε−1
Sk

− 1)T(Sk + 1,Hk , Ik|Sk ,Hk , Ik)]p(Sk ,Hk , Ik , t).

(16)

ε±1
Sk

=1±
1√
Nk

∂

∂xk
+

1

2Nk

∂2

∂x2k
,

ε±1
Hk

=1±
1√
Nk

∂

∂yk
+

1

2Nk

∂2

∂y2k
,

ε±1
Ik

=1±
1√
Nk

∂

∂zk
+

1

2Nk

∂2

∂z2k
,
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Figure 3.   A realization of a stochastic SHIRS model with the degree of 5 and its deterministic counterpart. 
The values of parameters used in this simulation are listed in Table 2. The stochastic simulation is implemented 
by the event algorithm of Gillespie with transition rates listed in Table 1. The deterministic curve is generated 
according to the Eq. (9).
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in which, the matrix A = (Auv)3×3 and B = (Buv)3×3 are evaluated at the epidemic equilibrium E∗ , whose 
concrete values are:

in which

and

in which B is a symmetric matrix,

which is the microscopic equation to the next-to-leading order. It is obvious that using the system-size expansion 
methods one can obtain the deterministic equation, which is just the leading order. For the microscopic equation, 
we want to describe the fluctuations about the stochastic model by using Fourier analyze. For this purpose, the 
following equivalent Langevin equations (LE) is fairly intuitive than the FPE (17),

in which the stochastic variables xk , yk , zk are corrections of sk , hk , ik , and η1, η2, η3 are Gaussian white noises 
whose mean are zero, correlation function are

in which δ(t − t
′
) denotes the Dirac delta function. The equivalence prove of LE and FPE can be found in28. 

Taking the Fourier transform of (18) gets the following results:

in which, x̃k =
∫ +∞
−∞ xk(t)e

iwtdt and i is imaginary unit, similar to the ỹk and z̃k . Because (18) is a OU process, the 
corresponding limits of the mean depend on the eigenvalues of A, when R0 > 1 , by means of the Fig. 3, we can 
see the endemic equilibrium E∗ is stable, i.e. the eigenvalues of A are negative, so when t → ∞ , �xk , yk , zk� → 0.

Solving the equation of (19), we can obtain:

(17)

∂π

∂t
=− A11

∂(xkπ)

∂xk
− A12

∂(ykπ)

∂xk
− A13

∂(zkπ)

∂xk
− A21

∂(xkπ)

∂yk
− A22

∂(ykπ)

∂yk

− A23

∂(zkπ)

∂yk
− A31

∂(xkπ)

∂zk
− A32

∂(ykπ)

∂zk
− A33

∂(zkπ)

∂zk
+

1

2
B11

∂2π

∂x2k

+
1

2
B12

∂2π

∂xkyk
+

1

2
B13

∂2π

∂xkzk
+

1

2
B21

∂2π

∂ykxk
+

1

2
B22

∂2π

∂y2k
+

1

2
B23

∂2π

∂ykzk

+
1

2
B31

∂2π

∂zkxk
+

1

2
B32

∂2π

∂zkyk
+

1

2
B33

∂2π

∂z2k
,

A = (Auv)3×3 =







∂f1
∂sk

∂f1
∂hk

∂f1
∂ik

∂f2
∂sk

∂f2
∂hk

∂f2
∂ik

∂f3
∂sk

∂f3
∂hk

∂f3
∂ik







(E∗)

,

A11 = −βkθ∗ − α, A12 = −βs∗k
k2P(k)
�k� − α, A13 = −βs∗k

k2P(k)
�k� − α,

A21 = ρβkθ∗, A22 = ρβs∗k
k2P(k)
�k� − γ1, A23 = ρβs∗k

k2P(k)
�k� ,

A31 = (1− ρ)βkθ∗, A32 = (1− ρ)βs∗k
k2P(k)
�k� , A33 = (1− ρ)βs∗k

k2P(k)
�k� − γ2.

B = (Buv)3×3 =
(

B11 B12 B13
B21 B22 B23
B31 B32 B33

)

(E∗)

,

B11 = βks∗kθ
∗ + α(1− s∗k − h∗k − i∗k ), B12 = −ρβks∗kθ

∗,
B13 = −(1− ρ)βks∗kθ

∗, B22 = ρβks∗kθ
∗ + γ1h

∗
k ,

B23 = 0, B33 = (1− ρ)βks∗kθ
∗ + γ2i

∗
k .

(18)

dxk

dt
= A11xk + A12yk + A13zk + η1,

dyk

dt
= A21xk + A22yk + A23zk + η2,

dzk

dt
= A31xk + A32yk + A33zk + η3,

�ηu(t)ηv(t
′
)� = Buvδ(t − t

′
)(u, v = 1, 2, 3),

(19)

−iwx̃k = A11x̃k + A12ỹk + A13z̃k + η̃1,

−iwỹk = A21x̃k + A22ỹk + A23z̃k + η̃2,

−iwz̃k = A31x̃k + A32ỹk + A33z̃k + η̃3,

< η̃u(w)η̃v(w
′) >= Buvδ(w − w′)(u, v = 1, 2, 3).
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where

Duv is the inverse of algebraic complement of the corresponding element Auv of the matrix A, and the expression 
of denominator is given by

where trA denotes the trace of A and detA means the value of the determinant of A.
Averaging the squared moduli of x̃k , ỹk and z̃k gives the power-spectrum:

Up to this point, the analytical expression of PSD have been derived, because of the difficulty of the calculation 
in high-dimension coupled system, the concrete expressions of the epidemic equilibrium can’t be obtained, so 
we can analysis the frequency of different groups just depending on the numerical simulation.

Results
In this section, we will use the influenza data of Taiyuan sentinel hospitals in the first quarter of 2013 to fit about 
our model in order to avoid the influence of environment changing, and then discuss the influence of heteroge-
neity to the periodicity of influenza.

Estimation of parameters.  Based on the statistical bulletion on national economic and social develop-
ment of Taiyuan, the number of population in 2013 is 4.3 million. Removal rate can be set to γ1 = 7/3 , γ2 = 1 
and the rate of lose immunity is supposed to be α = 1/52 according to the mean disease course of influenza. 
The infection probability β is an estimated parameter. As for the degree distribution, the power-law distribution 
usually conforms to the features of real world in most cases, hence, P(k) = 2m2k−v(m = 3, v = 3.5)29, is used 
in this paper.

As far as we know, Chinese National Influenza Center (CNIC) has set up 554 sentinel hospitals all over the 
country. The city of Taiyuan has two of which: Taiyuan central hospital and the first affiliated hospital of Shanxi 
medical university. We have the influenza data from the two sentinel hospitals, yet, a small enough number 
compared with those in the whole city of Taiyuan, so ρ as the proportion of Taiyuan influenza patients in sentinel 
hospitals, is a parameter to be evaluated.

(20)

x̃k =
−(iw)2η̃1 + (iw)C1 + D11η̃1 + D21η̃2 + D31η̃3

D(w)
,

ỹk =
−(iw)2η̃2 + (iw)C2 + D12η̃1 + D22η̃2 + D32η̃3

D(w)
,

z̃k =
−(iw)2η̃3 + (iw)C3 + D13η̃1 + D23η̃2 + D33η̃3

D(w)
,

C1 = −(A22 + A33)η̃1 + A12η̃2 + A13η̃3,

C2 = A21η̃1 − (A11 + A33)η̃2 + A23η̃3,

C3 = A31η̃1 + A32η̃2 − (A11 + A22)η̃3,

D(w) = (iw)3 + trA(iw)2 +�(iw)+ detA,

� = A11A22 + A11A33 + A22A33 − A13A31 − A12A21 − A23A32,

(21)

PSk (w) = �|x̃k|2� =
B11w

4 +�1w
2 + Ŵ1

|D(w)|2
,

PHk
(w) = �|ỹk|2� =

B22w
4 +�2w

2 + Ŵ2

|D(w)|2
,

PIk (w) = �|z̃k|2� =
B33w

4 +�3w
2 + Ŵ3

|D(w)|2
,

�1 =B11(A
2
22 + A

2
33)+ B22A

2
12 + B33A

2
13 + 2[B11A22A33 − B12A12(A22 + A33)

− B13A13(A22 + A33)+ B11D11 + B12D21 + B13D31],
�2 =B11A

2
21 + B22(A

2
11 + A

2
33)+ B33A

2
23 + 2[B13A21A23

+ B22A11A33 − B12A21(A11 + A33)+ B21D12 + B22D22],
�3 =B11A

2
31 + B22A

2
32 + B33(A

2
11 + A

2
22)+ 2[B33A11A22

+ B12A31A32 − B13A31(A11 + A22)+ B31D13 + B33D33],
Ŵ1 =B11D

2
11 + B22D

2
21 + B33D

2
31 + 2B12D11D21 + 2B13D11D31,

Ŵ2 =B11D
2
12 + B22D

2
22 + B33D

2
32 + 2B12D12D22 + 2B13D12D32,

Ŵ3 =B11D
2
13 + B22D

2
23 + B33D

2
33 + 2B12D13D23 + 2B13D13D33,

|D(w)|2 = (w3 −�w)2 + (detA− w
2trA)2.
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We adopt the least-square estimation to obtain the parameters sets � = {β , ρ} , which minimizes the objective 
function: Y(�) = [Y(t)− ρN

max
∑

k=min

P(k)βkskθ]2 , in which Y(t) denotes the actually influenza data from sentinel 

hospitals at week t. The Fig. 4 shows that the model data agrees well with the actual data, and the corresponding 
value of parameters are summarized in Table 2.

Prevalence of influenza in Taiyuan.  CNIC has a history of more than 60 years since its foundation in 
1957, especially the recently decade, the wholesome national influenza surveillance network system has made 
the influenza data more transparent. Our influenza data from Taiyuan sentinel hospitals are just a very small part 
of this system. We use the week data from 2013 to 2016 to detect whether there exists a periodic phenomenon. 
The data reveals a clear periodicity in the outbreaks of influenza, which can be confirmed through the wavelet 
power spectrum of Fig. 1. The wavelet analysis can reveal the periodic changing of a time-series, which performs 
the spectral characteristics as a function of time. The oscillations of influenza have a obvious annual variation, 
yet, the wavelet analysis based on the data shows another significant periodicity: semi-annual.

Influence of stochasticity and network structure on influenza outbreaks.  The difference between 
the deterministic and stochastic simulation is revealed in Fig. 3, which is a particular case of fluctuation who 
has been mentioned in introduction. It indicates that the demographic noise and network struction can induce 
rich periodic phenomenon. We can understand the influence of network struction on the expected fluctuations 
of influenza via our analysis.

The accuracy of the theoretical analysis consequence of PSD via (21) has been verified with the simulated 
results in Fig. 5, using the parameters listed in Table 2. We can go further to detect how the period of influenza 
varies with the changes of degree k by using the formula (21). Based on this, the x-coordinate (i.e. ω ) for the 
maximum value of the PSD can be obtained from the analytical expression, then the corresponding period (i.e. 
1/ω ) for different parameters are plotted in Figs. 6, 7, 8, and 9. In order to have a better visual effect, we just 
present the degree from 5 to 25 in these figures, on the whole, it does not affect our conclusions, because this 
group accounts for 99 percent of the total population.

When the ρ = 0.004 is fixed, how the period is influenced by the degree and β is showed in Figs. 6 and 7. In 
Fig. 6, for the H whose degree is less than 16, the period goes up as the β decrease, yet, when the degree is large 
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Figure 4.   Sentinel hospitals data in the first quarter of 2013 and fitting data by using least-square are showed. 
The minimum (maximum) degree is 5 (500) and the mean degree is 7.5.

Table 2.   Notation for model formulation and parameters value.

Parameters Meaning Value

N The total number of people 4.3× 106

γ1 The recovery rate of H 7/3

γ2 The recovery rate of I 1

α The rate of loss immunity 1/52

β The infection probability per contact 0.8

ρ The proportion of H in all infected people 0.004
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than 16, the relationship between β and period is nonmonotonic, as β increases, the period decreases and then 
increases. On the other hand, when β � 0.4 , as the degree increases, so does the H’s period, while β < 0.4 , the 
period increases at the beginning and then decreases with the augment of the degree. There exists obvious non-
linear relationship between the I’s period, degree and β . For the fixed degree, increasing the β , the value of period 
becomes small, yet, when the β is fixed, the relationship between the degree and I’s period is non-monotonous. 
When the degree is small than 〈k〉 , the period becomes larger as the degree increases, yet, the trend is opposite 
on the other side of 〈k〉 , which can be obtained from the Fig. 7. This means that, for the infected people I whose 
degree more close to 〈k〉 , the more safer.

When β = 0.8 is fixed, the relationship between the period, ρ and degree is showed in Figs. 8 and 9. From 
Fig. 8 we can observe that when ρ � 0.4 , for the infected people of H, the degree is more bigger, the period is 
more larger, which means that people are more safer, yet, when ρ > 0.4 , with the degree increasing, the period 
increases firstly and decreases later, which means the people of H whose degree located intermediate is more 
safer. This is quite opposite for I in Fig. 9. On the other hand, when H’s degree is fixed, the period decreases at the 
beginning and then increases as the ρ increasing. This phenomenon from a side explains that the importance of 
the medical resources. For the infected people of I, the relationship is different in Fig. 9. With the increase of ρ , 
which means more and more infected people go to the sentinel hospitals, leading the I becomes more and more 
safer, i.e. the period is more and more longer, this change is even more pronounced for I with higher degree. 

Discussion
In this paper, we have investigated the effect of network structure on the frequency of the influenza outbreaks, 
focusing on the power-law networks, by adapting the van Kampen expansion approach from SHIRS disease to 
develop a fully stochastic model. This leads to a reasonable explanation for the periodic phenomena of influenza, 
and helps us to understand the complex fluctuations of influenza in Taiyuan with a dominant period of half years 
without the external factors of seasonal.
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Figure 5.   Comparisons between the theoretical prediction of PSD (21) and the average PSD obtained from the 
stochastic simulation, for the fluctuations of the infected with degree 5.
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We can have a better understanding of the interaction between the deterministic and stochastic components 
of the system by using the method of van Kampen expansion. The analytical solution of PSD agrees well with the 
simulation data. The result reveals that for the infected people who go to the sentinel hospitals, i.e. H, the relation-
ship between the ρ , β and period is nonlinear, even for the hospitals hospitalization rate ρ , just an appropriate 
one is benefit for the patients. On the other hand, the nonlinear relationship between the three is also suitable 
for the infected people I in most cases, except that the relationship between ρ (or β ) and period is monotonous 
when other parameters are fixed.

Our work emphasizes the importance of heterogeneous contact network on the periodic outbreak of influenza, 
which further validates the truth that the combined action of the non-linear system and stochasticity may results 
many novel phenomena. On the other hand, our study also show that there exists a very close relation between 
the phenomenon of multi-cycle and the heterogeneity of contact.

Limitations.  To obtain the specific analytical solutions are difficult for the high dimensional coupling sys-
tem, so we can not give the explicit formula about the relationship between the period, degree, β and ρ , and just 
have a intuitive understanding from the numerical simulation.

The influenza date we obtained from the sentinel hospitals are weekly, so we set the time-boxed intervals 
measured in week. Comparing to the daily one, the weekly contact network will be not very precise and may 
cause the repeatedly contact problem, which one we omitted in this paper.
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The approach of van Kampen is limited to the following two conditions: a formal treatment of demographic 
stochasticity; the existence of stable non-zero solution, for simpleness we do not take into account the changing 
population, seasonal forcing and the correlation between the degree. In essence, the migration of population 
and behavioral changing in flu season is unavoidable, which is missing in our work.

Possible extensions.  It is easy to adapt this method to many diseases exhibited fluctuations, such as 
malaria, cholera, hand foot and mouth disease and so on. Especially for childhood diseases, similar study may 
gives a good idea on avoiding frequent illness. At the same time, if there are several strains that coexist for a 
disease, such as influenza, our method may also deduce the period for each strain, which may be good news for 
the vaccine’s manufacturers.

We can find that from Fig. 10, even among the very nearest cities, like Beijing and Tianjin, Jiangsu and 
Shanghai, though the climate differences can be ignored, the wavelet power spectrum is greatly different. This 
may prove the importance of the contact network. On the other hand, even though the climate characteristics 
of city are different from north part of China (Beijing and Tianjin) to the south part (Jiangsu and Shanghai), it 
is a surprise phenomenon that Tianjin and Shanghai exhibit the similar periodic law. Furthermore, the same 
method can also be used to the influenza data of tropical cities, then comparisons with existing temperate data 
may reveal the dominant factors. Which one is the key factor lead to this? Temperature, humidity, wind speed, 
haze or human behavior? It deserves our further investigation.
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