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Brain network dysfunction is emerging as a central biomarker of interest in psychiatry,
in large part, because psychiatric conditions are increasingly seen as disconnection syn-
dromes. Understanding dysfunctional brain network profiles in task-active states provides
important information on network engagement in an experimental context. This in turn
may be predictive of many of the cognitive and behavioral deficits associated with com-
plex behavioral phenotypes. Here we investigated brain network profiles in youth with
obsessive-compulsive disorder (OCD), contrasting them with a group of age-comparable
controls. Network interactions were assessed during simple working memory: in particu-
lar, we focused on the modulation by the dorsal anterior cingulate cortex (dACC) of cortical,
striatal, and thalamic regions. The focus on the dACC was motivated by its hypothesized
role in the pathophysiology of OCD. However, its task-active network signatures have not
been investigated before. Network interactions were modeled using psychophysiological
interaction, a simple directional model of seed to target brain interactions. Our results
indicate that OCD is characterized by significantly increased dACC modulation of cortical,
striatal, and thalamic targets during working memory, and that this aberrant increase in
OCD patients is maintained regardless of working memory demand.The results constitute
compelling evidence of dysfunctional brain network interactions in OCD and suggest that
these interactions may be related to a combination of network inefficiencies and dACC
hyper-activity that has been associated with the phenotype.

Keywords: dorsal anterior cingulate cortex, obsessive-compulsive disorder, network analysis, working
memory, fMRI

INTRODUCTION
Obsessive-compulsive disorder (OCD) is a commonly occurring
childhood and adolescent-onset neuropsychiatric disorder. It is
characterized by obsessions (recurrent and persistent thoughts
that typically induce marked distress) and compulsions (repeti-
tive behaviors aimed at alleviating distress). OCD represents the
upper extreme of an underlying continuous trait distribution
encompassing obsessive-compulsive behaviors common in the
general population that are heritable and cross traditional diag-
nostic boundaries. Thus, OCD represents a clinical “end-point”
for a commonly observed trait (~45% of adolescents report OCD
symptoms) (Berg et al., 1988; Apter et al., 1996). The 1-year inci-
dence of OCD and sub-clinical OCD in adolescents is ~0.7 and
8.4%, respectively (Valleni-Basile et al., 1996). These relatively high
rates of incidence and the association with a trait evident in the
general population emphasize the importance of characterizing
biological mechanisms underlying OCD. In this report, we aim

Abbreviations: dACC, dorsal anterior cingulate cortex; FSTC, frontal striatal
thalamic circuits; OCD, obsessive-compulsive disorder; PPI, psychophysiological
interaction.

to characterize these biological mechanisms by investigating brain
network interactions in OCD and their differences from typical
healthy controls.

Understanding brain network profiles and brain network dys-
function is a central theme of interest in clinical neuroscience. As
suggested by the National Institute of Mental Health (Insel et al.,
2010), such a focus may lead to an enhanced understanding of
specific bio-behavioral impairments that underpin the emergence
of complex behavioral phenotypes which are classified as psychi-
atric disorders. Indeed, understanding network dysfunction, in
particular, is emerging as a leading framework for characterizing
the neural substrates of multiple psychiatric conditions (Friston,
1998; Stephan et al., 2006; Almeida et al., 2009; Shaw et al., 2009;
Diwadkar, 2012; Schmidt et al., 2013).

Obsessive-compulsive disorder, like most neuropsychiatric
conditions, often has its origins in childhood and adolescence
when brain network function is still maturing (Paus et al.,
2008). Ensuing disordered neurodevelopmental trajectories (in
the absence of adaptive responses) may in turn mediate the
continued expression of symptoms through adolescence and into
early adulthood (Tottenham and Sheridan, 2009). Furthermore,
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the complex patterns of OCD symptoms are linked to the inability
to disengage behaviors from intrusive thoughts, implying aber-
rantly increased inhibitory control (Bari and Robbins, 2013).
These patterns are highly suggestive of dysfunctions in control
mechanisms within relevant brain networks (Piras et al., 2013). In
this context, the role of the dorsal anterior cingulate cortex (dACC)
assumes significance.

The dACC is positioned as a principal control region in the
brain (Paus, 2001) that by itself, or through its mediation of
cortical-striatal networks, exercises aspects of cognitive and motor
control (Bakshi et al., 2011). The region has been of particular
interest in OCD: glutamate dysregulation in the anterior cingu-
late and striatum has been implicated in pediatric OCD patients
(Rosenberg et al., 2000, 2004). Altered glutamate concentrations
may be linked to dysfunctional fMRI responses during tasks of
behavioral engagement and disengagement. For instance, during
conflict processing and action monitoring, OCD subjects evince
higher activation in regions including the anterior cingulate cortex
and the striatum (Fitzgerald et al., 2005; Maltby et al., 2005; Marsh
et al., 2014) that may provide functional expressions of dACC
dysfunction in the illness. A question of interest is whether these
hyper-activations in the dACC are associated with dysfunctional
network profiles.

Network models of fMRI have been applied in OCD. However,
a principle focus of network-analyses of in vivo imaging data has

been on the classification of resting state functional connectivity
within (and across) cortical, limbic, striatal, and cerebellar net-
works (Harrison et al., 2009; Peng et al., 2014). These analyses
have been notable as they have revealed categorical and develop-
mental distinctions in resting state functional connectivity (rsFC)
between OCD and typical controls in frontal, striatal and thala-
mic (FSTC) circuits (Fitzgerald et al., 2011). rsFC results are not
directly informative about dysfunctional dACC-related profiles in
a task-active state. For instance, the relationship between resting
state functional connectivity (rsFC) and task-dependent functional
interactions between regions remains uncertain (Stephan, 2004)
and experimental analyses of within subject data have been equiv-
ocal (Rehme et al., 2013). Thus rsFC and the low-frequency bold
signals it correlates between provide a complimentary snapshot
of pathology; task-active analyses of functional network interac-
tions are important for assessing a measure of network dynamics.
Moreover, a separate question of interest is whether dysfunctional
activation and brain network profiles in OCD are observed in
tasks not involving conflict monitoring. Such evidence will pro-
vide strong support for general network based dysfunction in
the disorder extending beyond highly circumscribed behavioral
domains.

We had two principal aims in this study (summarized in
Figure 1): (a) to investigate network profiles originating in
the dACC in the task-active state using psychophysiological

FIGURE 1 | A framework for assessing dysfunctional activation and
dACC-related network profiles of cortical, striatal, and thalamic networks
in OCD. (A) The two panels depictive activation-based and seed-based
approaches to identifying function and dysfunction. The equations represent
basic linear model formalisms for each class of models. Note the convolution
term (y 0 ×u) in the PPI based model that accounts for seed (y 0 =dACC)

modulation of targets in the task-oriented (u=working memory > rest)
context. The regions of interest are schematically depicted on the mid-sagittal
surface. The second figure schematically depicts the modulatory effects of
the dACC assessed using psychophysiological interaction. (B) The factorial
design space used for the study that assessed the effects of task-demand
(1Back vs. 2Back) crossed with group.
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Diwadkar et al. Brain network profiles in OCD

Table 1 |The table depicts the demographics for healthy control (HC) and OCD participants.

M/F Mean age Range Height (inches) Weight (lbs) Handedness

(R/L/M)

CY-BOCS (T ) CY-BOCS (O) CY-BOCS (C )

Typical controls (n=27) 18/9 17.4 (3.14) 12–21 67.3 (4.8) 147.8 (52.9) 24/2/1

OCD (n=18) 11/7 17.2 (3.33) 11–21 65.6 (4.3) 146.3 (60) 17/1/0 31/16 (4.5/9.4) 15/8 (2.7/4.8) 16/8 (2.7/4.9)

Groups did not differ in terms of age (t=0.32, p=0.75), height (t= 1.22, p=0.23), or weight (t=0.08, p=0.94). Also comparable were gender (χ2
=0.15, p=0.70)

and handedness frequencies (χ2
=0.76, p= 0.68). Values in parenthesis represent SD. For lifetime CY-BOCS (lifetime/current): T=Total symptoms, O=Obsessive

Symptoms, C=Compulsive symptoms.

interaction (PPI) (Friston et al., 1997; O’Reilly et al., 2012), PPI is a
simple framework within the general linear model for investigating
contextual modulation of targets (e.g., regions within FSTC) by a
seed (e.g., dACC) in a task-active context; (b) to investigate these
profiles during parametrically manipulated verbal working mem-
ory, (Casey et al., 1995; Diwadkar et al., 2011, 2013), a domain that
provides a rich window for investigating normal and dysfunctional
activation and network profiles in the FSTC.

MATERIALS AND METHODS
PARTICIPANTS
Eighteen participants with a diagnosis of OCD and 27 controls
participated in the fMRI studies (see Table 1). All participants
and their parents were interviewed with the Schedule for Schizo-
phrenia and Affective Disorders for School-Aged Children-Present
and Lifetime Version and Schedule for Obsessive-Compulsive and
Other Behavioral Syndromes (Wolff and Wolff, 1991; Kaufman
et al., 1997). The lifetime (maximum) and current severity of
OCD were assessed in the patients with a modified version of
the Children’s Yale-Brown Obsessive Compulsive Disorder Scale
(Goodman et al., 1989; Scahill et al., 1997). Lifetime and current
axis I diagnoses were made independently by two clinicians (David
R. Rosenberg, Gregory L. Hanna) using all sources of informa-
tion according to DSM-IV criteria. All patients with OCD had a
total lifetime CY-BOCS score of at least 20. Exclusion criteria for
patients and controls included lifetime history of psychosis, bipo-
lar disorder, substance abuse or dependence, anorexia or bulimia
nervosa, epilepsy, head injury with sustained loss of consciousness,
Huntington’s disease, dyskinesia, chronically disabling medical ill-
ness, autism, mental retardation, or a score >15 on the lifetime
version of the Social Communication Questionnaire. Controls
were free of all psychiatric illness. Legal guardians provided written
informed consent prior and children gave written assent prior to
participating in the study. The Human Subjects Investigative com-
mittee at Wayne State University and the University of Michigan
approved the protocol and all methods therein.

fMRI
Gradient echo EPI fMRI data acquisition was conducted at Vaitke-
vicius Magnetic Resonance Centre on a 3T Siemens Verio sys-
tem using a 12-channel volume head coil (TR: 2.6 s, TE: 29 ms,
FOV: 256 mm× 256 mm, acquisition matrix: 128× 128, 36 axial
slices, voxel dimensions: 2 mm× 2 mm× 3 mm). In addition, a 3D
T1-weighted anatomical MRI image was acquired (TR: 2200 ms,
TI: 778 ms, TE: 3 ms, flip-angle= 13°, FOV: 256 mm× 256 mm,

FIGURE 2 | Within group changes in activation profiles as a function of
load are depicted on identical ascending mosaics of axial views. The
significant clusters (p < 0.05, cluster level) show significant increases in
activation with increases in working memory related load. As seen, these
increases are evident within both (A) healthy control and (B) OCD groups.
These activation profiles establish within group effects of memory load
across previously implicated load sensitive working memory related
regions. These include dorsolateral prefrontal cortex (dPFC), the dorsal
anterior cingulate (dACC), and the parietal cortex.
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256 axial slices of thickness= 1.0 mm, matrix= 256× 256). A
neuroradiologist reviewed all scans to rule out clinically significant
abnormalities.

During fMRI, subjects were positioned with adjustable padded
restraints employed for head stabilization. Stimuli were rear-
projected using an IFIS-SA presentation system (MRI Devices),
and subjects responded with a button box unit. During fMRI,
subjects participated in an established verbal n-back paradigm
(Casey et al., 1995). Parametric working memory load was varied
between maintaining 0, 1, or 2 items in memory (0-, 1-, or 2-Back;
see Figure 1 insets). Runs were blocked by condition. During each
block (30 s), letters were projected in sequence (presentation time:
500 ms; ISI: 2500 ms; 10 letters per block) on a screen; subjects
signaled with a two-choice optical response box if the presented
letter was a target or not. The paradigm cycled between rest (20 s),
0-, 1-, and 2-Back epochs (three blocks each). The experiment was
controlled using presentation (Neurobehavioral Systems Inc.).

fMRI PROCESSING
fMRI data were processed in SPM8 using typical methods. All
images were manually oriented to the AC-PC line, realigned
to correct for head movement, spatially normalized to the
MNI (Montreal Neurological Institute) template brain and
resliced (2 mm× 2 mm× 2 mm). Low frequency components
were removed using a low-pass filter (128 s) and images were
spatially smoothed using a Gaussian filter (8 mm full-width half
maximum; FWHM). An autoregressive AR(1) model was used to
account for serial correlation, and regressors modeled as a 30 s box-
car vectors (for each of the task-related conditions) were convolved
with a canonical hemodynamic reference waveform.

Subjects’ head motion was within accepted limits (<4 mm).
Furthermore, in all first level models, the effects of motion were
modeled by including the six motion parameters as covariates of
no interest. First-level contrasts (1Back > 0Back; 2Back > 0Back)
were used to assess the effects of memory load on activation.

PPI (implemented in SPM8) was employed to model dACC
modulation of FSTC targets during working memory (Friston
et al., 1997; Honey et al., 2005). For each subject, time series from

the effects of interest contrast (p < 0.05) were extracted from the
dACC peak (including Brodmann areas 32 and the supra-genual
aspects of BA24) (Palomero-Gallagher et al., 2008). The extracted
time series (the wave form of which provides an estimate of the
continuous physiological response of the dACC) was subsequently
convolved with the two contrasts of interest reflecting effects of dif-
ferential memorial load, specifically, 1-Back > 0-Back (low load)
and 2-Back > 0-Back (high load). The resultant interaction term
was positively weighted to assess the facilitating influence of the
dACC on FSTC targets (with the slope of the effect parametri-
cally encoded in the convolution term and reflecting the degree of
modulation).

For all activation or network analyses, first level maps (activa-
tion or PPI) from each subject were submitted to a second-level
random effects analyses of variance with group modeled as an
independent factor and memory load as non-independent factor.
The factorial design permitted assessment of intra-group load-
related effects, as well as between-group differences at varying
levels of memory load.

All second level analyses were spatially thresholded in the FSTC
regions of interest using deterministic anatomical masks defined
in stereotactic space (Maldjian et al., 2003). These maps consti-
tute anatomical representations in stereotactic space representing
each of the regions of interest and are widely employed to spa-
tially localize activations in neuroimaging research. Images were
corrected using cluster level correction (cluster extent thresholds,
pc < 0.05) derived from 104 Monte Carlo simulations from voxels
across the individual regions of interest (Ward, 2000). Individual
voxel peaks in significant clusters are reported in terms of Montreal
Neurological Institute coordinates.

RESULTS
Results are organized to sequentially present evidence of (1) dys-
functional activation profiles and (2) dysfunctional brain network
profiles in OCD and HC:

(1a) We first show load-related effects on activation profiles
within both HC and OCD. These results provide evidence

Table 2 |The table provides information on clusters of significance and peaks within where each of the groups showed increased activation to

variations in memory load (Figure 2).

Region Brodmann area MNI coordinates (x, y, z) Z score Cluster extent p (peak)

Table 2: activation

HC2Back > 1Back

Parietal lobe 40 −36 −51 49 5.23 734 0.000

Mid frontal gyrus 8 27 15 45 1.93 135 0.027

Dorsal prefrontal cortex 46 −42 20 27 4.45 74 0.000

Basal ganglia − 28 18 6 3.37 32 0.000

dACC 24 −18 −1 51 4.42 177 0.000

OCD2Back > 1Back

Parietal lobe 40 46 −40 51 4.08 739 0.000

Mid frontal gyrus 6 32 8 52 3.17 175 0.001

Dorsal prefrontal cortex 9 −39 12 39 3.08 103 0.001

Basal ganglia − 14 6 19 3.37 70 0.000

dACC 32 8 20 46 3.19 189 0.001
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of within-group effects of parametric increases in working
memory load on FSTC.

(1b) Next we present between-group results showing aberrantly
increased activation profiles in FSTC in OCD patients com-
pared to HC at both levels of memory load. These results
demonstrate that OCD participants more extensively activate
FSTC than HC at both levels of memory load.

(2) We show between group results assessing dysfunctional brain
network profiles in OCD compared to HC. These results indi-
cate aberrantly increased modulation of FSTC by the dACC
in OCD, especially at the lower level of memory load.

LOAD-RELATED EFFECTS ON ACTIVATION PROFILES
Figure 2 depicts clusters (pc < 0.05) in FSTC showing increased
within-group activation in response to increases in memory load
(cluster relevant information in Table 2). In both groups, increased
memory load results in increased recruitment of frontal and pari-
etal regions, and the dACC. These results are unsurprising for
the HC group. They are highly consistent with previous assess-
ments of activation profiles in this circuit in HC (Braver et al.,
1997; Cohen et al., 1997; Diwadkar et al., 2000), showing increased
recruitment in brain circuits committed to implementing working
memory related functions. The results in OCD are notable as they
demonstrate that the memory effect exerts within-group effects
consistent with HC. This is important evidence that FSTC in OCD
is sensitive to load-related variations in working memory and
that the overall implementation of the task generates load-related
effects on activation profiles. Notable is an absence of load-related
activation effects in the striatum or the thalamus, regions not typi-
cally implicated in core memory-related processing. The basal gan-
glia contribute to cortical-striatal processing loops that sub-serve
complex processing, by supplementing prefrontal function (Hazy
et al., 2006; Calzavara et al., 2007; Voytek and Knight, 2010). The
thalamus forms cortical-thalamic processing units that integrate
information from cortical and striatal loops to modulate com-
plex behavior, but has generally not been sensitive to load-related
variations in working memory (Haber and Calzavara, 2009).

BETWEEN-GROUP RESULTS SHOWING ABERRANTLY INCREASED
ACTIVATION PROFILES IN FSTC IN OCD PATIENTS
Figure 3 depicts clusters (pc < 0.05) in FSTC showing increased
activation in OCD (relative to HC) at each level of memory load
(cluster relevant information in Table 3). Several effects are evi-
dent. Dysfunctional activation profiles are observed in the frontal
and parietal cortices and in the dACC at both levels of load.
Absent is evidence of dysfunctional activation profiles in the stria-
tum or the thalamus. Moreover, dysfunction in activation profiles
scales as a function of memory load: Increased memory demand
leads to increased activation in cortical regions. These analyses
are consistent with previous studies in FSTC in OCD partici-
pants in other behavioral domains such as conflict monitoring
that are closely associated with behavioral phenotypes in the illness
(Huyser et al., 2011). As one of our study aims was to assess whether
hyper-activation in FSTC constitutes a domain-general prop-
erty of brain regions in OCD, these analyses extend the findings
beyond the domain of conflict processing and suggest that multiple
tasks engaging FSTC are sensitive for detecting activation-related
dysfunction.

FIGURE 3 | Dysfunctional activation profiles in OCD (relative to
controls) are depicted for both (A) the 1Back level of memory and
(B) the 2Back level of memory load. Increased activation in OCD
(p < 0.05, cluster level) is depicted on identical ascending mosaics of axial
views. These activation profiles indicate increased activation in dorsolateral
prefrontal cortex (dPFC), the dorsal anterior cingulate (dACC), and the
parietal cortex in OCD. Notably the degree of dysfunctional activation in
OCD scales as a function of memory load. We speculate that the
parametric demands as expressed in dysfunctional activation profiles load
disproportionately in OCD participants. As will be seen, brain network
profiles in OCD do not strictly follow activation patterns, evidence that
signatures of network interactions may complement psychopathology
revealed in activation models.

BETWEEN GROUP RESULTS ASSESSING DYSFUNCTIONAL BRAIN
NETWORK PROFILES IN OCD
Figure 4 depicts clusters (pc < 0.05) in FSTC showing increased
modulation by the dACC in OCD (relative to HC) at each level
of memory load (cluster relevant information in Table 4). We
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Table 3 |The table provides information regarding clusters of significant and significant peaks showing dysfunctional activation profiles in OCD

(compared to HC) at each level of memory load (Figure 3).

Region Brodmann area MNI coordinates (x, y, z) Z score Cluster extent p (peak)

Table 3: activation

OCD1Back > HC1Back

Parietal lobe 5 −18 −40 61 3.05 385 0.001

Mid frontal gyrus 8 27 27 42 2.45 83 0.007

Dorsal prefrontal cortex 9 24 38 36 2.8 58 0.003

dACC 24 −15 −1 49 2.87 117 0.002

OCD2Back > HC2Back

Parietal lobe 3 50 −22 56 3.18 392 0.001

Mid frontal gyrus 6 38 21 45 3.03 124 0.001

Dorsal prefrontal cortex 9 9 47 33 3.07 97 0.001

dACC 32 −3 42 18 2.78 197 0.003

highlight several notable effects. First, dysfunctional network pro-
files in OCD form a pattern that is distinct and complimentary
to that observed in activation profiles. OCD is characterized by
increased dACC related modulation at the 1Back level of load but
not the 2Back level, suggesting that the degree of dACC mod-
ulation (and the mechanisms that can be inferred from it) do
not scale with load. We speculate (see Discussion) that this effect
may be related to aberrantly increased dACC modulation at the
1Back level itself. The hyper-modulation may reflect inefficien-
cies in control-related network function or hyper-activity of the
dACC, or both. Second, dysfunctional modulation of the striatum
is evident, with significantly increased dACC modulation of the
caudate and putamen observed at the 1Back level (Figure 4A). This
effect also constitutes a complementary pattern of dysfunction
from activation in OCD where profiles in the striatum appeared
normal (Figure 3).

DISCUSSION
We conducted a simple investigation of brain activation and net-
work profiles in a group of OCD youth and age-comparable
controls. Participants were assessed with fMRI using a simple
working memory paradigm with variable demands (Figure 1).
Three principle results are highlighted across both classes of analy-
ses: Activation Profiles: (1a) Activation profiles were highly sensi-
tive to increases in memory load within each group (Figure 2).
(1b) Youth with OCD were characterized by aberrantly increased
recruitment of frontal and parietal regions (but not striatal or
thalamic regions) during both levels of working memory. The
degree of hyper-activation scaled as a function of working mem-
ory demand (Figure 3). Network Profiles: (2) Compared to HC,
youth with OCD were characterized by increased dACC modu-
lation of frontal, parietal, and striatal regions, particular at lower
levels of working memory load (Figure 4).

Taken together, these results establish that OCD is character-
ized by dysfunction in core FSTC regions, detectable using both
activation- and network-based analyses of fMRI signals. We sug-
gest that the network-based analyses are notable for being the first
to demonstrate dysfunctional network signatures of the dACC,
a region closely associated with OCD related pathophysiology.
Moreover, these profiles observed using a basic working memory

paradigm, suggest that FSTC deficits are a basic pathophysiologic
mechanism underlying OCD, are detectable with a multiplicity
of tasks, and affect frontal, striatal, and thalamic circuits. In the
remainder of the paper, we discuss the putative mechanisms that
may underpin these observations and the implications for OCD
related pathology and function.

CINGULATE, FRONTAL, STRIATAL, AND THALAMIC REGIONS: A
CRITICAL CIRCUIT SUB-SERVING COMPLEX FUNCTION
The regions targeted in this investigation collectively form core
sub-circuits that implement function in a multiplicity of higher-
order domains including working memory (Owen et al., 2005;
Diwadkar et al., 2011), sustained attention (Fan et al., 2005;
Langner and Eickhoff, 2013; Diwadkar et al., 2014), and cogni-
tive control (Carter et al., 1999; Anderson et al., 2008). These
functional sub-circuits are also underpinned by dense patterns
of anatomical connectivity. The dorsal-prefrontal cortex and the
basal ganglia share topographically mapped monosynaptic con-
nections (Calzavara et al., 2007) that may explain co-activation
patterns frequently observed in fMRI studies. Descending con-
nections from cortical regions including the prefrontal cortex and
sensory, motor, and frontal regions synapse on multiple thala-
mic nuclei including the ventral and posteromedial complexes
(Ray and Price, 1993; Klein et al., 2010; Li et al., 2013) leading
to the notion of “cortical-thalamic processing units” (Briggs and
Usrey, 2008). The dACC is uniquely positioned from an anatomi-
cal standpoint, with connections to frontal and motor regions, to
play a mediating influence in control related mechanisms (Paus,
2001). Each of these regions appears to be relatively specialized for
highly sophisticated functions.

The dorsal-prefrontal cortex sub-serves working memory in
multiple ways. Phasic activity in prefrontal neurons is strongly
correlated with the temporary maintenance of memoranda in
working memory (Vijayraghavan et al., 2007), suggestive of a
direct link between neuronal responses and overt behavior. More-
over, the prefrontal cortex sub-serves goal-directed behavior in
multiple domains (including working memory) through direct
“command” signals to multiple cortical and sub-cortical targets
(Crowe et al., 2013; Funahashi and Andreau, 2013). The anatom-
ical positions of the basal ganglia allow the structure to receive
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FIGURE 4 | Dysfunctional brain network profiles in OCD (relative to
controls) are depicted for both (A) the 1Back level of memory and (B)
the 2Back level of memory load. The clusters depict significantly
increased dACC-modulation of cortical and striatal targets in OCD
compared to typical controls (p < 0.05, cluster level) depicted on identical
ascending mosaics of axial views. These brain network profiles
complement dysfunctional activation profiles (Figure 3). Note the
implication of the caudate, not implicated in dysfunctional activation. The
increased modulation by the dACC may reflect increased control-related
inputs demanded in OCD to sub-serve network function associated with
this fundamental domain. The lack of a parametric effect may reflect the
fact that dACC related network engagement is already aberrantly increased
at the 1Back level. Indeed, OCD participants did not show an increase in
dACC modulation going from the 1Back to the 2Back level of demand
(whereas HC participants did).

inputs from multiple uni- and heteromodal regions (Ragsdale and
Graybiel, 1990). Thus the structure serves as a critical node in mul-
tiple network pathways, playing executive and supporting roles

in several behavioral domains. Along with the prefrontal cortex,
the basal ganglia appear to exert attention-related modulation of
working memory related function (Herrero et al., 2002; McNab
and Klingberg, 2008). The thalamus is considered a principle
gateway to the cortex (McAlonan et al., 2008), engaged in filter-
ing of massive sensory inputs, particularly in the visual domain,
and sending extensive outputs to cortical and sub-cortical regions
(Haber and Calzavara, 2009). The structure also plays essential
computational roles by integrating network activity essential for
modulating behaviors. Many of the psychological domains that are
underpinned by regional function are implicated in OCD. Thus
pediatric OCD patients in particular show deficits in sustained
attention (Lucke et al., 2014), executive function and working
memory (Melloni et al., 2012), and cognitive control and metacog-
nition (Koch and Exner, 2015). It is therefore not surprising
that frontal, striatal, and thalamic circuits have been identified
as central to potential interventions in OCD (Burguiere et al.,
2015).

HYPER-ACTIVATION IN OCD DURING WORKING MEMORY: POSSIBLE
MECHANISMS AND RELATIONSHIP WITH OTHER DISORDERS
Though working memory deficits are generally seen as secondary
to the core pathology of OCD (Harkin and Kessler, 2011), our
activation results provide good convergence with recent reports.
Memory load-related hyper-activation in frontal-parietal regions
has been proposed as an intermediate phenotype for OCD, where
the hyper-activation has been labeled as compensatory (Nakao
et al., 2009; Koch et al., 2012; de Vries et al., 2013). Effects on
dACC activation have, however, been equivocal; previous studies
have shown a reverse effect of complexity on dACC activation
in OCD, with disengagement of the structure following load
related effects. Nevertheless, our results provide good concep-
tual overlap with studies in pathology that have linked hyper-
activation under conditions of task compliance with regional
efficiency. This concept of inefficiency finds pronounced expres-
sion in the schizophrenia spectrum, where disease-related effects
(that have been associated with dopamine dysfunction) are pre-
sumed to affect the “duty cycle” of task-relevant brain regions
including the prefrontal cortex and the striatum (Callicott et al.,
2003; Manoach, 2003; Jansma et al., 2004; Meisenzahl et al.,
2007; Diwadkar et al., 2012). These inefficiencies might imply
that neuronal pools (that form one electrophysiological origin
of the fMRI signal) (Logothetis and Wandell, 2004) engage in
excess excitatory firing responses when demand is exerted on
FSTC. Moreover, inefficiencies provide a window into the “scal-
ability” of brain regions in response to demand. In other words,
the functioning limits of FSTC in OCD may be compromised
such that excessive cognitive demand may stretch FSTC ability
to sub-serve function. In this view, FSTC hyper-activation dur-
ing working memory far, from being a peripheral correlate of
OCD, is a central mechanism underlying the illness, and a pri-
mary intermediate phenotype as previously proposed (de Vries
et al., 2013).

A parallel explanation for hyper-activity is that it reflects
glutamate-related dysfunction that affects how relevant regions
are recruited for a task (Wu et al., 2012, 2013; Stewart et al., 2013;
Pauls et al., 2014). As a principle excitatory neurotransmitter,
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Table 4 |The table provides information regarding clusters of significant and significant peaks showing dysfunctional network profiles in OCD

(compared to HC) at each level of memory load (Figure 4).

Region Brodmann area MNI coordinates (x, y, z) Z score Cluster extent p (peak]

Table 4: PPI

OCD1Back > HC1Back

Parietal lobe 7 20 −57 60 3.36 529 0.000

Mid frontal gyrus 6 −32 −6 54 3.13 144 0.001

Basal ganglia – 20 9 15 3 61 0.001

OCD2Back > HC2Back

Parietal lobe 7 −18 −36 48 2.72 223 0.003

Dorsal prefrontal cortex 9 −12 36 22 2.76 89 0.003

glutamate exerts substantial effects on brain function, particu-
larly in the excitatory model. Glutamate dysfunction in OCD
can alter the neurochemical-electrophysiological relationship that
sub-serves BOLD-based activation. A more complete assessment
of the Glutamate-fMRI relationship will require assessment of
both classes of signals acquired within subjects. This is an ongoing
endeavor in our studies that involves multi-modal acquisition of
fMRI and MRS data within subjects.

HYPER-MODULATION OF FSTC BY THE dACC: NOVEL EVIDENCE OF
DYSFUNCTIONAL NETWORK PROFILES
Relatively few studies have assessed connectivity in the task-active
state in OCD. Psychophysiological interactions provide a straight-
forward model of directional effects of seed regions on their
targets in a task-related context, providing a window into network
interactions. This window is considered intermediate between
functional and effective connectivity (Friston, 2011). The inter-
pretations of PPI are constrained by the choice of seeds and the
hypothesized role(s) ascribed to the seed. Toward that end, our
choice of the dACC was motivated by its role in cognitive control
of brain networks (Carter et al., 1999; Paus, 2001; Bakshi et al.,
2011).

The dACC plays an integral role in tasks of explicit cogni-
tive control including response conflict and response monitoring
(Braver et al., 2001; van Veen et al., 2001), and choice selection
(Eshel et al., 2007). The dACC may serve to amplify task-relevant
signals to heteromodal association regions of the cortex (Egner
and Hirsch, 2005; Sohn et al., 2007). Thus, control processes from
the dACC may influence the activity of core working memory sys-
tems, and the degree of this modulation may reflect the efficiency
of interaction between control and working memory systems.
Increased control-related modulation in part reflects decreased
efficiency. This hyper-modulation by the dACC may strongly sug-
gest inefficient control-related network profiles in OCD. These
effects are again consistent with observed evidence in other disor-
ders, for example, in the schizophrenia spectrum where increased
dACC related modulation is strongly associated with the illness
and risk for the illness (Bakshi et al., 2011). The absence of a
parametric effect on dACC modulation appears related to highly
increased aberrant dACC modulation at the lower level of demand
in OCD: no intra-group increases in dACC modulation were
observed in OCD as memory load increases. As such, the network

effects constitute complementary signatures of FSTC dysfunction
in OCD.

LIMITATIONS AND CONCLUSION
Brain network profiles will constitute an important frontier in the
search for mechanisms and endophenotypes, and their evidence
is an important expression of the goals advocated by Research
Domain Criteria (RDoC: Insel et al., 2010). While our sample size
(though small) is comparable to several other published studies,
it nevertheless precludes us from assessing the role of co-morbid
diagnoses and medication effects within OCD youth. These are
important clinical questions, and an expansion of this sample
is ongoing, and may permit more detailed assessment of our
observed effects.

The specific neurochemical and molecular bases of these effects
are obscured by the interpretational limits of both the fMRI signal
(Logothetis, 2008) that cannot distinguish between a multiplicity
of neuronal contributions to the hemodynamic response, and by
the relatively limited class of inferences that can be drawn from the
application of PPI analyses (Stephan, 2004). Moreover, these tech-
nical challenges are compounded by the fundamental limitation
in understanding the correlates of brain structure and function:
the fact that functional characteristics of brain networks exist in
a regressive relationship with their structural substrates (Park and
Friston, 2013). Thus, the same underlying structural networks can
give rise to a multiplicity of functions and dysfunctions. Never-
theless, our results (and other studies we have cited) promise to
reveal mechanisms of disease-related dysfunction as expressed in
brain profiles. An understanding of putative mechanisms is a nec-
essary precursor of treatment and cure. Therefore we propose that
studies such as ours (and future extensions) will provide better
elucidation of disease mechanisms than currently exist.
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