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Abstract Transforming and insulin-like growth factors are

important in regulating bone mass. Thus, one would antici-

pate correlations between matrix concentrations of growth

factors and functional properties of bone. We therefore

investigated the relationships of (1) TGF-b2 and (2) IGF-I

matrix concentrations with the trabecular microstructure,

stress distribution, and mechanical properties of tibial

cancellous bone from six male human cadavers. Tra-

becular stress amplification (VMExp/rapp) and variability

(VMCOV) were calculated using microcomputed tomogra-

phy (lCT)-based finite element simulations. Bone volume

fraction (BV/TV), surface/volume ratio (BS/BV), trabecular

thickness (Tb.Th), number (Tb.N) and separation (Tb.Sp),

connectivity (Eu.N), and anisotropy (DA) were measured

using 3-D morphometry. Bone stiffness and strength were

measured by mechanical testing. Matrix concentrations of

TGF-b2 and IGF-I were measured by ELISA. We found

higher matrix concentrations of TGF-b2 were associated

with higher Tb.Sp and VMExp/rapp for pooled data and

within subjects. Similarly, a higher matrix concentration of

IGF-I was associated with lower stiffness, strength, BV/TV

and Tb.Th and with higher BS/BV, Tb.Sp, VMExp/rapp and

VMCOV for pooled data and within subjects. IGF-I and

Tb.N were negatively associated within subjects. It appears

variations of the stress distribution in cancellous bone cor-

relate with the variation of the concentrations of TGF-b2 and

IGF-I in bone matrix: increased local matrix concentrations

of growth factors are associated with poor biomechanical

and architectural properties of tibial cancellous bone.

Introduction

Transforming growth factor b1 (TGF-b1), TGF-b2 and

insulin-like growth factors (IGF-I and IGF-II) are believed

important local regulators of osteoblast and osteoclast

activity [2, 12]. These growth factors can be synthesized

and stored in bone matrix during bone formation, released

during bone resorption and affect bone remodeling [21,

44]. There is substantive evidence that TGF-bs and IGFs,

specifically TGF-b2 and IGF-I, affect osteoblastic cell

proliferation, differentiation, and survival [5, 19, 37, 60,

62]. Insulin-like growth factor-I also regulates bone

resorption by enhancing osteoclast activity [24, 31, 44].

TGF-b can affect osteoclast differentiation and survival

and, depending on the dose, can enhance or reduce
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resorption [11, 27, 33]. Increased or decreased mechanical

loading also affect the IGF and TGF-b expression in

osteocytes [39, 40, 51, 52, 70].

The importance of TGF-bs and IGF-I in the control of

bone growth and remodeling is further established by

rodent models. In genetically modified mice, enhanced

bone mass and enhanced stiffness, strength and mineral

concentration of the cortical bone matrix are generally

associated with reduced TGF-b signaling [3, 20, 23].

Cancellous bone volume fraction is higher in the IGF-I

deficient mice than in the wild type [4]. On the other hand,

over-expression of IGF-I in the osteoblasts of transgenic

mice also causes an increase in the cancellous bone volume

fraction in transgenic mice [45]. While subcutaneous

administration of IGF-I to adult rats can reduce trabecular

bone formation [61], local administration of IGF-I to old

rats can increase the trabecular bone volume [63].

Studies with human bone tissue indicate that bone

matrix concentrations of TGF-b1, TGF-b2, and IGF-I are

related to aging, metabolic bone disease, and fracture risk

but the relationships may be gender and skeletal site

dependent [1, 7, 29, 38, 46, 49, 50, 54, 57, 64]. A few

studies have examined the relationships of local matrix

TGF-b1, TGF-b2, and IGF-I with bone mass and

mechanical properties in human bone, however, the results

have been conflicting [1, 46, 56, 57]. For example, despite

strong demonstrations in animal experiments, an associa-

tion between bone volume fraction and the matrix

concentrations of TGF- b1 or TGF-b2 was not found in the

human iliac crest, femoral shaft, or lumbar spine [6, 50].

The matrix concentration of IGF-I is correlated with bone

density in the iliac crest and lumbar spine [49, 57], but not

in the proximal femoral shaft, femoral neck, or Ward’s

triangle [49, 56]. Apparent density and stiffness differences

between the superior and inferior regions of the human

femoral head are also not accompanied by differences in

the matrix concentrations of IGF-I or IGF-II [58].

Our previous work demonstrated the matrix concentra-

tion of IGF-I in cancellous bone is negatively correlated

with the bone volume fraction, strength, and stiffness of

cancellous bone from proximal tibiae of human male

cadavers within subjects [18]. The current objectives were

(1) to examine the relationship of TGF-b2 with the

mechanical, microarchitectural, and stress distribution

properties and (2) to examine the relationship of IGF-I

matrix levels with the microarchitectural and stress distri-

bution properties of tibial cancellous bone.

Materials and Methods

Right tibiae from six male human cadavers that were free

of bone and joint disease (average age, 48 ± 14 years;

range, 26–63 years) were utilized. A total of 45 cylindrical

specimens of cancellous bone were prepared. These are the

same specimens used in our previous study [18]; the details

of specimen processing have been previously described.

Briefly, bone slabs were sectioned from the proximal tibiae

such that the subchondral bone plate was completely

removed at the center of the condyles during the first cut.

The second cut was made 35 mm distal to the first cut.

From the 35-mm-thick slab of cancellous bone, cancellous

bone cores (diameter, 8 mm) were cut out using a dia-

mond-tipped coring tool (Starlite, Rosemont, PA). Starting

6 mm distal to the proximal end of the core, each core was

trimmed to a 10-mm-long cylinder. Because we were

interested in within-individual variations rather than an

anatomic site effect, as many cores as possible were cut out

from each slab to represent the entire section but their exact

location in the transverse plane was not recorded. All

specimens were then scanned by a 3-D microcomputed

tomography (lCT) system with a resolution of 21 lm

using previously developed techniques [26, 53].

lCT images were used to construct finite element (FE)

models by directly converting image voxels representing

bone tissue to eight-node hexahedral finite elements using a

special purpose program [26, 32]. The trabecular bone tissue

in the model was assumed isotropic and uniform with a

Young’s modulus of 5 GPa and a Poisson’s ratio of 0.3.

Prescribed displacements equivalent to 0.5% strain were

applied in the longitudinal direction through sliding inter-

faces on the top and bottom surfaces of the cylinder with all

other surfaces unconstrained. The apparent uniaxial stress

(rapp) was calculated by summing nodal reaction forces and

dividing by the apparent cross-sectional area of specimens.

The mean (VMExp) and standard deviation (VMSD) of

trabecular von Mises stress distribution were calculated from

a three-parameter Weibull cumulative probability function

fitted to the stress distribution for each specimen [25, 65–67].

The variability of trabecular shear stress was expressed as

the coefficient of variation: VMCOV = VMSD/VMExp.

The magnitude of trabecular shear stress was expressed as

the average trabecular shear stress per apparent superoinfe-

rior uniaxial stress (VMExp/rapp). Both VMExp/rapp and

VMCOV are considered structural indices of shear stress

concentration in the hard tissue [25, 66, 68, 69].

A custom-written program was used to compute archi-

tectural parameters from lCT images [22, 28, 36]. Bone

volume fraction (BV/TV), bone surface-to-volume ratio

(BS/BV), trabecular thickness (Tb.Th), trabecular number

(Tb.N), and trabecular separation (Tb.Sp) were calculated

using 3-D stereology principles. Connectivity (Eu.N) of the

trabecular network was calculated using the topological

approach based on the Euler-Poincare number [47]. The

degree of anisotropy (DA) was calculated as the maximum

to minimum mean intercept length ratio.
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Measurement of apparent modulus and ultimate strength

of cylindrical cancellous bone samples under uniaxial

compression was reported in the previous study [18]. These

modulus and strength data were used to correlate

mechanical properties with matrix concentrations of

growth factors in our study.

Growth factor extraction methods were as described in

our previous study [18]. Cancellous bone cylinders were

ground into small particles using a biopulverizer (BioSpec

Products, Inc., Bartlesville, OK). The particles were placed

within dialysis units (Slide-A-Lyzer1, MW cutoff = 3500,

Pierce, Rockford, IL) and growth factors extracted by

dialysis against 4 M guanidine hydrochloride, 30 mM Tris

(pH 7.4), 0.05 M EDTA, and a mixture of protease

inhibitors at 4�C for 48 hours. Bone residue and extract

were separated by centrifugation at 10,000 rpm for

5 minutes. The extracts were redialyzed against phosphate

buffer saline solution for 72 hours and then stored at

�20�C until subsequent assay.

TGF-b2 generally exists as a latent form in bone matrix,

requiring activation before it can exert biological activities

[2]. In order to activate latent TGF-b2, the supernatant

extracted from bone samples was acidified by addition of

25 ll of 1 M HCl to 125 ll extract sample and neutralized

with 25 ll 1.2 M NaOH/0.5 M HEPES. Meanwhile, in

order to avoid the IGF-binding protein artifacts, the super-

natant extracted from bone samples was pretreated (10 min)

to release IGF-I from binding proteins by the use of an

acidic buffer (pretreatment reagent, composition proprie-

tary, IGF1 ELISA assay R&D Systems, Minneapolis, MN).

The concentrations of TGF-b2 and IGF-I in bone matrix

were determined by sandwich enzyme-linked immunosor-

bent assay (ELISA, R&D Systems, Minneapolis, MN) in

accordance with the manufacturer’s instructions. Duplicate

assays were performed for each extract, and the results

were averaged. The sensitivity of TGF-b and IGF-I assays

were determined to be 0.75 ng/g and 2.79 ng/g, respec-

tively. The matrix concentrations of TGF-b2 and IGF-I

were expressed as growth factor concentration per dry

weight of the bone powder. Initial studies demonstrated

that TGF-b1, TGF-b2, and IGF-I could be efficiently iso-

lated from powdered human bone using two 24 hours

extractions in guanidine (4 M) EDTA (0.05 M), 0.03 M

Tris buffer. Growth factor concentrations were within the

range of those previously reported. (TGF-b1: From 250 ±

0.34 ng/g for lumbar spine to 710 ± 400 ng/g for femoral

head; TGF-b2: 9.29 ± 4.72 ng/g for lumbar spine to 14.48

± 4.63 for femoral shaft; IGF-I: 80-870 ng/g for iliac crest

to *300–1000 ng/g for femur) [50, 56, 57]. The concen-

trations of TGF-b2 and IGF-I in the series of bone samples

in the present study was within the range of initial analyses,

however; TGF-b1 concentrations were considerably lower

than those obtained in our initial analyses and lower than

the previously published range. As we have no reasonable

explanation for this discrepancy, the TGF-b1 data have not

been included in the present analysis.

Correlation analysis was used to test the presence of

relationships between matrix growth factor densities and

other cancellous bone properties. Regression analysis was

performed to examine the relationships. The relationships

between growth factors and parameters within a subject were

examined using mixed models in which each subject was

treated as a random effect. JMP (SAS Institute, Cary, NC)

was used for the analyses. Because there was no more than

one subject at a given age, the mixed models that used donor

as a variable would automatically address age variations in

the data. Therefore, results were not adjusted for age.

An adjustment for p values was calculated for multiple

tests, taking into account the correlations between multiple

factors [55]. This calculation suggested a p value of 0.012

corresponding to a = 0.05.

Results

Matrix concentration of TGF-b2 was positively associated

with Tb.Sp and VMExp/rapp for pooled data (Table 1;

Fig. 1) and within subjects (Table 2; Figs. 2, 3).

Matrix concentration of IGF-I was associated with lower

stiffness, strength, BV/TV, and Tb.Th and with higher BS/

BV, Tb.Sp, VMExp/rapp, and VMCOV for pooled data

(Table 1; Figs. 1, 4, 5) and within subjects (Table 2;

Figs. 6, 7). IGF-I and Tb.N were negatively associated

within subjects (Table 2).

Discussion

Biomechanical properties of bone tissue are influenced by

bone remodeling, in which growth factors play an impor-

tant role. Our objectives were to investigate the

relationships of matrix concentrations of (1) TGF-b2 and

(2) IGF-I with biomechanical, microarchitectural, and tra-

becular stress distribution properties of cancellous bone in

the proximal tibiae of men.

We note several limitations. First, the proximal tibia is

not a site of common osteoporotic fractures. However, it

does experience cancellous bone density and architectural

changes with age [16, 17], ligament injury [35, 41] knee

replacement [42] and osteoarthritis [34, 71]. Therefore, we

believe studies of the proximal tibial bone are relevant to

the understanding of degenerative diseases and the design,

fixation and durability of total joint prostheses of the knee.

Second, our study is correlational and although the results

support a relationship between growth factor signaling and

mechanical property regulation, causation cannot be
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established from the current data. Third is the use of a

constant tissue modulus in finite element analyses of can-

cellous bone. The stress distribution properties calculated

from FE models are expected to be different between

homogenous and variable-modulus models [8] but not to

the extent that our conclusions would be affected. Finally,

the architectural parameters examined in this study are

based on stereological principles. Stereology-based

Table 1. Degree of freedom-adjusted coefficients of determination

(radj
2 ) and p values associated with the effect of TGF-b2 and IGF-I on

mechanical and architectural properties of cancellous bone in simple

linear regression

Response ; Effect ? TGF-b2 IGF-1

Eapp radj
2 = �0.010;

p = 0.457 (�)

radj
2 = 0.197;

p = 0.001 (�)

ru radj
2 = 0.005;

p = 0.273 (�)

radj
2 = 0.222;

p = 0.000 (�)

VMCOV radj
2 = 0.050;

p = 0.074 (+)

radj
2 = 0.278;

p = 0.000 (+)

VMExp/rapp radj
2 = 0.088;

p = 0.027 (+)

radj
2 = 0.222;

p = 0.000 (+)

BV/TV radj
2 = 0.035;

p = 0.115 (�)

radj
2 = 0.226;

p = 0.000 (�)

BS/BV radj
2 = 0.040;

p = 0.100 (+)

radj
2 = 0.239;

p = 0.000 (+)

Tb.Th radj
2 = 0.032;

p = 0.125 (�)

radj
2 = 0.205;

p = 0.001 (�)

Tb.N radj
2 = 0.045;

p = 0.086 (�)

radj
2 = 0.185;

p = 0.001 (�)

Tb.Sp radj
2 = 0.105;

p = 0.016 (+)

radj
2 = 0.213;

p = 0.000 (+)

Eu.N radj
2 = �0.023*;

p = 0.871 (�)

radj
2 = �0.023*;

p = 0.889 (�)

DA radj
2 = 0.020;

p = 0.176 (�)

radj
2 = 0.051;

p = 0.073 (�)

* A negative radj
2 means the assumption of a linear relationship is

worse than the assumption of a constant. The sign in parentheses

show whether the relationship is negative or positive.
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Fig. 1 Magnitude of trabecular shear stresses (VMExp/rapp)

increases with increasing matrix concentrations of TGF-b2 and

IGF-I in the same bone. The growth factor values are normalized

using the maximum of each type of measurement for ease of

comparison.

Table 2. Degree of freedom-adjusted coefficients of determination

(radj
2 ) and p values associated with the effect of TGF-b2 and IGF-I on

mechanical and architectural properties of cancellous bone in mixed

models

Response ; Effect ? TGF-b2 IGF-1

Eapp radj
2 = 0.300;

p = 0.496 (�)

radj
2 = 0.376;

p = 0.015 (�)

ru radj
2 = 0.380;

p = 0.184 (�)

radj
2 = 0.460;

p = 0.006 (�)

VMCOV radj
2 = 0.290;

p = 0.156 (+)

radj
2 = 0.425;

p = 0.003 (+)

VMExp/rapp radj
2 = 0.484;

p = 0.011 (+)

radj
2 = 0.561;

p = 0.000 (+)

BV/TV radj
2 = 0.578;

p = 0.110 (�)

radj
2 = 0.599;

p = 0.021 (�)

BS/BV radj
2 = 0.290;

p = 0.098 (+)

radj
2 = 0.469;

p = 0.000 (+)

Tb.Th radj
2 = 0.288;

p = 0.112 (�)

radj
2 = 0.442;

p = 0.002 (�)

Tb.N radj
2 = 0.636;

p = 0.088 (�)

radj
2 = 0.618;

p = 0.204 (�)

Tb.Sp radj
2 = 0.609;

p = 0.011 (+)

radj
2 = 0.580;

p = 0.039 (+)

Eu.N radj
2 = 0.421;

p = 0.419 (�)

radj
2 = 0.427;

p = 0.416 (+)

DA radj
2 = �0.367*;

p = 0.050 (�)

radj
2 = �0.194*;

p = 0.278 (�)

* A negative radj
2 means the assumption of a linear relationship is

worse than the assumption of a constant. The sign in parentheses

show whether the relationship is negative or positive.
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Fig. 2 Mixed model fit to VMExp/rapp indicated a positive linear

trend with TGF-b2 within an individual tibia.
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calculation of microstructural parameters (other than BV/

TV, Eu.N and DA) results in values that are different from

those obtained by direct calculation [15, 30] but micro-

structural parameters calculated using one method are

highly correlated to those calculated using the other

method [15].

We did not find a relationship between TGF-b2 and

cancellous bone strength or stiffness. This is similar to

results from other human bone studies that failed to find an

association between bone volume and matrix TGF-b1 or

TGF-b2 [6, 50]. However, it is in contrast with results from

a genetically modified mouse study where reduced TGF-b
signaling was associated with enhanced cortical bone

strength and stiffness [3].

We did find an increase in Tb.Sp and VMExp/rapp with

increasing matrix levels of TGF-b2. These results are

consistent with TGF-b overexpression and inhibition

studies in animals where increased TGF-b expression is

associated with lower bone mass [20, 23]. The effect of the

microstructure is separated from that of matrix properties

in our stereology and FE analyses. Based on the presence

of a relationship of TGF-b with microstructural properties

but not with stiffness and strength, further work focusing

on the relationship between growth factor concentrations
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Fig. 3 Mixed model fit to trabecular separation (Tb.Sp) indicated a

positive linear trend with TGF-b2 within an individual tibia.
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Fig. 4 Apparent strength of cancellous bone decreases with increas-

ing matrix concentrations of TGF-b2 (NS) and IGF-I in the same

bone. The growth factor values are normalized using the maximum of

each type of measurement for ease of comparison. Because the linear

fit to the IGF-I data passes through ru = 0 within the range of

measured IGF-I values, it was deemed inadequate. A power-fit,

although equally explanatory (radj
2 = 0.238, p \ 0.001) as the linear

model (radj
2 = 0.222, p \ 0.001), is presented as a simple function to

illustrate the nonlinear nature of the relationship.
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Fig. 5 Coefficient of variation of trabecular shear stresses (VMCOV)

increases with increasing matrix concentrations of TGF-b2 (NS) and

IGF-I in the same bone. The growth factor values are normalized

using the maximum of each type of measurement for ease of

comparison.

IGF-I (ng/g bone powder)

0 20 40 60 80 100 120 140

V
M

E
xp

/ σ
ap

p

0

5

10

15

20

25

30

35

40
Donor1
Donor2
Donor3
Donor4
Donor5
Donor6
Overall

Fig. 6 Mixed model fit to VMExp/rapp indicated a positive linear

trend with IGF-I within an individual tibia.
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and matrix mechanical properties in human bone may be

warranted [3].

Decreasing cancellous bone strength and stiffness with

increasing matrix concentration of IGF-I has been reported

previously [18]. The increasing VMExp/rapp, VMCOV,

BS/BV and Tb.Sp as well as decreasing BV/TV, Tb.Th and

Tb.N with increasing IGF-I is consistent with the strength

and stiffness results from the same bones and bone volume

results from IGF-I-deficient mice [4]. Negative relationship

between architectural parameters and IGF-I matrix con-

centration within individual subjects is in contrast with a

previous study in which a positive relationship between

skeletal IGF-I concentration and bone volume fraction of

cancellous bone from iliac biopsies was observed [57].

This inconsistency may be due to donor differences as the

tissue in the Seck study was obtained from female donors

with breast cancer. The difference between the results may

also indicate that the effect of local IGF-I on bone is site-

specific; site specificity can be between different bones and

between different regions of the same bone. The IGF reg-

ulatory system is relatively complex and other components

of this system such as insulin-like growth factor binding

proteins (IGFBPs) may be involved in modulating the

action of IGF-I on remodeling. The production of IGFBPs

in human bone cells under similar conditions is different

between cells from different skeletal sites [43] that may

explain, in part, the site-specific relationship of IGF-I with

bone mass.

Increasing levels of BV/TV, modulus and strength with

decreasing levels of growth factors in our study may be

associated with an adaptive response of bone to increasing

mechanical demands in these bone regions. This idea is

consistent with the finding that matrix deposition of both

IGF-I and TGF-b1 decreases as the result of increased

mechanical loading in rats exercised on a treadmill [9].

Experiments with rat osteoblast cultures indicate that pro-

liferation associated with estrogen and testosterone is

mediated by IGF-I whereas proliferation associated with

mechanical strain is not [10, 13, 14]. On the other hand,

increased mechanical loading causes a strong expression of

IGF-I mRNA in the osteocyte as reported in rat caudal

vertebrae and cortical bone in vivo mechanical loading

experiments [39, 40, 51, 52]. TGF-b increases IGF-I

expression in human osteoblast cells [48]. The response of

TGF-b to mechanical stimulation depends on the TGF-b
isoform, nature of the mechanical perturbation, cell type

considered, and the anatomic site [59, 70] but methodo-

logic differences such as mRNA expression versus matrix

concentration of the protein and in vitro versus in vivo

model systems may amplify these dependencies. Overall,

these data suggest that mechanical strain-related prolifer-

ation of osteoblasts may not be directly mediated by IGF-I

but could be affected by IGF-I in a strain-dependent

manner through its interactions with TGF-b and estrogen.

The greater effect of IGF-I on bone mass, architecture, and

mechanical properties than TGF-b2 may be explained by

IGF-I having both systemic and local roles in bone

metabolism and TGF-b being a more local regulator of

bone remodeling.

Our data suggest the variation of biomechanical, micro-

architectural, and trabecular stress distribution properties of

cancellous bone in human tibiae is correlated with the vari-

ation of the concentrations of TGF-b2 and IGF-I in bone

matrix. Increased local matrix concentrations of growth

factors are associated with poor biomechanical and archi-

tectural properties of tibial cancellous bone.
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