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Abstract: Pulmonary vein stenosis remains a considerable clinical challenge, with high mortality
still present in children with progressive disease. In this review, we discuss the clinical spectrum
of pulmonary vein stenosis and what is known about the etiology and potential modifying and
contributing factors in progressive pulmonary vein stenosis.
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1. Introduction

Pulmonary vein stenosis (PVS) is a rare pediatric vascular disease characterized by
progressive neointimal lesion and associated with high mortality. The inherent clinical
heterogeneity of patients, unclear etiology and progressive pathophysiology impact on our
ability to make substantial progress in improving outcomes for children with PVS. In this
review, we discuss barriers to clinical research for children with PVS, our current state of
knowledge regarding mechanisms contributing to the development of PVS and research
priorities moving forward.

2. Clinical Research: Not All Pulmonary Vein Stenosis Is Created Equal

Rare pediatric diseases are inherently difficult to both treat and study due to small
patient numbers, dispersed expertise and limited funding opportunities. Pulmonary vein
stenosis is no exception, and the variability in clinical spectrum of PVS further compounds
our ability to advance clinical care and research. Clinical variability exists in the clas-
sification or type of PVS, pulmonary vein involvement, and comorbidities of patients
and within the research realm, this can translate into ill-defined inclusion criteria and
outcome measures.

PVS can be classified as ‘primary PVS’ (or congenital), whereby the veins are normally
connected to the left atrium, or ‘post repair PVS’, where the pulmonary veins drained
anomalously, and PVS develops after veins have been surgically connected to the left
atrium [1]. An important special population are children who are ex-premature and
develop PVS, as their disease trajectory and comorbidities may be unique [2]. One could
also add in-stent stenosis as another potential subcategory, where the etiological mechanism
of stenosis (mitogenic stimulus due to radial forces) may be different from the original PVS
that was treated by the stent. ‘Acquired’ PVS describes PVS caused by other factors such
as radiofrequency ablation and fibrosing mediastinitis.

The absence of definitive diagnostic criteria for PVS and thresholds for interventions
can leave clinicians feeling uncertain around treatment plans. Generally, echocardiographic
data demonstrating mean pressure gradients ≥4 mmHg, in the absence of flow redistribu-
tion, and with supporting anatomical evidence of stenosis by other imaging modalities, are
typically considered significant PVS [3,4]. Supporting evidence of right ventricular pressure
overload confirms hemodynamically significant pulmonary vein stenosis. Typically, both

Children 2021, 8, 481. https://doi.org/10.3390/children8060481 https://www.mdpi.com/journal/children

https://www.mdpi.com/journal/children
https://www.mdpi.com
https://doi.org/10.3390/children8060481
https://doi.org/10.3390/children8060481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/children8060481
https://www.mdpi.com/journal/children
https://www.mdpi.com/article/10.3390/children8060481?type=check_update&version=1


Children 2021, 8, 481 2 of 8

physiological evidence by echo and anatomical data through axial imaging or diagnostic
angiogram confirm a diagnosis and allow for individualization of treatment plans.

PVS can also present with considerable variability in patients as it can occur in one or
more of the pulmonary veins and can be bilateral or limited to unilateral disease. Lesions in
the pulmonary veins can be discrete at the venoatrial junction or can be diffuse, extending
along the length of the intraparenchymal vein (Figure 1), and the velocity at which the
disease progresses can range from indolent to aggressive and relentless. From small cohort
studies, markers of advanced disease such as multivessel involvement, bilateral disease
and high preoperative right ventricular systolic pressure are associated with increased
mortality [5–7], while imaging studies investigating characteristics of upstream pulmonary
veins, as a marker of advanced disease, suggest that a smaller cross-sectional area in
upstream veins was associated with increased risk of death [8].
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Another layer of complexity is the important comorbidities that children may have in
addition to PVS. Children with PVS may also have concomitant congenital heart disease
(simple or complex) or chronic lung disease due to prematurity, all of which will affect
clinical decision making. In addition, as many as 30% have some identifiable genetic
syndrome (trisomy 21, CHARGE, Smith-Lemli-Opitz), which may have additional cardiac
and extracardiac abnormalities [6,9,10]. Treatment of PVS must incorporate patient specific
comorbidities to help improve outcomes.

Clinical Priorities

At the clinical level, creation of an institutional multidisciplinary PVS team is critical
to overcoming the challenges with diagnostic and intervention thresholds and allows
consensus for disease surveillance [1,11]. At a multi-institutional level, the PVS Network
was formed in 2015 and is a collaborative community that seeks to improve clinical care
and research for children with PVS (www.PVSNetwork.org, accessed on 1 May 2021). The
PVS Network Registry will help to overcome sample size issues as it collects data across
19 institutions to provide insights into clinical practice and disease surveillance. Multidis-
ciplinary collaboration will help to provide consensus for diagnosis criteria, descriptive
anatomical nomenclature and identifying relevant outcome measures that will inform
research studies. With over 600 patients currently enrolled, research targeting special
subpopulations will provide insights into etiology, risk factors and outcomes. The PVS
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Network Registry studies will provide an exciting opportunity to address high priority
knowledge gaps and provide data to inform consensus practice guidelines.

3. Translating Molecular Understanding into Clinical Action

The clinical spectrum of PVS will benefit from reframing as our understanding grows
from emerging molecular mechanisms of PVS and potential contributing factors. Further
translational and basic science research is needed to provide insights into the etiology and
potential therapeutic approaches to PVS.

3.1. Neointimal Lesions in PVS

Pulmonary vein stenosis is characterized by neointimal lesion formation that can be
limited to the extraparenchymal veins or extend into the intraparenchymal veins. Human
histological specimens demonstrate neointimal lesions that have myofibroblast-like cells
and loose extracellular matrix deposition. Spindle-shaped cells or myofibroblast-like cells
stain for alpha smooth muscle actin and vimentin, and extensive fibro-myxoid deposi-
tion in the mature lesions that stain strongly with Alcian Blue [12]. There is typically a
paucity of inflammatory cells, while proliferating cells, using Ki-67 immunostaining, are
modestly seen in less mature lesions [12,13]. In addition, activation of receptor tyrosine
kinase receptors such as platelet-derived growth factor and fibroblast growth factor have
been noted in histological specimens from children with PVS [14]. Of interest, a single
case series has described the presence of ‘metakaryotic cells’, a type of stem cell in PVS
lesions, and proposed that they may be a source of progenitor cells that contribute to fibrob-
last deposition [15]; however, no additional studies have verified these findings to date.
Animal models support neointimal lesion formation with myofibroblast-like deposition
as an important mechanism of PVS progression. Using a cut and sew model mimicking
post repair PVS, the authors demonstrated a proliferative model whereby lesions stain
positive for Ki67, a proliferative marker, and biochemical evidence of activated mTOR
signaling [16]. In a neonatal bilateral banding model of PVS, myofibroblast lesions develop
and progress into the intraparenchymal veins [17]. In this animal model, there is evidence
supporting proliferation and endothelial-to-mesenchymal transition (EndMT) with ele-
vated transforming growth factor-beta signaling that could be ameliorated with the use of
losartan [18].

The origin of the myofibroblast-like cells is currently an area of investigation and
is an area where many potential therapeutic adjuncts are emerging. Myofibroblast cells
that characterize neointimal lesions can come from many different sources and may have
temporal contributions over different stages of lesion development (Figure 2). Potential
sources of cells could be through proliferation of existing pericytes and fibroblasts in the
various vascular compartments, endothelial-to-mesenchymal transition, dedifferentiation
of smooth muscle cells and circulating progenitor cells.

One hypothesis was that neointimal lesions represented a neoplastic-like process; how-
ever, an initial pilot study with methotrexate and vincristine did not improve survival [19].
In addition, analyses of pathological samples from children with PVS do not reveal a
relationship with markers of pediatric fibroproliferative disorders, such as MHY9-USP6
translocation [13]. Losartan as a target of EndMT has been applied clinically, and data
on a small cohort of patients who were treated with losartan as a medication to suppress
EndMT are anticipated in 2022. Extending the antiproliferative effects of drug-eluting
stents, systemic sirolimus has been used as an antiproliferative to mitigate in-stent stenosis
in a single center retrospective series [20]. Use of imatinib, a tyrosine kinase inhibitor, and
bevacizumab, an inhibitor of vascular endothelial growth factor, to target the upregulated
tyrosine receptors seen in histological specimens has been shown to improve survival
compared to the methotrexate and vincristine cohort [21]. While retrospective data on this
cohort did not show a difference in overall survival compared to an aggressive multimodal
surgical and catheter-based treatment cohort [7], use of propensity matching from a con-
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temporary cohort could help refine our understanding of the incremental effects of these
medical adjuvants.
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While primary and post repair PVS may have different inciting events, the progression
and histological appearance of the disease appear more undifferentiated. Understanding
the contribution of these cellular responses as the disease progresses over time will help
target various therapeutic agents across the disease journey that can aid in slowing the
progression of the disease, regardless of the inciting event.

3.2. Modifying and Contributing Factors in PVS

The etiology of PVS has remained elusive and likely has a multifactorial contribution.
Likewise, the progression and trajectory of pulmonary vein stenosis may be affected by
multiple modifying or contributing factors (Figure 3).

3.2.1. Genetic Contribution

In congenital or primary PVS, identification of a monogenic etiology has not been
reported, unlike pulmonary arterial hypertension (PAH) or pulmonary veno-occlusive
disease (PVOD), where familial inheritance has led to genetic candidates [22,23]. One case
report documented a familial occurrence in consanguineous parents, without a candidate
gene [24]. In families with anomalous drainage of the pulmonary veins, genetics studies
identified PDGFRA and ANKRD1 [25,26], while whole genome sequencing studies found
rare variants that require further investigations in larger cohorts [27]. SEMA3D was
identified in a case of partial anomalous pulmonary veins which was recapitulated in
mouse models [28]. However, none of these cohorts involved patients with stenosis and to
date, no monogenic cause for PVS has been identified. Genetic syndromes occur in about
30% of patients, with Trisomy 21 being overrepresented [6,10]. Accelerated pulmonary
hypertension is associated with T21, and a recent publication demonstrated that Trisomy
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21 patients who had longer exposure to left to right shunts had increased risk of developing
PVS [29]. Collaborative studies using whole genome sequencing of large cohorts are a
priority and will use the existing PVS Network infrastructure. These studies have the
potential to provide insight into modifying and contributory signaling pathways and gene
networks important in progressive pulmonary vein stenosis.
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3.2.2. Developmental Contribution

Pulmonary vein development is a complex interplay between the lung bud and car-
diac development [30] and in humans, while controversy exists, data support a single
common pulmonary vein arising from the splanchnic mesoderm and incorporating with
the dorsal mesenchyme of the left atrium, which is derived from the second heart field,
to give rise ultimately to four separate pulmonary veins [30,31]. Extraparenchymal pul-
monary veins are notable for the presence of a myocardial sleeve, which is an outer layer
of cardiomyocytes, which surrounds the proximal pulmonary vein. While the etiology of
PVS is unknown, one could postulate that venoatrial discrete narrowing or pulmonary
vein atresia could arise from alterations in developmental programs during incorporation
into the left atrium or branching of the common pulmonary vein into four distinct pul-
monary veins. Alternatively, abnormalities of the myocardial sleeve or the cardiomyocytes
that make up the sleeve could also lead to venoatrial narrowing through contraction or
distortion. Pulmonary vein stenosis seems to have a developmental window for which
the disease seems to be most aggressive. Indeed, younger age at diagnosis and weight
less than 3 kg at time of repair have been identified in some series [4,6,7]. Typically, PVS is
diagnosed within the first 6 months of life and disease occurring after the age of 3 years
can be more indolent in its course. It is unclear if this is a disease that burns out due to
overwhelming fibrosis and loss of proliferative cells or if it is a consequence of the evolving
postnatal lung microenvironment.

In ex-premature infants with bronchopulmonary dysplasia (BPD), the development
of pulmonary vein stenosis is an important comorbidity and can occur in about 30% of
infants with BPD. In some case series, it has been associated with increased mortality [2,32],
although other studies have not shown a clear association [33]. Development of PVS in
this population is thought to be idiopathic and the contributory role of intracardiac shunts,
hypoxia, necrotizing enterocolitis and mechanical ventilation on the premature pulmonary
venous endothelium is not yet well defined [32,34].
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3.2.3. Intimal Trauma and Hemodynamic Contribution

Exposure to shunts and high flow have been postulated to play a role in the pathogen-
esis of PVS, as many children have atrial and ventricular shunts or patent ductus arteriosus.
Most recently, in T21 children, exposure to shunts was associated with increased risk of
PVS [29]. Extra-anatomical factors can also contribute to the development of PVS. Kotani
and colleagues reported increased obstruction of left-sided veins in single ventricles related
to cardiomegaly and anteriolateral displacement of the pulmonary veins [35,36]. Angu-
lation of the pulmonary veins at the level of the pericardial reflection is also postulated
to potentially create localized flow disturbances, and it is speculated that this may be
exacerbated in ventilator-dependent premature children with regional atelectasis [37].

Turbulent flow is associated with abnormal intimal fibrosis and surgical techniques
have evolved to minimize intimal trauma from suturing and disturbed flow patterns due to
distortion when repairing pulmonary veins. The ‘sutureless’ technique was introduced to
mitigate direct suturing on the pulmonary veins, which is thought to exacerbate tendencies
for intimal fibrosis [1]. It is also thought to provide a more open egress of blood flow
compared to conventional repair techniques by promoting laminar flow. Indeed, data
are emerging that support the use of the sutureless technique in primary repair of total
anomalous pulmonary veins as it is associated with decreased occurrence of post repair
PVS [38–40].

Anatomic-based repair is an approach which takes into consideration the pathway
of the individual pulmonary veins as they travel from the lung to the back of the left
atrium [37] and attempts to provide unobstructed blood flow. All efforts are made to
release pericardial tethering, resect thickened tissue and to shorten and straighten the
course of the pulmonary vein, while using patch material to promote unobstructed laminar
flow to the left atrium. Additionally, attention to the proximity of the atrial septum to
the pulmonary vein ostia is important. In repair of pulmonary vein stenosis, shifting
the position of the atrial septum away from the pulmonary vein ostia will potentially
minimize turbulent flow at the ostia if septal malposition is present. Understanding the
impact of various surgical approaches that minimize residual gradients and maximizing
laminar flow will be of interest in PVS Network registry studies, as these can potentially
influence outcomes.

4. Conclusions

PVS is a heterogenous disease that is evolving in its management. Multi-institutional
PVS Network registry studies to improve clinical resolution of the disease are ongoing and
will help to power prospective studies moving forward. Use of translational approaches
such as the PVS Network genetics and biomarker studies will expand our knowledge, and
likewise, integration of basic science to address clinically relevant questions will further
our understanding and aid in finding medical therapies to slow the progression of this
disease. Through collaboration, incremental knowledge gains will translate into improved
outcomes for children diagnosed with PVS.
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