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Survival under stress, such as exposure to hypoxia, anoxia, freezing, dehydration, air

exposure of water breathing organisms, and estivation, is commonly associated to

enhanced endogenous antioxidants, a phenomenon coined “preparation for oxidative

stress” (POS). The regulation of free radical metabolism seems to be crucial under these

selective pressures, since this response is widespread among animals. A hypothesis

of how POS works at the molecular level was recently proposed and relies on two

main processes: increased reactive species production under hypoxia, and activation of

redox-sensitive transcription factors and signaling pathways, increasing the expression

of antioxidants. The present paper brings together the current knowledge on POS and

considers its future directions. Data indicate the presence of POS in 83 animal species

(71.6% among investigated species), distributed in eight animal phyla. Three main

research challenges on POS are presented: (i) to identify the molecular mechanism(s)

that mediate/induce POS, (ii) to identify the evolutionary origins of POS in animals, and

(iii) to determine the presence of POS in natural environments. We firstly discuss the

need of evidence for increased RS production in hypoxic conditions that underlie the

POS response. Secondly, we discuss the phylogenetic origins of POS back 700 million

years, by identifying POS-positive responses in cnidarians. Finally, we present the first

reports of the POS adaptation strategy in the wild. The investigation of these research

trends and challenges may prove useful to understand the evolution of animal redox

adaptations and how they adapt to increasing stressful environments on Earth.
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INTRODUCTION

Animals are naturally submitted to environmental stresses that act as selective pressures leading
to fixation of many behavioral, physiological, and biochemical adaptations. One situation that
many animals endure is the periodic reduction in oxygen availability, which can last from
hours to days/weeks. This occurs in animals during several natural events, including exposure
to hypoxic/anoxic environments, exposure to freezing, or severe dehydration (which resemble
ischemia), air exposure of water breathing organisms and estivation. These conditions are termed
as “low oxygen stress” (Hermes-Lima et al., 2015).
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Several biochemical adaptations, including metabolic
depression, use of anaerobic pathways, epigenetic modifications,
and changes in redox metabolism are conserved among many
animal species that tolerate low oxygen stress (Staples and Buck,
2009; Storey and Storey, 2012; Biggar and Storey, 2015; Storey,
2015). In the last 25 years, researchers have been studying the
role of redox metabolism in the survival machinery of animals
under low oxygen stress and estivation. It was observed that
many animal species from eight phyla (including vertebrates
and invertebrates) upregulate endogenous antioxidant levels
during low oxygen stress (Moreira et al., 2016). Phenotypically,
studies from many laboratories have shown increases in
catalase, superoxide dismutases, and glutathione peroxidases
activities, and also in the levels of reduced glutathione (GSH),
under stress conditions. The biological phenomenon of
antioxidant upregulation in response to low oxygen availability
is referred to as “preparation for oxidative stress” (POS; Hermes-
Lima et al., 1998, 2001; Hermes-Lima and Zenteno-Savín,
2002).

The first observation of such phenomenon was an 183%
increase in catalase activity in muscle samples from garter snakes
(Thamnophis sirtalis) upon 5 h freezing exposure (Hermes-Lima
and Storey, 1993). Further investigations showed that many other
animal species, from cnidarians to vertebrates, enhance their
endogenous antioxidants when exposed to different low oxygen
stress conditions (Welker et al., 2013; Moreira et al., 2016).
The reports of animals expanded from just six species in the
1990’s (Storey, 1996; Hermes-Lima et al., 1998) to 69 species
exhibiting POS as a general response to low oxygen stresses
(Moreira et al., 2016). The present article updates the list to 83
animal species (see section The Prevalence of POS in 8 Animal
Phyla—A Brief Update). The widespread distribution of POS in
the animal kingdom indicates that the regulation of free radical
metabolism is crucial under such selective pressures posed by
abiotic stresses.

In the present article, we discuss the current trends and
research challenges on redox adaptation in animals exposed to
low oxygen stress. We report the state of the art as well as the key
research challenges regarding the POS phenomena.

Reviewing the Biochemical Model for POS
At the time POS was coined, in 1990’s, the term “preparation”
referred to the build-up of antioxidant defenses in advance
to the upcoming “oxidative stress” that would occur only
when O2 availability is resumed. Thus, animals would prepare
themselves, in the absence of an apparent oxidative stimulus,
avoiding the reoxygenation stress. For a long time, the identity
of the molecular signal to trigger the boost in antioxidant
defenses was unknown and speculated to be a “non-radical”
signal (Hermes-Lima and Storey, 1993). This was mainly due
to the premise that reactive (oxygen/nitrogen) species (RS)
production would necessarily decrease under hypoxia. Because
the only known condition to activate endogenous antioxidants
was oxidative stress (and increased RS formation), the POS
phenomenon remained without a biochemical mechanism of
activation.

This changed in the comparative biology field around 2005–
2007, when a growing number of studies considered that RS
formation could actually increase during low oxygen availability
(Bickler and Buck, 2007; Lushchak and Bagnyukova, 2007).
Despite of the evidence (e.g., Chandel et al., 1998; Guzy
et al., 2005), researchers remained resistant to accept the idea
of elevated RS production during hypoxia (Clanton, 2005).
Currently, it is well-known that oxygen deprivation itself, and
not only the reoxygenation event, poses an oxidative insult to
cells (Waypa et al., 2016). Based on data from comparative
biology, as well as from medical science, a biochemical
model involving redox signaling was recently proposed to
explain the boost in antioxidant defenses during low oxygen
stress in hypoxia-tolerant species (Hermes-Lima et al., 2015).
Regardless of the current understanding that hypoxia may
also be a condition of oxidative stress, besides reoxygenation,
the term “preparation” is still used because it became
widely used in the literature, especially in hypoxia tolerance
research.

Several events mark the transitions from the early
observations of enhanced endogenous antioxidants (Figure 1),
to the current molecular model in the comparative biology
field (Figure 2A). This model is the result of the compilation of
different observations from the literature: (i) RS formation may
increase in biological systems exposed to oxygen deprivation;
(ii) several hypoxia-tolerant animals show signs of oxidative
stress during hypoxia; (iii) the expression of antioxidant defenses
is controlled by redox-sensitive transcription factors, such
as Nrf2, NF-κB, and FOXOs; and (iv) the observations that
these same transcription factors are activated in hypoxia-
tolerant animals exposed to low oxygen stress (Hermes-Lima
et al., 2015). In this context, RS (and oxidative damage by-
products) would act as signaling molecules that activate
redox-sensitive transcriptional factors, and then antioxidant
enzymes (Welker et al., 2013; Hermes-Lima et al., 2015;
Figure 2A). Such transcription factors are well-known to
respond to oxidative challenges in many biological systems
(Sena and Chandel, 2012; Scotcher et al., 2013; Espinosa-
Diez et al., 2015; Klotz et al., 2015). Another consequence
of oxidative challenges is the activation of protein kinases
that targets catalase, GPX and SOD (Cao et al., 2003a,b)
and decreased phosphatase activity (Machado et al., 2017).
Recently, it was shown that phosphorylation activates MnSOD
(Dawson et al., 2015) and catalase (Dawson and Storey, 2016)
in wood frogs (Rana sylvatica) exposed to freezing. Thus,
the same cellular pathways involved in the oxidative stress
response in conventional models (e.g., mice and mammalian
cells) would operate in animals that are naturally tolerant
to severe O2 deprivation. The redox imbalance during
hypoxia would act as a hormetic signal, boosting antioxidant
defenses, which would mitigate the expected RS burst during
reoxygenation. Such effect resembles that of mammalian cardiac
pre-conditioning (Zhou et al., 1996) or mild oxidative challenges
in working muscle, in which exposure to mild oxidative stress
improves cellular function and preservation mechanisms
(Nikolaidis et al., 2012).
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FIGURE 1 | Milestones in “preparation for oxidative stress” research, from the first observation that hypoxia-tolerant turtles have unusual hemoglobin with high thiol

content in 1986; through the many observations of increased endogenous antioxidants levels in animals exposed to hypoxia, anoxia, freezing, estivation, severe

dehydration, and air exposure. Key events include the observations of redox-sensitive transcription factors activation in animals exposed to low oxygen stresses and

the post-translational control antioxidant enzymes by phosphorylation. “Preparation for oxidative stress” was coined in 1998. In 2015, a biochemical model was

proposed to explain the widespread observation of enhanced antioxidant defenses in animals exposed to low oxygen stresses and estivation. Superscript letters refer

to: 1(Reischl, 1986); 2(Radi et al., 1988); 3(Hermes-Lima and Storey, 1993); 4(Hermes-Lima and Storey, 1995); 5(Hermes-Lima et al., 1998); 6(Hermes-Lima and

Storey, 1998); 7(Morin et al., 2005); 8(Almeida et al., 2005); 9(Guzy et al., 2005); 10(Lushchak and Bagnyukova, 2007); 11(Malik and Storey, 2009); 12(Krivoruchko

and Storey, 2010); 13(Malik and Storey, 2011); 14(Zhang et al., 2013); 15(Hermes-Lima et al., 2015); 16(Dawson et al., 2015); 17(Dawson and Storey, 2016).

FIRST CHALLENGE—ARE RS LEVELS
INCREASED IN HYPOXIA AND THE
TRIGGERS FOR POS?

Increased RS production under hypoxia has been measured in
tissues and cells from hypoxia sensitive model organisms (e.g.,
probes or oxidation products; reviewed in Hermes-Lima et al.
(2015) and Waypa et al. (2016). For instance, RS production
in response to acute hypoxia increases in endothelial cells
(Hernansanz-Agustín et al., 2014). Moreover, the kinetics of
such RS overproduction is in the scale of minutes and depends
on the degree of hypoxia (Hernansanz-Agustín et al., 2014).
When the experiment was performed using endothelial cells
without a functional mitochondria there was no rise in RS
formation, indicating that such burst in RS emanates from
mitochondria (Hernansanz-Agustín et al., 2014). This kind of
evidence, however, is lacking for hypoxia tolerant animals that
exhibit the POS-response (i.e., antioxidant upregulation) to low
oxygen stress. Thus, the first scientific challenge in POS research

is the verification of the hypothesis that mitochondrial RS
formation increases in animal species that enhance endogenous
antioxidants during hypoxic challenges.

While mitochondrial superoxide radical (O•−

2 ), and H2O2, are
candidate initiators in our model (Hermes-Lima et al., 2015),
other reactive species, as well as other cellular sources of RS, may
also play a role. Nitric oxide, for example, may reversibly inhibit
components of the mitochondrial respiratory chain and alter the
rate of RS formation (Cleeter et al., 1994). Also, mitochondrial
RS production is highly regulated by different factors, including
the electron flux, the magnitude of the protonmotive force, the
oxygen and substrate availability, and the NADH/NAD+ ratio in
the matrix (Boveris and Chance, 1973; Korshunov et al., 1997;
Nishikawa et al., 2000;Miwa et al., 2003; Yu et al., 2006; Aon et al.,
2010; Ronchi et al., 2013).

In contrast to the numerous reports of enhanced endogenous
antioxidants in response to low oxygen stress, there is no
direct evidence that the proposed increase in mitochondrial
RS formation actually occurs in species that present POS as a

Frontiers in Physiology | www.frontiersin.org 3 September 2017 | Volume 8 | Article 702

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Moreira et al. Current Challenges in POS Research

FIGURE 2 | (A) The biochemical model of how antioxidant defenses are enhanced in response to low oxygen stress or estivation (i.e., “preparation for oxidative

stress;” Hermes-Lima et al., 2015). This model assumes that: (i) a temporary increase in reactive oxygen species (ROS) steady-state levels occurs during exposure to

low oxygen stress (air exposure, anoxia, freezing, hypoxia, and dehydration) or early estivation; (ii) excessive ROS lead to redox imbalance; (iii) sustained redox

imbalance results in physiological oxidative damage, activation of redox-sensitive transcription factors (FoxOs, NF-κB, and Nrf2), and activation of protein kinases, all

leading to upregulation of the endogenous antioxidant apparatus. (B) Prevalence of animal species classified by criterion 1, 2, and 3 as described by Moreira et al.

(2016) as positive (green), neutral (yellow) and negative (red) for low oxygen stresses and estivation combined (all species). Herein we added new studies and species

not reported in the previous publication (Moreira et al., 2016). The 14 species added in this study are Astronotus ocellatus (Marcon, 1996); Bunodosoma cangicum
(Abujamara et al., 2014); Catla catla (Singh et al., 2016); Colossoma macropomum (Marcon, 1996); Crepipatella dilatata (Cubillos et al., 2016); Danio rerio (Feng et al.,

2016); Larimichthys crocea (Wang et al., 2017); Neohelice granulata ((Geihs et al, 2016); Pandalus borealis (Dupont-Prinet et al., 2013; Pillet et al., 2016);
Pelteobagrus fulvidraco (Yang et al., 2014); Pelteobagrus vachelli (Zhang et al., 2016); Plectus murrayi (Adhikari et al., 2009); Reinhardtius hippoglossoides (Pillet et al.,
2016); Scapharca inaequivalvis (Foschi et al., 2012). (C) Illustrative topological drawing of metazoan radiation for 10 animal lineages (Erwin et al., 2011; Erwin, 2015).

Phyla that comprise POS-positive species are shown in green. Those with more studied species are in darker green (Arthropoda, Mollusca, and Chordata). Groups

with fewer studied species are shown in lighter green. Phyla without evidence for POS are shown in gray. The red circle indicates the most ancient evidence of POS,

considering it as a monophyletic characteristic.

response. However, scattered evidence indicates the occurrence
of redox imbalance and oxidative stress during hypoxia, as several
oxidative stress markers are elevated during low oxygen stress
(Hermes-Lima et al., 2015). To our knowledge, there are three
studies that quantified RS production in oxygen deprived non-
conventional models. These studies, however, do not indicate
any increase in RS production under hypoxia exposure for
those specific time-points. In one study, cerebral RS formation,
determined as salicylate hydroxylation in cerebrospinal fluid,
presented a trend for decrease in the first hour and significantly
decreased to nearly zero within 4 h of anoxia exposure in
Trachemys scripta turtles (Milton et al., 2007). In another
study, RS formation was evaluated in the marine platyhelminth
Macrostomum lignano exposed to near-anoxia for 1.5 h.
Superoxide levels, determined as DHE staining, were unaffected
by anoxia exposure (Rivera-Ingraham et al., 2013a). However,
oxidant generation (assessed by C-H2DFFDA staining) in
anoxia-exposed worms decreased by 78% when compared to
normoxic animals (Rivera-Ingraham et al., 2013a). The same

probes (DHE and C-H2DFFDA) were used to measure RS levels
in the gills of blue mussels under near-anoxia for 48 and 72 h. The
results from both probes indicated a reduction in RS formation
(Rivera-Ingraham et al., 2013b). Together, these studies indicate
either a reduction or maintenance of oxidant levels in vivo in
anoxia/hypoxia challenged animals. Thus, the proposed increase
in RS generation was not observed in POS-responsive species yet.

SECOND CHALLENGE—OCCURRENCE
AND EVOLUTION OF POS IN THE ANIMAL
KINGDOM

Recently, we mapped the prevalence of POS in various animal
species that had their antioxidant response assessed under low
oxygen stress or estivation (Moreira et al., 2016). To do so, we
developed three criteria to classify species as positive, neutral
or negative. First criterion: species are classified as positive if
there is at least one upregulation event of antioxidant defense,
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regardless of other alterations. Second criterion: species are
classified as positive if there is at least one upregulation above
a 50% threshold; or as negative if there is no upregulation
event, but downregulation events above a 25% threshold. Third
criterion: species are classified as positive only if there are
more events of upregulation (above 50%) in comparison to
downregulation (above 25%) within a tissue, if the number of up
and downregulation matches, the species is classified as neutral.
Applying the first criterion, in a list of 102 species from eight
animal phyla, there were observations of increased levels of
antioxidant enzymes in 68% of these species (69 out of 102) under
low oxygen stress or estivation (Moreira et al., 2016). This first
glance at the responses to low oxygen stress and estivation of a
great number of animal species—vertebrates and invertebrates—
evidenced the recurrent nature of POS phenomena. Such high
prevalence of animals that spend resources on endogenous
antioxidants in such energy-limited situations indicates a key
adaptive role of POS. Below; we update this list to 83 species that
fit the POS criteria.

The Prevalence of POS in 8 Animal
Phyla—A Brief Update
Because new studies have been published and a few other works
were missed, the percentages of POS-positive species changed in
comparison to our last analysis (Moreira et al., 2016). The current
list presents 116 animal species, 83 classified as POS-positive
in criteria 1 (72%; Figure 2B). We are, however, more focused
on those species considered for the most restrictive criteria 3
(n = 105, 62% POS-positive). The prevalence of POS-positive
species tended to increase in comparison to the previous values
(Moreira et al., 2016). For instance, all studied species under
estivation or severe dehydration are classified as POS-positive
according to criterion 3. In the case of freezing, anoxia, and
air exposure, the prevalence of POS-positive species is 83, 67,
and 60%, respectively. The prevalence of POS-positive species is
lowest in animals exposed to hypoxia (47%), which is the stress
with most species studied (n = 70) and also with highly variable
protocols. Thus, the prevalence of POS-positive species varies
depending on the stress to which animals are exposed.

From a phylogenetic point of view, it is noteworthy that from
the 65 animal species currently classified as POS-positive (in
criterion 3), 57 of them were from only three phyla: Mollusca,
Arthropoda, and Chordata. Mollusks had 25 species analyzed
and 14 of them (56%) are considered POS-positive. POS-positive
arthropods were 58%. In the case of Chordata, 64% of the
analyzed species are POS-positive. Moreover, the presence of
the POS mechanism in cnidarians is of special relevance in
terms of evolution because the phylogenetic line of these animals
started to evolve hundreds of millions of years ago (Erwin,
2015). Noteworthy, the expression of several key components
of the hypoxia tolerance machinery and POS-response are
present in cnidarians. Indeed, HIF-1 and other redox-sensitive
transcription factors crucial for the POS-response—FoxO, Nrf2,
and NF-κB—have been found in several cnidarians (Sullivan
et al., 2007; Meyer et al., 2009; Baumgarten et al., 2015; Malafoglia
et al., 2016). Since most molecular mediators for POS seems to be

working in cnidarians, it is possible that this process is controlled
in hypoxia-tolerant species of this Phylum by a mechanism very
similar to that we proposed to major bilaterian groups.

Animal Evolution and POS
To place the origin of the “POS phenotype” in animal
evolution is the second challenge in POS research. The POS-
response was observed in cnidarians, which is an ancient
animal group. Teixeira et al. (2013) reported the activation of
antioxidant defenses in the octocoral Veretillum cynomorium as
a consequence of aerial exposure. In another study, Abujamara
et al. (2014) reported a significant increase in SOD activity upon
exposure of anemones Bunodosoma cangicum to hypoxia. Since
POS is present in many bilaterian groups and in cnidarians, it
is reasonable that it was already present in the last common
ancestor of both groups. It is estimated that the divergence of
Cnidaria and Bilateria happened about 700 million years ago
(Ma), before the Marinoan glaciation (Figure 2C; Erwin et al.,
2011; Shu et al., 2014; Erwin, 2015). Moreover, even though
there are unequivocal fossil records of cnidarians dated from
the Fortunian epoch of the Cambrian, there is much uncertainty
whether other fossils from the late Ediacaran could be identified
as cnidarian (Shu et al., 2014). In any case, many more studies
are needed on low oxygen stress and POS-response in cnidarians
since there is only two POS-positive species in this Phylum.
It would also be valuable to assess alterations of the redox
metabolism in hypoxia-tolerant species from basal phyla, such as
Porifera.

THIRD CHALLENGE—ASSESSMENT OF
POS IN THE WILDERNESS

The third scientific challenge for POS research is to verify
whether the POS-phenotype is present in animals in their natural
environment in contrast to animals studied in the laboratory.
Most published studies were conducted in the laboratory under
artificially controlled conditions, being in some cases not
ecologically relevant. Our preliminary results show that when
the frogs Pleurodema diplolistris and Proceratophrys cristiceps
naturally estivate under dry riverbeds of a semi-arid region in
Northeast Brazil there is a 50–75% increase in muscular catalase
activity—in comparison with active animals in the same site, but
in rainy season (Moreira et al., 2017). In another example of POS
under natural settings, mussels Brachidontes solisianus increased
their whole-body GSH levels in response to air exposure for 4
h compared to animals underwater in Southern Brazil (Sabino
et al., 2015). These examples indicate that POS may occur in the
wild. However, studies with other animal species are needed to
show more evidence that the POS-phenotype is not restricted to
laboratory conditions, and that it indeed happens in nature.

FINAL STATEMENTS

As stated in On the Origin of Species: “Climate plays an
important part in determining the average numbers of a species,
and periodical seasons of extreme cold or drought, I believe to
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be the most effective of all checks” (Darwin, 1859). That is, the
environment and its changing conditions have a critical role
in shaping life forms, acting as major selective pressures. As
discussed herein, the regulation of redox metabolism seems to
be crucial for adaptation. Preparation for oxidative stress is a
phenomenon that happens in 62–72% of animal species tolerant
to low oxygen stress or estivation that were analyzed for the
antioxidant regulation. This prevalence is also dependent on the
animal taxon and the kind of stress-response. Future studies will
likely change the prevalence of POS in the animal kingdom—so
far, 116 species were analyzed.

It has been a long way from the initial proposals of this
redox adaptation strategy (Reischl, 1986; Hermes-Lima et al.,
1998) to the current molecular model (Welker et al., 2013;
Hermes-Lima et al., 2015). The current investigative path is,
first, to identify the molecular trigger of POS, possibly increased
superoxide/H2O2 formation. The redox imbalance caused by
such increase during low oxygen stress may activate a protective
response against a forthcoming challenge in reoxygenation—
fitting into the hormesis concept (Costantini, 2014). Second, it
is crucial to place POS in the history of life. We suggest that
POS could have been present at least ∼700 Ma, in the last
common ancestor of cnidarians and bilaterians (Figure 2C), a
period where oxygen was 1–3% of the present levels (Erwin,
2015). Finally, it is a priority to determine whether POS happens
in the wild. Preliminary determinations in estivating frogs and
air-exposed mussels suggest the answer is “yes,” however, more
species must be studied.

There are other issues related to POS that deserve
investigation. For example, the occurrence of hypoxia in
freshwater and coastal environments is an expanding threat
to aquatic life (Vaquer-Sunyer and Duarte, 2008). Deeper
knowledge about how POS works and evolved may prove useful

to understand how ecosystems will respond to this growing
global problem. Would it induce selective pressure favoring
POS-positive organisms? This represents a look onto how POS
would affect animals in the future.
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