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Abstract: The tone-mapping algorithm compresses the high dynamic range (HDR) information into
the standard dynamic range for regular devices. An ideal tone-mapping algorithm reproduces the
HDR image without losing any vital information. The usual tone-mapping algorithms mostly deal
with detail layer enhancement and gradient-domain manipulation with the help of a smoothing
operator. However, these approaches often have to face challenges with over enhancement,
halo effects, and over-saturation effects. To address these challenges, we propose a two-step solution
to perform a tone-mapping operation using contrast enhancement. Our method improves the
performance of the camera response model by utilizing the improved adaptive parameter selection
and weight matrix extraction. Experiments show that our method performs reasonably well for
overexposed and underexposed HDR images without producing any ringing or halo effects.
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1. Introduction

Casual photographic devices can represent a fraction of the HDR images due to their limited
irradiance range. That is why HDR images displayed by regular devices often look overexposed or
underexposed. Therefore, we need a proper tone-mapping algorithm to compress the HDR data into
the standard dynamic range (SDR), which is compatible with regular devices. A typical tone-mapping
algorithm tries to transform the HDR image into an SDR image without losing any vital spatial
information. An example of this is presented in Figure 1.

In recent years, many studies have been conducted on HDR tone-mapping. Even though a
significant amount of variance is present in previous tone-mapping algorithms, many studies propose
using a base-and-detail layer decomposition to transform HDR into SDR. In this method, the base
layer and the detail layer are extracted with the help of a standard edge-aware smoothing algorithm.
Each layer goes through an individual manipulation step and unified together through augmentation,
leading to the desired transformed image. This approach can faithfully reconstruct the HDR image
as an SDR image based upon the smoothing operator. However, several factors are needed to keep
in mind during this procedure. The size of the HDR images is generally more massive than the SDR
images. Consequently, smoothing operators take a longer time to extract the detail layer and base
layer. Detail enhancement-based methods can increase the aesthetics and luminance stretching of an
HDR image, although they have to face some challenges due to this enhancement operation. A usual
scenario is excessive texture detail enhancement. It is inherently caused by the prevalent tone-mapping
operators being unaware of the spatial properties of the detail layer, which leads to a cartoon-like view
of the reconstructed image. Halo artifacts are common in typical tone-mapping algorithms because
of the inherent lack of smoothing operators. If the underlying smoothing algorithm cannot provide
edge-aware smoothing, halo effects remain in processed images. Apart from the previously mentioned
scenarios, the inverse gradient problem may arise due to the over smoothing property of the base layer
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extractor. To faithfully reconstruct HDR images without any artifacts, one may incorporate relevant
priors or a robust edge-aware smoothing operator in the base and detail layer extraction algorithm.

(a)

(b)
Figure 1. (a) Example of the typical approach of tone-mapping procedure. (b) Tone mapping performance
of the proposed study.

The gradient-based tone-mapping operation has gained more attention in recent years because
the gradient’s sensitivity is more tractable to the visual system compared to its absolute form [1].
The gradient-based approach takes the magnitude of the gradient into account for tone-mapping
operation. This approach operates on larger gradient values to compress the base layer and smaller
gradient values for the structure layer. After these operations, augmentation of all the gradients
leads to the tone corrected output [1]. Gradient manipulation is crucial in image enhancement since
it aids in simultaneous gradient-based image sharpening and image smoothing [1]. In contrast,
it faces an unknown intensity range due to gradient integration for which pixel value exceeds the
standard radiance bound. To mitigate the above-mentioned scenario, this type of approach often has
to incorporate radiance clipping to keep the tone mapped image into the fixed dynamic range. Further,
it requires post-processing operations, which sometimes lead to over-saturation or over smoothing [1].

Herein, we present a computationally light and noise-suppressive method that does not suffer
from the contrast problem, display adaptive, artifact suppressive, and independent of parameter
tweaking. The underlying reason for these features lies in our perception of the tone-mapping
problem. In this study, we propose an approach that does not follow the usual way of gradient-domain
operation or base layer extraction. Instead of regarding the tone-mapping problem as a base layer
or gradient-domain correction problem, our approach treats this problem as a contrast enhancement
problem. Accordingly, we do not have to extract the base layer or the gradient layer, which depends
significantly on the smoothing operation. This smoothing operation makes the overall computation
heavier, and it gets worse with the size of the input image. Additionally, usual smoothing approaches
are not free from parameter dependency and involve a post-processing operation.
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In contrast to the traditional tone-mapping approach, we proposed an adaptive camera response
function with an appropriate weight matrix operator, which makes our approach independent of
parameter selection and any post-processing operation. Usual tone-mapping operation accumulates
the detail layer or gradient at the end of their approach. This accumulation increases the overall
sharpness of the image, as well as the visual clarity. However, this may also increase the noise,
introduce the ringing or halo effect, or might lead to the undesirable saturation of the tone mapped
image [1]. Since our study does not rely on this approach, the proposed method does not introduce
any halo or ringing effects. Further, this study faithfully approximates the exposure information of the
input HDR image. This property helps our method to be more noise-suppressive compared to other
methods. In summary, our contributions are as follows:

• Our approach obtains tone-mapped HDR images with the help of contrast enhancement, making
it unnecessary to perform any smoothing operations.

• The proposed approach tries to approximate the exposure information of the input HDR image
faithfully. This information aids contrast enhancement so that our method does not require any
post-processing.

• The proposed adaptive parameter selection improves the holistic contrast correction performance.
• Our utilized weight matrix extraction scheme [2] improves the overall contrast optimization

performance.
• Since this approach does not involve a smoothing operation or detail enhancement, tone-mapped

images do not exhibit ringing effect or halo effect. Additionally, it is computationally faster than
other state-of-the-art methods due to its single-channel contrast optimization step.

The structure of our paper is as follows. Section 2 discusses related studies of tone mapping.
Section 3 presents the proposed tone-mapping method. Section 4 presents the experimental results,
and Section 5 concludes the paper.

2. Related Work

Earlier studies of HDR tone mapping can be classified based on performing local and global
tone-mapping operations. Several methods [3–5] transform HDR images into LDR images using a
global tone-mapping operation. The authors of [3] segment the HDR image into two subsections
based upon the irradiance value. Afterward, they apply different logarithmic compressions to each
section. Tumblin et al. [4] proposed a global brightness-preserving algorithm for HDR tone mapping.
Ward et al. [5] mapped HDR images into SDR images by compressing the contrast instead of the
luminance of the input images, using a linear compression function.

Global tone mapping leads to locally distorted tone mapping, which has been addressed in local
tone mapping-based study [6]. In [7], an HDR image was divided into 11 local irradiance zones and
quantized into a compressed form according to those regions. Ma et al. [8] used optimization to
enhance the local region visibility. The researchers designed the tone-mapped image quality index
(TMQI) [9] as the objective for their optimization algorithm. Duan et al. [10] performed tone mapping
for HDR images by correcting the local histogram. Their approach utilized a global contrast correction
in the first stage and implemented the same contrast correction algorithm locally. Sira et al. [11]
proposed tone correction with a combination of local and global tone mapping. In the first stage,
the researchers corrected the saturation globally based on human perception’s properties. In the second
stage, they compressed the tone of the input image locally by using a variational model.

Shan et al. [12] have used local linear adjustments on small overlapping windows for the whole
HDR image. In this way, each of the overlapping windows has acted as a guidance map which
effectively suppresses the local irradiance anomaly. For tone-mapping, symmetrical analysis-synthesis
filter banks have used by Li et al. [13]. Their work has exploited local gain control in each sub-band to
achieve adaptive property. Gu et al. [14] introduced a local gamma correction with adaptive parameters
as an optimization problem to perform tone mapping for an HDR image. Chen et al. [15] proposed a
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luminance-driven perceptual grouping process to estimate a sparse representation of an HDR image’s
irradiance. Due to sub-grouping, researchers could apply a piece-wise illuminance optimization to
suppress excessive irradiance values.

Fattal et al. [16] proposed a gradient-domain optimization scheme to tone map the HDR
images. They obtained a low-dynamic-range image by solving the Poisson equation. This study [17]
manipulated the gradient domain by using the wavelet operation. With the help of edge-avoiding
wavelets, researchers reconstructed the HDR image as an LDR image with common artifacts.
Ramesh et al. [18] proposed symmetrically fusing multiple pictures in the gradient domain.
Their method can preserve important local perceptual cues and improved temporally coherent
contextual features. Another study [19] collected edge spectral information from multi-exposure
images and then fused all data into a single image. Afterward, it performed derivative manipulation
to produce the enhanced low-dynamic-range image. The fusion-based tone-mapping approach was
also used in [20,21].

Durand et al. [22] used a piecewise linear approximation for dissecting the base layer and the
detail layer to compress the HDR data. Bo et al. [23] used a locally adaptive edge-preserving filter
to perform tone mapping, where the resulting image preserved the salient edges. Meylan et al. [24]
proposed a Retinex-based tone-mapping algorithm. The researchers’ method utilized an adaptive
filter to protect the high-contrast edges from the artifacts and the principal component analysis to
suppress the chromatic distortion. Mai et al. [25] proposed a statistical model that approximated the
deviation due to the tone mapping and compression operations. The authors optimized the tone
curve based upon that model to perform tone mapping. Neil et al. [26] proposed minimal-bracketing
algorithms for computing the minimum-sized exposure to compress an HDR image into an LDR image.
Malik et al. [27] combined the fusion of different exposures with film response recovery to create an
LDR image. Zeev et al. [28] used the weighted least-squares filter for tone mapping. Even though L1
smoothing is an excellent option for edge-aware filtering, it leads to a weak structural prior. To address
this, Liang et al. [29] used the L1-L0 model to render an LDR image from an HDR image.

Choudhury et al. [30] proposed a denoising-based detail enhancing approach for tone mapping,
which was slower due to its prepossessing and post-processing operations. A local Laplacian filter [31]
is very efficient in suppressing the halo effect; however, the relevant operations are prolonged and
introduce unnecessary saturation. Recent tone mapping studies have leaned towards CNN-based
approaches due to their efficient performance. This study aims to perform inverse tone mapping
operation by correcting the input LDR image’s saturation information by using a convolutional neural
network. Then they have used a linear function upon the concatenated LDR and the corrected LDR
to reconstruct the HDR image [32]. Instead of using multi-exposure input, this study [34] predicted
multi-exposures from the input LDR image. Their CNN scheme was later followed by a stack-based
fusion step to reconstruct the tone-mapped HDR image. Their approach can efficiently deal with
saturation correction but suffers from the linearization problem.

Marnerides et al. [34] avoided the linearization problem by using CNN to reproduce the HDR
image directly. However, their method faces challenges with HDR compression due to their utilized
normalization scheme. To tackle this, Yuma et al. [35] proposed the L1-Cosine loss function to
reconstruct HDR images successfully. Authors claim that their CNN scheme can learn the non-linear
relationship between the input LDR image and the reconstructed HDR image. However, CNN-based
studies are not of the datasets. Also, existing datasets out there are not comprise of the evenly
distributed objects. On the contrary, mathematical modeling-based approaches can be free of dataset
dependency. For this, we sought to propose a scheme that can tone map the HDR images as efficiently
as possible.

3. Methodology

In this study, we propose a contrast optimization method to render a high-dynamic-range image as
a low-dynamic-range image. A visual representation of our proposed algorithm is present in Figure 2.
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In the first step, we apply a logarithmic transformation to the input image to bound the irradiance
information to a range from 0 to 1. At this stage, we can treat the input image as an LDR image with
a reduced contrast distribution. Afterward, we apply an RGB-to-HSV transformation to this image.
Next, we extract the value channel and plug that image into an adaptive camera response function
to obtain the exposure ratio information of the input HDR image. This information is later used to
perform non-linear contrast stretching. In the last stage, we performed an HSV-to-RGB transformation
to obtain the tone-mapped HDR image. The entire process does not involve base layer extraction
or detail enhancement as do the traditional methods. Therefore, our reconstructed image does not
exhibit halo effects, ringing effects, or gradient reversal since the proposed model does not entail
gradient-domain operations or base layer extraction.

Figure 2. The left-most image is the input image, and the image at the most right position is the tone
mapped output image. For ease of view, we have presented the normalized view of the exposure.
Here, we estimate the exposure ratio [36] with our proposed adaptive parameter settings, and we have
improved the contrast stretching with the help of this weight matrix extraction scheme [2].

We can cluster the popular contrast enhancement algorithms into two groups: (1) global contrast
enhancement [37,38], and (2) local contrast enhancement [39,40]. The global contrast enhancement
technique enhances the image contrast without considering the spatial properties of the input
image. Hence, a typical global contrast enhancement algorithm performs a linear contrast
enhancement. Due to this, the resulting image contains an overly saturated region or distorted detail.
Several studies [41–43] have performed nonlinear contrast enhancement to mitigate these challenges.
On the other hand, local contrast enhancement techniques prioritize the spatial distribution and achieve
better contrast correction, although the several studies did not provide any theoretical justification [13].
Unlike other approaches, the Retinex theory assumes that the internal structure of light decomposes
into two parts: (1) an illumination layer, and (2) the scene reflection layer [36]. Popular Retinex
studies [36] enhance an input image by manipulating the illumination layer. Since this approach does
not consider the camera response properties, it faces the challenges of over- and under-enhancement [1].
These studies [44–47] combined contrast optimization and detail enhancement to perform the HDR
tone mapping and reconstruct HDR images with over saturation and undesirable detail suppression.
This study [48] uses global histogram correction for tone mapping.

However, these problems can be alleviated if we can process the image with the proper exposure
information. The camera response function tries to mitigate this situation by approximating the
exposure information for the input image. If the pixel information captured by the sensors is E and X
is the non-linear function which takes E as its input to enhance the contrast, then the output image O
is as follows:

O = X(E) (1)
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This non-linear function is known as the camera response function. Direct approximation of this
function is possible through the ensemble of polynomial model approximation and optimization.
However, the nearly accurate estimation of this function is possible through the brightness
transformation function (BTF) [36]. If O′ is the output image and B is the brightness transformation
function, for the exposure ratio R, then the desired contrast-corrected approximation of the input
image I is as follows:

O′ = B(I, R) (2)

The above equation is also known as the brightness transformation function model [36]. For the
above equation, we can write down the camera response function [1,36] for recovering the input HDR
image with desired exposure is as follows:

O′ = exp(p1(1− Rp2)) ∗ IRp2 (3)

β = exp(p1(1− Rp2)), γ = Rp2 (4)

Here, p1 and p2 are model parameters. The default values of p1 and p2 from the previous study
are −0.32 and 1.3 [36]. However, these values lead to over-whitening for several images, as shown in
Figure 3. We assessed the effect of parameters experimentally and devised an adaptive form of this
model. To determine the values of beta and gamma, we first consider p1 and p2 to be equal. For any
values of p1 and p2, if the value of gamma is greater than 1, the obtained value of beta will be less
than 1. Even though the current parameters are suitable for the brighter region, the rendered image
will be darker. The reverse scenario of gamma < 1 and beta >1 will lead to a brighter image.

(a) (b) (c)
Figure 3. Example of over brightness due to fixed parameters of the camera response function model.
For the (a–c), we can see that overall saturation degrades significantly. Due to over brightness,
significant detail loss is present in (a,b). For (c), over-brightness leads to a cartoon-like effect.

To estimate the values of these parameters adaptively, we first calculate σ, which is the standard
deviation of the input image. Next, we set the value of p1 to 1 + σ and that of p2 to −p1/4. We have
estimated these parameters by trial-and-error. Our method achieves more accurate color representation
than the original parameter values due to this adaptive parameterization. Additionally, avoiding the
use of strictly fixed parameters allows us to retain the tone-mapped image’s naturalness. More on the
image’s naturalness is present in Figure 4.

As we see, the Equation (3) is the closed-form solution of Equation (2) bounded by the
parameters p1 and p2. These bounds govern a non-linear relationship with the input values and
map the whole image from 0 to 1 without any normalization tasks. However, with previous bounds,
it is common to have a reconstructed image that exceeds the 0 to 1 limit and distort the overall
contrast quality. The proposed adaptive limits can suppress such distortion. Since these parameters
do not maintain a linear relationship with the given image, only empirical evidence can justify its
efficacy. Figures 5–10 provide empirical evidence to show the efficacy of the proposed adaptive
parameter settings.

To achieve the exposure ratio map, we have to calculate the value of the illumination map, and the
inverse of the illumination map will give us the desired exposure ratio. For this, we have adopted
the iteration free solver [49]. This study [49] has used the weight matrix based upon the relative
total variation technique as in Equation (5). The choice of their weight matrix seems to influence
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in producing brighter output, which is not free from RGB noise [49]. In their study, they have used
denoiser as an extension to mitigate this challenge. This additional denoising step makes the overall
computation process lengthier. As an improvement, this study [36] has avoided the nominator part
of the weight matrix from the Equation (5). They proposed their weight matrix as in the Equation (6)
to enhance the contrast of the input image. The resultant illumination map achieved by their study
is blurrier compared to the illumination map of [49]. Their study does not exploit denoiser at the
end of the enhancement procedure and achieves brighter resolution compared to [49]. The weight
matrix WD() from [49], ref. [36] expressed as follows:

WD(m) =
1

|∑y∈ω(m) ∆DL(n)|+ ε
; D ∈ (W, H) (5)

WD(m) = ∑
y∈ω(m)

[
Gσ(m, n)

|∑y∈w(m) Gσ(m, n)∆DL(n)|+ ε
] (6)

here, L() is the illumination information extracted from the HSV transformation, ω() is the local
window, ∆D is gradient operator, Gσ(m, n) is the Gaussian kernel, D indicates the dimension,
W, H indicates horizontal and vertical axes, ε is a very small value in order to avoid zero
denominator.Images produced by [49] is dimmer and hazier in contrast [36]. Since their method [36]
avoid the denominator, produced images are brighter than [49], which in some cases distort the color
and naturalness as in the figure below.

(a) (b) (c) (d) (e) (f)

(g)

Figure 4. The above figure shows the effects of weight matrices and their respective outputs for
the table lamp image. Image (a) is the resultant from the Equation (6) produced Image (b) with the
brightest intensities and vibrant colors. This property contradicts the naturalness of the input scenario.
The fourth Image (d) is a little dimmer than the first and slightly hazy compared to our Image (f).
For the shown images, the contrast resulting from the use of Equation (7) causes them to appear more
natural. Image (g) shows the approximation performance of the weight matrices for a scan line from
the input image. For Equation (5), the scan line is least similar to the input scan line, which makes it
less aware of the input image’s spatial property. For Equation (7), the resultant scan line is more likely
to the input scan line, and from Image (f), produced output has a more desirable contrast distribution
than Image (b) and Image (d). (a) Equation (6), (c) Equation (5), (e) Equation (7).

To overcome these challenges, we have used the relativity-of-the- Gaussian [2] weight matrix.
The reason of using Relativity-of-the-Gaussian weight matrix lies in its cross-scale smoothing property.
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Due to this, this operator can capture the small and large scale information compared to other operators.
The decomposed formation [2] of this operator is adopted as our weight matrix:

WD(m) = Gσ1/2 ∗
1

|(Gσ1/2 ∗ ∆DL)(Gσ1/2 ∗ ∆DL)|+ ε
; D ∈ (W, H) (7)

This weight matrix also helps the optimization technique to keep the gradient regulized. So,
the optimization function for the illumination map is as follows:

min
T ∑

x

((
T(x)− L(x)

)2
+ λ ∗ ∑

y∈ω(m)

WD(x) ∗ ∆DT(x)
|∆DL(x)|+ ε

)
; D ∈ (W, H) (8)

here, λ is the balancing factor, x is each entity of the given input. T is the illumination information
from [36]. This optimization aims to obtain T on the basis of value channel L from the HSV
transformation. We have used 0.001 as the fixed value for λ. Since this equation is in quadratic
form, a closed-form solution is available and it can be obtained directly [49]. Now, we can write the
Equation [36] for the exposure ratio as follows:

R =
1

maximum(T(x), ε)
(9)

The result from the Equation (9) contains desirable exposure ratio information. Now we can plug
this exposure ratio into Equation Equation (3) to obtain the contrast-corrected value channel for the
tone-mapped HDR image. Originally, Equation Equation (3) works for the RGB input image. In our
case, this equation takes I as the value channel of the input HDR image and approximates the value
channel with the desired contrast. Later, we perform an HSV-to-RGB conversion to obtain the final
tone-mapped HDR result.

Ying et al. [36] performed this enhancement for three channels of the input image. Here,
we implement it for only the value channel. This procedure does not degrade the overall
hue and saturation information significantly. Moreover, our single-channel operation makes the
total computation faster than other studies. More about computational time is present in the
next section. Additionally, HSV transformation allows the proposed study to robust contrast
correction. Due to this transformation, this scheme escapes chromatic distortion as well as incorrect
luminescence approximation.
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(a) p1 = 1.7, p2 = 0.81 (b) p1 = −1.4, p2 = −0.5 (c) p1 = −1.5, p2 = −1.1 (d) p1 = 1.68, p2 = −0.32

(e) p1 = 1.12, p2 = −0.65 (f) p1 = 1.12, p2 = −0.32 (g) p1 = α1, p2 = α2 (h) Input HDR image

Figure 5. Effect of parameters on tone mapping. The subfigures show the following scenarios: (a) p1 and
p2 increase towards the positive infinity, (b) p1 and p2 increase in magnitude and tend towards the
negative infinity, (c) p1 increases towards the positive infinity, and p2 tends towards the negative
infinity, (d) p2 is fixed, and p1 increases towards the positive infinity, (e) p1 is fixed, and p2 tends
towards the negative infinity, (f) original parameters from [36], (g) proposed parameters α1 = 1 + σ,
α2 = −α1/4; where, σ is the standard deviation of the respective image, and (h) input HDR image.
The tone-mapped image is brighter because of the fixed parameters, and our adaptive settings produce
a more realistic image than do the fixed parameter settings.

4. Comparative Analysis

We have compared our tone-mapping results with several state-of-the-art studies.
Our comparative analysis includes L0-L1 base layer decomposition [29], weighted least square
filter [28], Relativity-of-the-Gaussian tone-mapping [2], L0 gradient minimization [50], Intensity
range decomposition [1], linear windowed tone-mapping [12]. For comparison, we consider subjective,
objective, and time analysis. We maintain the default parameter settings for all tone-mapping operators.
Our tone mapping operator uses contrast correction at its core. To demonstrate the contrast-correction
performance of our algorithm, we have compared our study with CLAHE [51], CRF [36], LIME [49].
For quantitative evaluation, we have used commonly used evaluation matrices like mean absolute
error, PSNR, and SSIM. In the later part of the study, we have presented the necessary tables and
figures for comparative analysis.

4.1. Dataset

In our study, we have used 150 different HDR images from various sources. We have collected
them from various researchers over the internet. Due to the unavailability of the ground truth for
the HDR images, we have to perform visual and quantitative comparison for performance analysis.
For contrast enhancement performance analysis.we have used Kodak 24 true-color image database [52]
and Berkeley image database [52].

4.2. Visual Analysis

As mentioned above, we have compared our study with six different state-of-art studies. For a
fair comparison, we have not included deep learning-based tone mapping studies. Furthermore,
our current study does not concerns video tone mapping. Figures 6–10 contain side by side comparison
between our study and other mentioned studies. From these figures, we can observe that our study
performs well along with other studies. Compared to other studies, our study does not produce any
over-enhanced image and free from edge hallucination, over-saturation, and ringing effect.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Comparison of tone-mapping methods. (a) LW [12], (b) WLS [28], (c) RoG [2], (d) L0 [50],
(e) IRD [1], (f) L0–L1 [29], (g) Proposed study, (h) Input.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Comparison of tone-mapping methods. (a) LW [12], (b) WLS [28], (c) RoG [2], (d) L0 [50],
(e) IRD [1], (f) L0–L1 [29], (g) Proposed study, (h) Input.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Comparison of tone-mapping methods. (a) LW [12], (b) WLS [28], (c) RoG [2], (d) L0 [50],
(e) IRD [1], (f) L0–L1 [29], (g) Proposed study, (h) Input.



Sensors 2020, 20, 4378 11 of 16

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Comparison of tone-mapping methods. (a) LW [6], (b) WLS [28], (c) RoG [2], (d) L0 [50],
(e) IRD [1], (f) L0–L1 [29], (g) Proposed study, (h) Input.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Comparison of tone-mapping methods. (a) LW [12], (b) WLS [28], (c) RoG [2], (d) L0 [50],
(e) IRD [1], (f) L0–L1 [29], (g) Proposed study, (h) Input.

4.3. Subjective Analysis

An image can convey equivocal meanings to its viewers from the aesthetic point of view. Hence,
we have performed a subjective analysis based on personal opinion. The selected subjects are 16
individuals, and equal numbers of males and females are present in this group. In our subjective
analysis, we have used a casual display (ASUS Monitor) to obtain the mean opinion score for our
test images. We have presented HDR images to the participants without any annotations, and there
was no ground truth for our test images. Participants in our experiment judged test images based on
clarity, contrast, and aesthetics. The mean opinion metric ranges from bad (score = 1) to the excellent
( score = 5). The results of our study have achieved comparable and better scores from the viewers.
The mean score and the standard deviation for each method are present in Table 1.
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Table 1. Subjective evaluation of the compared methods.

Methods Mean Standard Deviation

LW [12] 3.46 0.23
WLS [28] 4.1 0.19
RoG [2] 3.2 0.41
L0 [50] 3.0 0.35
IRD [1] 3.68 0.24

L0-L1 [29] 4.46 0.17
Proposed study 4.51 0.08

4.4. TMQI Analysis

To evaluate our method’s performance, we used the tone map quality index (TMQI) [9].
This metric entails two steps. In the first step, it estimates the structural fidelity and the naturalness
score. Afterward, it uses a power function to adjust the computed scores and performs an averaging
operation to determine the TMQI score for the input HDR and LDR images. The TMQI score ranges
from 0 to 1. Attaining a TMQI score close to 1 indicates that the respective tone-mapping method
produces sound tone-mapped output. For our study, we have collected 150 HDR images to create
our tone-mapping database. The average TMQI score for our tone-mapping operator is 0.9046.
The proposed tone-mapping operator has achieved the highest score of 0.9053. Our method has also
attained excellent results in preserving naturalness and fidelity. The average naturalness score is
0.5721, and the fidelity score of our method is 0.8619. A comparative analysis for this study is present
in Table 2.

Table 2. TMQI evaluation of the compared methods.

Methods TMQI Fidelity Naturalness

LW [12] 0.8616 0.7982 0.4995
WLS [28] 0.8571 0.8578 0.4815
RoG [2] 0.8545 0.8689 0.5037
L0 [50] 0.8679 0.8704 0.5122
IRD [1] 0.8713 0.8636 0.5205

L0-L1 [29] 0.8783 0.8423 0.5669
Proposed study 0.9046 0.8619 0.5721

As from Table 2, the proposed study achieves a low fidelity score on average. We know that the
fidelity score measures the standard deviation of the given image for various scale sizes in the local
domain. In other words, it measures the detail capturing performance of the given tone mapping
operator. This mechanism justifies the L0 operator’s highest fidelity score even though it tends to
hallucinate images due to its over detail enhancement. On the other hand, our study performs tone
mapping without applying detail enhancement, which is the sole reason for our low fidelity score.

4.5. Time Analysis

In terms of computational time, our method is significantly faster than other state-of-the-art
approaches. In contrast to the trivial tone mapping study, the proposed scheme uses contrast
optimization to extract exposure ratio over a single channel. Additionally, this optimization is
solvable without any iterations. Altogether, these properties reduce the required computational
time. On average, our method takes only 2.6 s to perform the tone mapping operation. The results
of our time analysis are presented in Table 3. We have used MATLAB to perform this tone-mapping
operation with the AMD-Ryzen 5 2600 processor for all the studies.
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Table 3. Time analysis between the compared methods.

Methods Time

LW [12] 30.73 s
WLS [28] 10.16 s
RoG [2] 41.2 s
L0 [50] 53.04 s
IRD [1] 78.25 s

L0-L1 [29] 8.73 s
Proposed study 2.6 s

4.6. Contrast Correction Analysis

Our study uses a contrast correcting operator at its heart to tone map the HDR images. Necessarily,
the proposed contrast correction method can work well to restore the images with poor contrast.
From Figure 11a, the proposed method can enhance the darkest part of the input image without
introducing any noise. For the cropped section in Figure 11a, we can see that our study can restore the
barely visible hidden tiles. For Figure 11b, we can see that unlike LIME, our method can restore the
brightness of the input image without damaging the saturation.

(a)

(b)

Figure 11. Image contrast enhancement comparison between the proposed method and other studies.
(a) We select the most cumbersome portion of the image to demonstrate the contrast correction
performance. From (a), our approach can illuminate the foreground and background image with
desirable contrast. (b) Contrast performance upon the selected portions from the KODAK-24 true color
dataset. We can see that the proposed scheme can illuminate the selected regions without distorting
the overall content. On the other hand, compared methods show over contrast stretching.

Along with visual performance, proposed approach has demonstrated its efficacy quantitatively,
as shown in the Table 4 below. For quantitative analysis, we have estimated the mean absolute error
value, SSIM, and PSNR for all the 24 true-color images from the KODAK database [52]. As from
the table, we can see that average MAE, PSNR, SSIM achieved by our study outperforms the
compared methods.
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Table 4. Contrast performance between the compared methods.

Methods MAE SSIM PSNR

LIME [49] 0.0386 0.8512 36.14
CRF [36] 0.0344 0.869 37.55

CLAHE [51] 0.0739 0.783 32.07
Proposed study 0.0216 0.882 38.71

5. Conclusions

In this paper, we have proposed a modified version of the camera response function model
(CRFm) for HDR tone-mapping operation. Our proposed adaptive parameter control aids the contrast
correction performance of the vanilla CRFm. Additionally, our choice of weight-extracting function
helps the camera response function model to maintain the spatial consistency of the input HDR image
as well as the low light images. These features altogether improve the visual and physical quality of
the tone-mapped images. Our method reduces the tone mapping computational complexity by using
only single-channel contrast optimization. Experimental results have shown that without performing
the detail enhancement operation, the proposed method can preserve structural fidelity without
compromising computational speed and spatial information.
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