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Abstract

Aims: This study aimed to develop a deep learning-based model for differentiating

tauopathies, including Alzheimer’s disease (AD), progressive supranuclear palsy (PSP),

corticobasal degeneration (CBD) and Pick’s disease (PiD), based on tau-immunostained

digital slide images.

Methods: We trained the YOLOv3 object detection algorithm to detect five tau lesion

types: neuronal inclusions, neuritic plaques, tufted astrocytes, astrocytic plaques and

coiled bodies. We used 2522 digital slide images of CP13-immunostained slides of the

motor cortex from 10 cases each of AD, PSP and CBD for training. Data augmentation

was performed to increase the size of the training dataset. We next constructed random

forest classifiers using the quantitative burdens of each tau lesion from motor cortex,

caudate nucleus and superior frontal gyrus, ascertained from the object detection model.

We split 120 cases (32 AD, 36 PSP, 31 CBD and 21 PiD) into training (90 cases) and test

(30 cases) sets to train random forest classifiers.

Results: The resultant random forest classifier achieved an average test score of 0.97,

indicating that 29 out of 30 cases were correctly diagnosed. A validation study using

hold-out datasets of CP13- and AT8-stained slides from 50 cases (10 AD, 17 PSP,

13 CBD and 10 PiD) showed >92% (without data augmentation) and >95% (with data

augmentation) diagnostic accuracy in both CP13- and AT8-stained slides.

Conclusion: Our diagnostic model trained with CP13 also works for AT8; therefore, our

diagnostic tool can be potentially used by other investigators and may assist medical

decision-making in neuropathological diagnoses of tauopathies.
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INTRODUCTION

As society ages, the number of patients with neurodegenerative disor-

ders presenting with dementia or movement disorders will increase.1

Tauopathy is one of the major categories of neurodegenerative disor-

ders, characterised by an accumulation of abnormal tau protein in

neurons and glia accompanied by neurodegeneration.1 Alzheimer’s

disease (AD), the most common secondary tauopathy, is a leading

cause of dementia globally.2 Patients with progressive supranuclear

palsy (PSP) and corticobasal degeneration (CBD) present with move-

ment disorders and dementia, and Pick’s disease (PiD) is most often
[Correction added on 23 September 2021, after first online publication: Peer review history

statement has been added.]
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characterised by behavioural problems and dementia.1 Although the

advent of imaging and fluid biomarkers for tauopathies is potentially

promising,3–5 pathological assessment at autopsy remains the gold

standard for final diagnosis.

Pathologic diagnostic criteria have been proposed for these disor-

ders6–9; however, some challenges need to be addressed. First, neuro-

pathological diagnosis is a time-consuming process that requires

highly trained experts.10,11 Second, inter- and intra-rater variabilities

between observers are unavoidable.4,12,13 Third, the number of

pathologists has decreased globally.14 The increasing number of

patients with neurodegenerative disorders makes it critical to have

scalable, cost-effective means of post-mortem diagnoses that can

compensate for the decreasing number of neuropathologists.14

Digital pathology and machine learning-based approaches have

recently been introduced into the field of pathology.10 These methods

hold great promise to improve the reproducibility of pathologic diag-

nosis.10 Deep learning is a subfield of machine learning, which has

been used in image classification and object detection in anatomic

pathology.15 In neuropathology, a deep learning-based model that

was able to detect and quantify neurofibrillary tangles (NFTs) in AD

and other tauopathies has been reported.16 Other investigators devel-

oped and validated deep learning-based models that could identify

amyloid plaques and cerebral amyloid angiopathy in AD.11,17 Deep

learning-based image classification was able to differentiate tufted

astrocytes in PSP, astrocytic plaques in CBD and neuritic plaques in

AD with 99% precision and recall.18 Although these deep learning-

based approaches are promising ways to reduce the burden on neuro-

pathologists in terms of lesion identification and quantification, the

interpretation of the quantified data to generate a diagnosis still

requires a pathologist. A model that can interpret quantitative data

and make a diagnosis is needed to assist this most crucial task.

We previously reported a decision tree classifier for differentiat-

ing PSP and CBD with 99% accuracy.19 This classifier was created

using the semi-quantitative tau lesion burdens (i.e., NFT, astrocytic

inclusions [tufted astrocytes in PSP and astrocytic plaques in CBD],

coiled bodies and tau threads) in vulnerable brain regions in PSP and

CBD (i.e., caudate nucleus, red nucleus and motor cortex).19 On the

basis of this finding, we hypothesised that using the quantitative tau

burden ascertained from a deep learning-based object detection

model can achieve a more accurate, objective and reproducible diag-

nosis and that it can be applied for a wider range of tauopathies in

addition to PSP and CBD.

In the present study, we developed a deep learning-based tool for

differentiating multiple tauopathies from tau-immunostained digital

slide images. This tool consists of two models—(1) object detection

and (2) random forest classifier (Figure 1). The object detection model

identified and quantified five representative tau lesions in regions of

interest. Using the quantitative tau burden in multiple brain regions,

we constructed random forest classifiers that could differentiate AD,

PSP, CBD and PiD. Our diagnostic model was trained with

CP13-immunostained slides, but it also achieved high diagnostic accu-

racy in AT8-immunostained slides in a hold-out dataset. To the best

of our knowledge, the present study constitutes one of the earliest

reports of end-to-end machine learning-assisted diagnostic systems in

the field of neuropathology.

MATERIALS AND METHODS

Case selection and ethical approval

All brain tissues used in this study were from the Mayo Clinic brain

bank for neurodegenerative disorders. For developing an object

detection model, a total of 30 cases (10 cases each of AD, PSP and

CBD) from the Mayo Clinic brain bank were used. For constructing

decision tree and random forest classifiers, 120 cases (32 AD, 36 PSP,

31 CBD and 21 PiD) were used. Of those, 8 PSP and 3 CBD cases had

a concurrent neuropathologic diagnosis of AD. A hold-out dataset

consisting of 50 cases (10 AD, 17 PSP, 13 CBD and 10 PiD) was

used for the validation study. Of those, 7 PSP and 4 CBD cases had a

concurrent neuropathologic diagnosis of AD. The demographic

and clinicopathologic data of all cases in this study are provided in

Tables S1–S3. Brain autopsies were performed after consent of the

legal next-of-kin or individuals with legal authority to grant permission

for autopsy. De-identified studies of autopsy samples are considered

exempt from human subject research by the Mayo Clinic Institutional

Review Board.

General pathological evaluation

Formalin-fixed brains underwent systematic and standardised sam-

pling with neuropathologic evaluation by a single, experienced

Key points

• We developed an object detection model that could rec-

ognise and count five different tau lesion types (neuronal

inclusions, coiled bodies, tufted astrocytes, astrocytic

plaques and neuritic plaques) from digitised images of tau

immunostained slides.

• Using quantitative tau lesion burden from the object

detection model, we generated a random forest classifier

to recognise distinct subtypes of tauopathies.

• The random forest classifier could differentiate

Alzheimer’s disease, progressive supranuclear palsy, cor-

ticobasal degeneration and Pick’s disease with high diag-

nostic accuracy.

• The results suggest that machine learning methods can

be applied to facilitate the differential diagnosis of

uncommon neurodegenerative tauopathies.
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neuropathologist (DWD). Paraffin-embedded 5-μm thick sections

mounted on glass slides are stained with haematoxylin and eosin

and assessed with thioflavin S fluorescent microscopy. NFTs and

senile plaques were quantified using thioflavin S fluorescent micros-

copy in association cortices (frontal, temporal and parietal), primary

cortices (visual and motor), hippocampus (CA1, CA4 and subiculum)

and adjacent cortex, amygdala, basal ganglia and cerebellum.20,21

Pathological diagnosis of AD was according to published criteria.8

Immunohistochemistry for phospho-tau (CP13, mouse monoclonal;

1:1000) was performed to establish a pathologic diagnosis of PSP,

CBD and PiD.6,7,13,22,23 Gallyas staining, as well as immunohisto-

chemistry for 3-repeat (RD3, Millipore, Temecula, CA) and 4-repeat

(RD4, Millipore) tau, was performed to assist the diagnosis of PiD.

All immunohistochemistry was done using an IHC Autostainer

(Thermo Fisher Scientific, Waltham, MA, USA), DAKO EnVision™+

reagents (Dako) and 3,3-diaminobenzidine as the chromogen. Immu-

nostained slides were counterstained with haematoxylin and cover-

slipped.

Annotation of tau lesions using digital slide images

All immunostained sections were scanned at �20 magnification on the

ScanScopeXT (Aperio Technologies, Vista, CA) to obtain whole slide

digital JPEG images. A total of 2522 images (500 � 500

pixels = 6313 μm2) were taken from 10 cases each of AD, PSP and

CBD. The five tau lesions, neuronal inclusions, tufted astrocytes, astro-

cytic plaques, coiled bodies and neuritic plaques, were annotated man-

ually by an investigator (SK) using LabelImg, a graphical image

annotation tool written in Python. The coordinates of bounding boxes

and object classes were obtained and saved as text files. All images and

text files were compressed as a zip file and uploaded to Google Drive.

Training object detection model

YOLOv3 is an open-source object detection architecture.24,25 The

backbone network of YOLOv3 is Darknet-53, which includes

F I GU R E 1 Overview of the diagnostic model
consisting of object detection model and random
forest classifier. Thirty cases are used for training
the object detection model. One hundred and
twenty cases are used to construct random forest
classifier. A validation study is performed using
50 cases in hold-out datasets. Both CP13-stained
slides and AT8-stained slides are used.
Abbreviations: AD, Alzheimer’s disease; AP,
astrocytic plaques; CB, coiled bodies; CBD,
corticobasal degeneration; NI, neuronal
inclusions; NP, neuritic plaques; PiD, Pick’s
disease; PSP, progressive supranuclear palsy; TA,
tufted astrocytes
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53 convolutional layers and uses skip connections to avoid

vanishing gradient. The network is trained using images of different

scales. During training, the network randomly resizes input images

from 320 � 320 pixels to 608 � 608 pixels. In the prediction stage,

the network uses three scale feature maps, where small feature

maps provide semantic information and large feature maps provide

more accurate information. There have been many studies that

have used YOLOv3 detector, such as detecting dermatologic

lesions (e.g., melanoma and benign nevi) in dermoscopic images26

and classifying leukocytes on digital images of peripheral blood

smears.27

In the present study, we used the YOLOv3 model for develop-

ing an object detection model that could detect various tau lesion

types on CP13-immunostained slides. All images were randomly

divided into training and test sets with the ratio 4:1 in Models

1 and 2 and 1:1 in Model 3. For training, hyper-parameters were

defined as follows: intersection over union = 0.50; batch

size = 128; subdivisions = 32; and maximum iterations = 10,000.

For evaluating the model, precision, recall, average precision for

each class (e.g., tufted astrocytes and astrocytic plaques) and the

mean average precision (mAP) were calculated. The average preci-

sion was defined as the mean of the precision values at these cho-

sen 11 recall values (i.e., 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

and 1.0).

Precision¼ Truepositive
TruepositiveþFalse positive

:

Recall¼ Truepositive
TruepositiveþFalse negative

:

mAP¼1
n

Xk¼n

k¼1

APk:

In the equation, n refers to the number of classes, and APk refers to

the average precision of class k. We selected the optimal weight

based on the mAP. Training loss and mAP during training are provided

in Figures S1–S3. One GPU (Tesla T4, NVIDIA), which has 2560

CUDA cores, provided by Google Colaboratory, was used for training.

The training processes were performed with our Python code on Goo-

gle Colaboratory platform.

Data augmentation

To increase the size of the training dataset, we performed data aug-

mentation by rotating images at 90�, 180� and 270�.28 We generated

two augmented datasets by using different ratio of training/test

dataset. For the first augmented dataset (Model 2), 2522 images were

split into training and test sets at 4:1. Subsequently, 2018 images in

the training set were augmented to 8072 images. For the second aug-

mented dataset (Model 3), 2522 images were split into training and

test sets at 1:1. Subsequently, 1261 images in the training set were

augmented to 5044 images. All manipulations were performed with

our Python code on the Jupyter Notebook (version 6.0.3).

Tau burden quantification

A test image (5000 � 3000 pixels) was captured per case from the

motor cortex, grey matter of superior frontal gyrus and caudate

nucleus. All digital slide images were opened in Aperio ImageScope,

and regions of interest were selected where the burden of

pathology was greatest. In total, 360 test images (3 brain regions

in 120 cases) were obtained and uploaded to the Google Drive. All

360 images were processed to obtain a quantitative tau burden for

each tau lesion using the object detection model that we

developed. Test images were split into 60 small tiles (500 � 500

pixels), and each tile was processed by object detection. After

processing, 60 tiles were combined and given as original test

images with bounding boxes and predicted labels (e.g., neuronal

inclusions). The total number of each tau lesion was calculated in

each test image.

Construction of decision tree and random forest
classifiers

Decision tree classifiers were created using the ‘Scikit-Learn’
Python module.29 Classification and regression tree models and Gini

impurity measures were used to construct decision trees. A total of

120 cases (32 AD, 31 CBD, 21 PiD and 36 PSP) were divided into

a training set (90 cases) and a test set (30 cases) using the ‘random-

state’ function 30 times. We calculated the average training and

test scores in these 30 random sets. The target variables were the

pathological diagnoses, and the dependent variables were the quan-

titative tau burdens in three brain regions (i.e., motor cortex, supe-

rior frontal gyrus and caudate nucleus). The quantitative burdens of

each tau lesion type were ascertained from the object detection

model. We generated random forest classifiers using 500 decision

tree classifiers. The average training and test scores were calculated

in 30 different random datasets to evaluate the diagnostic

performance.

Validation study using hold-out datasets

We performed a validation study using two hold-out datasets. The

first hold-out dataset included 150 CP13-stained slides from three

brain regions of 50 cases (10 AD, 17 PSP, 13 CBD and 10 PiD). The

second hold-out dataset consisted of 150 AT8-stained slides (mouse

monoclonal; 1:2500, Dako, Carpinteria, CA, USA) from the same

50 cases. Tau lesion burdens were quantified, and we applied the ran-

dom forest classifier to predict the pathological diagnoses of 50 cases.

We compared the average test scores between CP13- and

AT8-stained slides.
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RESULTS

Object detection model for five tau lesion types

Pathological diagnosis of neurodegenerative disorders requires both

macroscopic and microscopic assessment of brains at autopsy.

Both the distribution and severity of neurodegeneration and tau

pathologies, as well as the morphology of tau lesions, are important in

the correct diagnosis of tauopathies. For example, tufted astrocytes

are specific lesions in PSP, whereas astrocytic plaques are specific for

CBD. On the basis of these facts, we developed an object detection

model that could recognise and quantify five representative tau

lesions, including neuronal inclusions, tufted astrocytes, astrocytic

plaques, coiled bodies and neuritic plaques (Figure 2A). We trained

the YOLOv3 model to detect tau lesions on digital images from immu-

nostained tissues. We used 2522 images of phosphorylated-tau

(CP13) immunostained slides of motor cortex from 10 cases each of

AD, PSP and CBD. The five tau lesion types were manually segmented

and labelled (Figure 2B). In total, 7422 tau lesions in 2522 images

were annotated. A breakdown of annotations is as follows: 3798 for

neuronal inclusions, 1396 for tufted astrocytes, 1306 for coiled

bodies, 469 for astrocytic plaques and 453 for neuritic plaques. All

images were randomly divided into training (80%) and test (20%)

datasets. We trained the model up to 10,000 iterations using these

datasets, which took �16 h. The best mAP of 66.4% was achieved at

2100 iterations (Model 1; Figure S1). The average precision of each

tau lesion and mAP are shown in Table 1. The average precision was

highest for neuronal inclusions (82.7%), followed by tufted astrocytes

(82.5%). Figure 2C shows representative images with predicted lesion

annotation. Tufted astrocytes were detected in PSP, whereas astro-

cytic plaques were detected in CBD. Neuritic plaques were detected

in AD and detected in a subset of PSP and CBD cases. Although PiD

cases were not included in the training, we applied to the object

detection algorithm to CP13-stained slides from PiD. Pick bodies were

successfully detected as neuronal inclusions.

Assessment of data augmentation

Data augmentation is a critical component of training deep learning

models, which can improve the generalisation performance of image

classification and object detection models.30 We tested whether

F I GU R E 2 Object detection model. (A) Representative CP13-immunostained images of five tau lesions. (B) Annotation of the representative
tau lesions. A total of 2522 images are manually annotated by an investigator using LabelImg. (C) Representative results of prediction. Detected
tau lesions are shown with bounding boxes with predicted labels. The number indicates the probability of each label. Abbreviations: AD,
Alzheimer’s disease; AP, astrocytic plaques; CB, coiled bodies; CBD, corticobasal degeneration; NI, neuronal inclusions; NP, neuritic plaques; PiD,
Pick’s disease; PSP, progressive supranuclear palsy; TA, tufted astrocytes
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increasing the size of the dataset by data augmentation could improve

the performance of our model. We generated two augmented

datasets using a different ratio of training and test datasets: 4:1 in

Model 2 and 1:1 in Model 3 (Figure 3A). The data augmentation was

performed by rotating images at 90�, 180� and 270� (Figure 3B). The

mAP increased to 74.4% in Model 2 and 69.0% in Model 3 (Figures S2

and S3). Average precision in each tau lesion type in Models 2 and 3 is

shown in Table 1.

Tau burden quantification

Next, we quantified each tau lesion type in the motor cortex, superior

frontal cortex and caudate nucleus from 120 cases (32 AD, 36 PSP,

31 CBD and 21 PiD). A test image (5000 � 3000 pixels) was captured

from each digital whole slide image on Aperio ImageScope and saved

as a JPEG file (Figure 4). In total, 360 test images (3 brain regions in

120 cases) were obtained and uploaded to the Google Drive. All

360 images were processed to obtain a quantitative tau burden for

each tau lesion using the object detection model that we developed.

Test images were split into 60 small tiles (500 � 500 pixels), and each

tile was processed by object detection (Figure 4). After processing,

60 tiles were combined and given as original test images with

bounding boxes and predicted labels (Figure 4). The total number and

density of each tau lesion were calculated in each test image. The

quantitative tau burdens in all cases and a representative image with

bounding boxes are provided in Table S4 and Figures S4–S6.

Decision tree classifiers

The quantitative data of tau burden in multiple brain regions are valu-

able information for diagnosing neurodegenerative diseases. The pres-

ence of tufted astrocytes and astrocytic plaques strongly suggests the

diagnosis of PSP and CBD, respectively; however, the results of

the object detection may include some mislabelling. To interpret and

utilise the quantitative data for diagnosis, we first created decision

tree classifiers using the quantitative tau burden of five lesion types in

three brain regions ascertained from object detection Model

1 (Figure 5A). We randomly split 120 cases (32 AD, 31 CBD, 21 PiD

and 36 PSP) into training (90 cases) and test (30 cases) sets. Figure 5B

shows an example of decision tree classifiers. This decision tree

correctly classified 90 training cases (training score = 1.00) and

27 out of 30 cases in the test dataset (test score = 0.97). A limitation

of decision trees is their instability; they are sensitive to small varia-

tions in the training data.31 Different decision tree classifiers have

been made even on the same training data because the training algo-

rithm used by Scikit-Learn is stochastic.31 Because the size of training

and test datasets was relatively small, diagnostic accuracy in the test

set was highly fluctuated by randomisation. To overcome this poten-

tial weakness, we next constructed random forest classifiers, which

limit this instability by averaging predictions over multiple trees.31

Random forest classifiers

Random forest is an ensemble learning method for classification that

operates by constructing multiple decision trees during training and

outputting the class by majority voting.31 We generated random

T AB L E 1 Average precision of each tau lesion type and mean
average precision

Tau lesion types Model 1 Model 2 Model 3

Neuronal inclusions 82.7% 85.3% 85.7%

Neuritic plaques 74.8% 84.0% 68.5%

Tufted astrocytes 82.5% 85.3% 83.6%

Astrocytic plaques 42.2% 54.6% 50.6%

Coiled bodies 49.7% 62.9% 56.4%

Mean average precision 66.4% 74.4% 69.0%

F I G U R E 3 Data augmentation. (A) Flowchart of data
augmentation. In Model 1, a total of 2522 images are split into
training and test sets at 4:1 ratio. Data augmentation is applied to
2018 images in training set, and the number of images increases to
8072 images. In Model 2, the 2522 images are split into two sets at
1:1 ratio. Data augmentation is applied to 1261 images in training set,
and the number of images increases to 5044 images.
(B) Representative images of data augmentation. Images are rotated
90�, 180� and 270�
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forest classifiers based on multiple decision tree classifiers 30 times

and calculated the average training and test scores. Figure 6A com-

pares the average test scores of random forests made by a different

number of decision trees. The random forest classifier achieved an

average training score of 1.00 and test score of 0.96 when the num-

ber of decision trees was 500. In this classifier, the burdens of neuro-

nal inclusions and tufted astrocytes in the caudate nucleus were the

most important features for differentiating the four diseases, followed

by the burden of astrocytic plaques in the superior frontal gyrus and

caudate nucleus (Figure 6B).

Validation study using two hold-out datasets

Our object detection model was trained with CP13-immunostained

slides. CP13 is not a commercial phospho-tau antibody, and it is not

widely available. AT8 is a commercial phospho-tau antibody, which is

commonly used in diagnostic neuropathology.32 Given the fact that

the CP13 and AT8 immunostained images were almost indistinguish-

able (Figure S7), we hypothesised that our diagnostic model based on

CP13 would also work with AT8. Addressing the question of whether

the CP13-based model can be applied to AT8-stained slide images,

we compared the diagnostic accuracy of two hold-out datasets,

CP13- and AT8-stained slides from adjacent sections of 50 cases

(10 AD, 17 PSP, 13 CBD and 10 PiD).

Random forest classifier using Model 1 showed an average

diagnostic accuracy of 92.5% in CP13- and 94.6% in AT8-stained slides.

Predicted diagnoses of all cases by one of the random forest classifiers

are provided in Table S1. In this test, 46 out of 50 cases (92%)

were correctly diagnosed in both CP13- and AT8-stained slides. In

CP13-stained slides, two CBD cases (HO-19 and HO-21) were diag-

nosed as PiD, and two PSP cases were diagnosed as AD. One of the PSP

cases (HO-42) had minimal tau pathologies in the three regions. The

other PSP case (HO-50) had concurrent Alzheimer-type pathology

(Braak NFT stage = V and Thal amyloid phase = 4). In AT8-stained

slides, one CBD case (HO-14) was diagnosed as PiD, one PiD case

(HO-27) was diagnosed as CBD, and two PSP cases (HO-42 and HO-50)

were diagnosed as AD. These results indicated good concurrence for the

model on AT8-immunostained slides. Quantitative tau lesion burdens in

the three brain regions in all cases are provided in Tables S5 and S6.

Finally, we tested whether the random forest classifiers generated

by quantitative tau burden ascertained from object detection Models

2 and 3 achieved higher diagnostic accuracy. As shown in Table 2, the

average test score of the random forest using Model 2 increased to

0.976, and the diagnostic accuracy was 92.1% in CP13- and 93.4% in

AT8-stained slides. Random forest classifier using Model 3 showed a

test score of 0.959, and diagnostic accuracy was 95.1% in CP13- and

95.4% in AT8-stained slides. The comparison of diagnostic accuracy

of three models with different number of decision trees is summarised

in Figure 6C.

F I GU R E 4 Flowchart of tau burden
quantification. CP13-stained slides from the
motor cortex, caudate nucleus and superior
frontal gyrus from a corticobasal degeneration
(CBD) case are shown. A region of interest
(5000 � 3000 pixels) is captured and split into
60 tiles. Each tile is processed for object
detection, and all tiles are combined into one
original image with predicted labels.
Abbreviations: AP, astrocytic plaques; CB, coiled
bodies; CN, caudate nucleus; MC, motor cortex;
NI, neuronal inclusions; NP, neuritic plaques; SFG,
superior frontal gyrus; TA, tufted astrocytes
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DISCUSSION

In the present study, we developed a deep learning-based model that

can differentiate multiple tauopathies based upon recognition of

lesion types in AD, PSP, CBD and PiD. Previous methods only quan-

tify the burden of tau pathology without attention to lesion type. We

also performed a validation study using two hold-out datasets, and

they demonstrated high diagnostic accuracy (>92%) in both CP13-

and AT8-stained slides. These results indicate that our deep learning

model trained with CP13 also works for AT8. AT8 is a widely used

phospho-tau antibody in diagnostic neuropathology; therefore, our

diagnostic tool can be potentially used by other investigators. This is

especially helpful for general pathologists and neuropathologists who

have less experience with tauopathies.

Our diagnostic tool consists of two machine learning models—

(1) object detection and (2) random forest classifier. Object detection

was able to quantify each tau lesion type with high accuracy, but mis-

labelling of some tau lesions was unavoidable. Astrocytic plaques had

relatively low mAP, probably due to the small number of annotations

in training, which accounted for only 6% of annotations. Additionally,

CBD usually has numerous tau-positive threads in motor cortex,

caudate nucleus and superior frontal cortex, which may hinder the

detection of astrocytic plaques. Ideally, the presence of numerous

tau-positive threads should be used as a feature for CBD,19 but given

their small size and density, it is not feasible for object detection to

detect threads individually by bounding boxes. The random forest

classifier makes decisions by taking into account possible mislabelling

of lesions. For example, some neuritic plaques in AD may resemble

astrocytic plaques and, therefore, can be mislabelled as astrocytic

plaques by the object detection model. Even in such a situation, the

random forest classifier would output AD rather than CBD based on

other features, such as numerous neuronal inclusions. In this sense,

the random forest classifier was robust for diagnosis of AD by com-

pensating for mislabelling in the object detection model. Thus, the

combination of the two models gave more accurate results than either

model by themselves.

For improving the mAP of object detection model, we

implemented data augmentation and improved the mAP in object

detection models. Model 2 showed the highest mAP, followed by

Model 3 (Table 1). The random forest classifiers based on object

detection in Model 2 showed lower diagnostic accuracy in the hold-

out dataset compared with that using Model 3. This is probably

because excess data augmentation may cause overfitting with the

training data in Model 2. Model 3 was trained using 4:1 ratio of aug-

mented training and test dataset (5044 images in training set and

1261 images in test set), which achieved <95% diagnostic accuracy in

both CP13- and AT8-stained slides. On the basis of these results, we

conclude that Model 3 was the best algorithm among the three

models for distinguishing AD, PSP, CBD and PiD using tau-

immunostained digital images.

Nevertheless, some cases in hold-out datasets were misdi-

agnosed by our random forest classifiers. The confusion between

CBD and PiD might be due to the fact that we did not use PiD

cases for training in object detection model. Given the rarity of PiD,

we needed to hold them out to generate random forest classifiers.

Fortunately, Pick bodies were successfully detected as neuronal

inclusions, even without training. As a result, both CBD and PiD

F I GU R E 5 Decision tree classifier for diagnosing tauopathies.
(A) Fifteen variables (x) and an answer label (y) per case are used for

generating decision tree classifiers. (B) Ninety cases are used for
training and creating the decision tree. All 90 cases are correctly
classified using quantitative tau burden in the caudate nucleus,
superior frontal gyrus and motor cortex. Values in parentheses
indicate the number of AD, CBD, PiD and PSP cases, respectively.
The first node asks whether the number of tufted astrocytes in the
caudate nucleus is ≤3.5. If it is false, the diagnosis is PSP. If the result
of first node is true, the second node asks whether the number of
neuronal inclusions in the caudate nucleus is ≤49. If it is true, the
diagnosis of AD is given. If it is false, the third node asks whether the
number of astrocytic plaques in the caudate nucleus is = 0. If it is
true, the last node asks whether the number of neuritic plaques in the
superior frontal gyrus is ≤6.5. If it is true, the diagnosis of PiD is made,
and if it is false, the diagnosis of AD is made. If the result of third
node is false, the last node asks whether the number of tufted
astrocytes in the motor cortex is ≤1.5. If it is true, the diagnosis of
CBD is made, and if it is false, the diagnosis of AD is made.
Abbreviations: AD, Alzheimer’s disease; AP, astrocytic plaques; CBD,
corticobasal degeneration; NI, neuronal inclusions; NP, neuritic
plaques; PiD, Pick’s disease; PSP, progressive supranuclear palsy; TA,
tufted astrocytes
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cases were characterised by abundant neuronal inclusions in all

three regions, particularly in the caudate nucleus (Table S4).

Although the random forest classifier could diagnose the majority of

PiD cases correctly, two CBD cases were misdiagnosed as PiD.

Dividing the neuronal inclusion category into pretangles in CBD and

Pick bodies in PiD may improve the diagnostic accuracy for these

diseases. Another pitfall was noted for cases with mild tau pathol-

ogy, as seen in one PSP case (HO-42). This patient had only one

tufted astrocyte in the digital image of motor cortex; thus, the ran-

dom forest classifier could not recognise this case as PSP. To diag-

nose mild cases accurately, more regions of interest need to be

analysed.

Neurodegenerative disorders in the elderly usually have multiple

neuropathological processes.33–35 To address the question of AD co-

pathology, our cohorts included PSP with AD (PSP + AD) and CBD

with AD (CBD + AD) cases in training, test and hold-out datasets.

Even having concurrent AD, our random forest classifiers could diag-

nose PSP or CBD correctly, except for one PSP + AD case (HO-50).

We did not define categories for PSP + AD and CBD + AD because

of the limited sample size in generating random forest classifiers.

Future studies should include categories of co-pathology, such as con-

current AD, using larger sample size.

Although it is not completely knowable, it is important to discuss

differences in diagnostic approach between neuropathologists and

our models. Neuropathologists diagnose neurodegenerative disorders

based on macroscopic and histopathologic findings, as well as clinical

and genetic information, when available. For example, a neuropatho-

logic diagnosis of AD requires assessment of both tau and amyloid-β

pathology in the neocortex, limbic and subcortical regions. In con-

trast, our current models predict a neuropathologic diagnosis based

on only phospho-tau immunohistochemistry in select brain regions.

A decision tree classifier (Figure 5B) and feature importance of

random forest classifier (Figure 6B) imply that our model make a

diagnosis of AD after excluding PSP and CBD based on astrocytic

tau lesions and a diagnosis of PiD based on numerous neuronal

inclusions in the caudate nucleus. This counterintuitive approach

may have worked in our specific experimental condition, where there

are only four tauopathies in the differential diagnosis. To make our

model more practical, more tauopathies and non-tauopathies need to

be added.

The value of this method for diagnosis and neuropathological

research merits discussion. In neuropathological diagnosis and

research, semi-quantitative measures of pathologic lesions in four or

five-point grading scale have been commonly used.36–39 Although the

F I GU R E 6 Evaluation of the random
forest classifier. (A) Comparison of the
test score of random forest classifiers in
different number of decision trees.
(B) Feature importance of the random
forest classifier. (C) Diagnostic accuracy
in hold-out datasets is compared among
Models 1–3 and different number of
decision trees. Abbreviations: AD,
Alzheimer’s disease; AP, astrocytic
plaques; CB, coiled bodies; CBD,
corticobasal degeneration; CN, caudate
nucleus; MC, motor cortex; NI, neuronal
inclusions; NP, neuritic plaques; PiD,
Pick’s disease; PSP, progressive
supranuclear palsy; SFG, superior frontal
gyrus; TA, tufted astrocytes

T AB L E 2 Evaluation of random forest classifiers using different object detection models

Model 1 Model 2 Model 3

Random forest average test score 0.965 0.976 0.959

Diagnostic accuracy in CP13 hold-out set 0.925 0.921 0.951

Diagnostic accuracy in AT8 hold-out set 0.946 0.934 0.954
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semi-quantitative measurement is useful for diagnosing neurodegen-

erative disorders, it may inaccurately reflect the actual burden of

pathology, and it has major implications in clinicopathological correla-

tion studies using large cohorts.34 The object detection model will

provide more objective and quantitative data of each tau lesion, rather

than a measure of total tau burden. This method may be valuable in

clinicopathological correlation studies, which may help identify novel

clinicopathological phenotypes,40 as well as for correlations with

molecular or genetic indices.

There are some limitations in the present study. First, our diag-

nostic model was trained by a single investigator with guidance

from an experienced pathologist, and all immunohistochemistry was

done in a single neuropathology laboratory. This may raise a con-

cern about the generalisation performance of our model. Brain dis-

section and histopathological processes of each laboratory may be

slightly different. Thus, digital slide images may have interlaboratory

variability.10,15,41 These interlaboratory variabilities can be due to

differences in the thickness of the paraffin-embedded tissue, the

reaction time of immunohistochemistry, the specific lot of the com-

mercial antibody, the time between immunohistochemistry and

scanning slides and the particular scanner that was used to capture

the images.15,41 To overcome this potential weakness, future studies

need to include tissue sections with different thicknesses, slides

from different laboratories and digital slide images scanned by dif-

ferent scanners. Second, we used CP13-stained slides for training;

however, CP13 is not a widely used antibody. AT8 is a commercial

antibody detecting pSer202/pThr205, which is more commonly

used in diagnostic neuropathology. Immunohistochemical images of

CP13 and AT8 were almost identical, and our validation study using

hold-out datasets confirmed that the diagnostic model worked as

well with AT8-stained slides. Although the discrepancy between

CP13 and AT8 was negligible, training with AT8-stained slides might

improve the diagnostic accuracy in AT8-stained slides. Finally, our

diagnostic model could differentiate AD, PSP, CBD and PiD; however,

other tauopathies could also be involved in differential diagnoses.

Argyrophilic grain disease is a common concurrent pathology in CBD

and PSP.42,43 Globular glial tauopathy (GGT) is a rare 4-repeat

tauopathy, characterised by globular astrocytic inclusions and globular

oligocytic inclusions.22 The diagnosis of GGT is sometimes challenging,

especially in differentiating it from PSP.22 Tauopathy due to MAPT

mutations can present various types of pathology, depending on the

particular mutations.44 Taken together, future studies need to include

AT8-stained slides for training, annotation of tau lesions in different

brain regions and inclusion of more variety of tauopathies.

The purpose of our diagnostic tool was not to replace but to com-

plement diagnostic procedures and to leverage the expertise of

pathologists by improving the reproducibility of pathologic diagnoses.

In the present study, our diagnostic model sufficiently differentiated

AD, CBD, PiD and PSP using CP13-stained slides, as well as

AT8-stained slides. Although the current version of our diagnostic

model is not a user-friendly graphical user interface, it is publicly

accessible in our GitHub repository; therefore, other investigators will

be able to use this diagnostic model. Our findings may also encourage

further development of deep learning-based diagnostic models

beyond tauopathies, which can assist in decision-making for other

pathologic diagnoses. In addition to the diagnosis, the quantification

of tau lesion types in our model will provide valuable information for

clinicopathologic and genetic studies.
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