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Abstract: Tuberculosis (TB) remains a major public health threat globally, especially in sub-Saharan
Africa. Both human and Mycobacterium tuberculosis (MTBC) genetic variation affect TB outcomes, but
few studies have examined if and how the two genomes interact to affect disease. We hypothesize
that long-term coexistence between human genomes and MTBC lineages modulates disease to affect
its severity. We examined this hypothesis in our TB household contact study in Kampala, Uganda,
in which we identified three MTBC lineages, of which one, L4.6-Uganda, is clearly derived and
hence recent. We quantified TB severity using the Bandim TBscore and examined the interaction
between MTBC lineage and human single-nucleotide polymorphisms (SNPs) genome-wide, in two
independent cohorts of TB cases (n = 149 and n = 127). We found a significant interaction between
an SNP in PPIAP2 and the Uganda lineage (combined p = 4 × 10−8). PPIAP2 is a pseudogene
that is highly expressed in immune cells. Pathway and eQTL analyses indicated potential roles
between coevolving SNPs and cellular replication and metabolism as well as platelet aggregation
and coagulation. This finding provides further evidence that host–pathogen interactions affect
clinical presentation differently than host and pathogen genetic variation independently, and that
human–MTBC coevolution is likely to explain patterns of disease severity.

Keywords: tuberculosis severity; M. tuberculosis; population genetics; lineage-based GWAS; M.
tuberculosis–human coevolution

1. Introduction

Pulmonary tuberculosis (TB) creates a large global public health burden, with 10 mil-
lion active TB cases and 1.5 million deaths in 2020 [1]. Prior to the COVID-19 pandemic,
Mycobacterium tuberculosis (MTB) was the mostly deadly pathogen on earth and has been
for centuries [2]. While the global incidence of TB has generally trended downwards, TB
continues to be a major driver of infectious disease mortality, and is a re-emerging infec-
tious disease in Southeast Asia and sub-Saharan Africa [2]. Almost half (44%) of TB cases
worldwide occur in sub-Saharan Africa. In Uganda alone, the location of our study, the
incidence has been increasing since 2015, with almost 25,000 deaths per year due to TB [2].
TB is also the primary cause of death in human immunodeficiency virus (HIV)-positive
people [3]. The bacterium, Mycobacterium tuberculosis (MTB), which is transmitted via
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airborne droplets, causes most TB. Despite these troubling numbers, TB morbidity and
mortality are not as injurious as they could be, as one-fourth to one-third of the entire
globe is thought to be latently (asymptomatically) infected but only a small fraction of this
number presents with disease.

The disease-causing Mycobacterium tuberculosis complex (MTBC) is organized into
eight major lineages with distinct geographical distributions and timelines of human
exposure [4,5]. Some lineages are ancestral (L1, L5, L6, L7, L8) while others are derived
(L2, L3, and L4), and it has been observed that ancient lineages are less virulent than the
modern ones. In addition to the major lineages, there are numerous sub-lineages that are
thought to be recently diverged. The diversity of lineages and their historical coexistence
with humans have led to the hypothesis that disrupted coevolution between the host and
MTBC genes increases virulence [6–11].

Many of the derived lineages are thought to be descended from the MTBC L4 lineage,
which is the most dispersed globally [4]. For example, at least 10 distinct sub-lineages of
MTBC L4 arose in limited geographic areas. Relevant to our study, there is a sub-lineage
found solely in Uganda and surrounding countries referred to as the MTBC L4.6/Uganda.
Prior work showed no association between this MTB sub-lineage and the severity of disease,
as determined by cavitary disease and extent of lung involvement [12,13]. These results
present a major issue in assessing TB risk, namely, the extent to which pathogenicity or
virulence is affected by the host, MTB, or both.

Given that there are ancient lineages that have co-existed with specific human pop-
ulations for extended periods of time as well as novel lineages that arose recently, it was
of particular interest how interactions between the two genomes impact severity. We and
others have previously hypothesized that the severity of TB is affected by human–MTB co-
evolution that can be detected by examining specific interactions between human genes and
MTB genes [10,11,14,15]. Studies examining human–MTB interactions at the population
level are rare, and only studies of TB cases can determine host–MTB genome interactions as
it impossible to know what MTB lineages an individual was exposed to prior to enrollment
in a study if he/she does not have active disease. Additionally, most studies that have
tried to contextualize the role of the two genomes with respect to each other in TB have
examined MTB lineage and host genotypes as independent factors, usually without explicit
interactions [16–19].

Under prudent exploitation and disrupted coevolution, long-term coexistence be-
tween the human genome and an M. tuberculosis complex (MTBC) lineage should result in
decreased disease severity, whereas newly evolved or introduced strains should cause more
severe disease [11,20–22]. Coevolution could drive concordant genetic variation of the two
due to long-term coexistence and subsequent selection that promotes mutual adaptation.
For example, it has been hypothesized that coevolution could result in mild disease or
latent infection [21,23]. The hypothesis of coevolution between humans and MTBC has
rarely been studied at the population level, but has been posited to be an important area of
research [6,7,11,24–29]. The few studies that tried to address possible effects of coevolution
are consistent with this hypothesis, with some MTB lineages appearing to be adapted to
specific human populations [27,28].

There are other models and expected outcomes of coevolutionary theory, but we think
that prudent exploitation is the most likely scenario for the case of coevolution between
humans and MTB because: (1) most hosts who are infected do not develop active disease;
(2) even fewer die from TB; and (3) the vast majority of TB infections worldwide are latent.
With prudent exploitation, a newly derived MTB lineage that did not historically coexist
with the human population in question should be associated with more severe disease [22].
Consistent with this possibility and the conditions that could lead to coevolution, humans
and MTB have a very long history (between 6 and 80 thousand years) and most exposed
people do not develop active disease (90–95%); hence, MTB appears to be a prudent
exploiter [30]. However, few studies have identified clear evidence for coevolution at the
population level [8,15–17,31–33].
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Consistent with the prudent exploitation model of MTB infection, we recently showed
that interaction between host variants in SLC11A1 and MTB lineage was associated with
disease severity [26]. Specifically, the derived Ugandan L4 sub-lineage (L4.6) caused more
severe disease, but only in individuals with an ancestral SLC11A1 genotype. This finding
was notable in that SLC11A1, a well-studied candidate gene for TB susceptibility, was
previously associated with TB in some but not all studies. Therefore, failure to replicate
may be a function of human–MTB coevolution. While our earlier study focused on host
candidate genes, here we assess this genome-wide.

The focus of the present study is to assess possible coevolution via population genetic
analyses under the model where the outcome (fitness) depends on the interaction of
genetic variants between the species [34]. We measured TB severity using the TBscore
that incorporates clinical severity using symptoms and clinical examination [35]. In our
study, this outcome correlates with survival and therefore reproductive fitness, and it
should be possible to measure disease severity as a product of human–MTB coevolution
that has resulted from historical coexistence and demonstrated interaction of the two
genomes [28,34]. Regression models were used to test for interaction (i.e., non-additive
effect modification) between the genetic variation of the host and MTB lineage [11,25]. If
present, statistical interaction between the mycobacterial lineage and human genotype can
support the theory of prudent exploitation/coevolution if infection with an ancient lineage
leads to less virulent disease in hosts carrying ancestral alleles [21,23]. Host–pathogen
coevolution has been demonstrated in other organisms, such as Helicobacter pylori, using
this approach [11,25].

Our primary hypothesis was that coevolution between human genotypes and pathogen
lineage occurred and can be detected as a significant statistical interaction between the host
variants and MTB lineage. Further, we postulated that more ancient MTB lineages will
present with reduced severity in the presence of ancestral host alleles, and that the derived
lineages should result in more severe disease, especially in the presence of the ancient host
alleles. Our approach helped elucidate the degree to which the effects of lineage on severity
are modified by and thus dependent on the genotype of the human host.

2. Results

The final study population included 276 subjects with data for human genotype, MTBC
lineage, and the covariates of interest. We identified statistically significant differences
between the two cohorts in the percentage of people who were HIV+ and the mean TBscore
(Table 1). Males made up a larger proportion of subjects than females in the sample (which
is consistent with prior studies showing that active TB is more prevalent among males),
and most subjects were HIV-negative. All the models were adjusted for HIV status and
sex. The distribution of MTB lineages showed no differences between cohorts, based on an
ANOVA test (p = 0.66). The L4.6/Uganda lineage was the most prevalent in both cohorts
(Table 1). The analysis of how lineage affects severity when considered singly showed that
there was no association between lineage and severity (p = 0.65), and the boxplot confirms
this graphically (Figure 1).
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Table 1. Study Population.

Cohort 1
n = 149

Cohort 2
n = 127 Total p

Mean Age (SD) 28.7 (8.1) 28.7 (9.8) 28.7 (9.0) 0.99

# Male (%) 81 (54.4) 73 (57.5) 154 (55.8) 0.69

# HIV+ (%) 31 (24.4) 15 (10.1) 46 (16.7) 0.0025

Mean TBscore (SD) 6.2 (2.1) 5.4 (2.2) 5.8 (2.2) 0.0032

# L4.6/Ugandan (%) 93 (62.4) 75 (59.1) 168 (60.9)

0.66# L4 (%) 15 (10.1) 17 (13.4) 32 (11.6)

# L3 (%) 39 (26.2) 31 (24.4) 70 (25.3)
Differences in age and TBscore were analyzed using a Student’s t-test and differences in the percentage of males
and HIV+ subjects were analyzed using Z-statistics. Differences in the distribution of lineages were analyzed
using a Chi-squared test. For all tests, p < 0.05 was considered a significant difference.
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Figure 1. Boxplot of Severity by Lineage. Box plot shows the TBscore values for subjects who are infected with each of the
3 lineages present in our combined cohort. The midline of the box is the median. The box represents the inter-quartile range
(25th to 75th percentiles) of the TBscore and the dots represent outliers.

The analyses performed separately in each cohort did not show any significant in-
teractions based on the GWAS threshold (Supplementary Materials Figures S1 and S2).
Neither analysis showed any evidence of genome-wide inflation based on their Q–Q plots
or genomic inflation parameters (λ < 1.0 for both) (Supplementary Materials Figures S3
and S4). The meta-analytic summary statistics also showed no signs of inflation in either
the Q–Q plot nor the genomic control parameter, λ = 0.989, indicating little genome-wide
inflation of the test statistics (Figures 2 and 3).
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L4.6/Ugandan lineage and TBscore on the y-axis, and the x-axis represents the physical location of each SNP on the
chromosomes, which are in order from 1–22.
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Figure 3. Q–Q Plot for Meta-Analytic p-Values for Interaction Between SNP and L4.6 Sub-Lineage.
The quantile–quantile (Q–Q) plot shows the inverse log(10) of the observed p-values on the y-axis
relative to what is expected if there was no association on the x-axis. Deviations above the line
indicate an association with the outcome. If the line deviates at the low quantiles, then this is
considered evidence to suggest genome-wide inflation of the test statistics, which typically indicates
unmeasured confounding.

In the meta-analysis, one SNP by lineage interaction met statistical significance at
the GWAS threshold, rs114945555, an SNP on chromosome 21 that maps to PPIAP22
(Beta = −4.13; p = 4.01 × 10−8) (Table 2, Figure 2). As this SNP did not show association
with TBscore in the absence of an interaction term and the lineages did not show any
association with TBscore, this result provided evidence that the interaction is driving the
effect we see rather than either the first order SNP or lineage effects. This is also evident
in Table 3, which shows that the strongest and most significant effects in the regression
equations (which also includes the first-order effects of SNP and lineage) are the interaction
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terms. This most significant SNP (rs114945555) was not significant in the model without
the interaction term (p = 0.28). The interaction term and the analysis were operationalized
such that the L4.6/Ugandan lineage and the derived allele were both coded as 1, while the
other lineages and ancestral alleles were coded as 0. Thus, the interaction term indicated
that in the simultaneous presence of both the derived allele and the L4.6/Ugandan lineage,
there is a 4.1-point decrease on the TBscore when the derived allele is present along with
the derived MTB lineage relative to the derived allele in the presence of the generalist
MTB lineages (Figure 4). This combination of lineage and genotype was observed in 25
of our subjects in this analysis. This is greater than the number of subjects (n = 12) who
have the same genotype and the generalist lineages, but still represents a relatively small
subset of our overall sample, as the derived allele has a relatively low frequency overall.
There was an additional SNP on chromosome 21 (rs113863482) in near complete linkage
disequilibrium (LD) (with completely identical beta and p-values) with rs114945555 that
was also GWAS-significant. A third SNP in LD (rs112560854) was just below the GWAS
threshold (p = 2.583 × 10−7) (Figure 5).

Table 2. GWAS-Significant Loci for Interaction between SNP and L4.6 Sub-Lineage.

SNP CHR:BP Ref/Alt Gene * Location MAF (LWK) p-Value

rs114945555 21:20187488 C/T PPIAP22 Intergenic 7% 4.0 × 10−8

* rs114945555 mapped to PPIAP22 in LocusZoom and FUMA GWAS web applications. Minor allele frequencies
were ascertained from the 1000 G project using Ensembl v104.

Table 3. rs114945555 × Lineage Interaction across Cohorts 1 and 2.

Cohort 1 Cohort 2 Combined

β p β p β p

rs11945555 s119 (β3) 1.98 (0.28,3.68) 0.024 2.94 (1.27,4.61) 7 × 10−4 2.47 4.80 × 10−5

L.4.6/Ugandan (β2) 0.59 (−0.13,1.3) 0.11 0.57 (−0.24,1.38) 0.17 0.58 0.03

Sex (β4) 0.49 (−0.17,1.14) 0.15 1.09 (0.32,1.85) 0.0061 0.75 0.012

HIV+ status (β1) 0.60 (−0.48,1.69) 0.28 −0.14 (−1.02,0.74) 0.75 0.16 0.66

rs11945555 ×
L4.6/Ugandan

(combination of CT/TT
and L4.6 Ugandan) (β5) †

−3.77
(−5.79,−1.75) 3.62 × 10−4 −4.53

(−6.68,−2.38) 6.79 × 10−5 −4.13 4.00 × 10−8

Regression Model: Y = β0 + β1X1+ β2X2 + β3X3 + β4X4 + β5 (X2X3) + ε. X1 = HIV+ Status, X2 = L4.6/Ugandan lineage, X3 = rs114945555,
X4 = Sex. † Model of inheritance (CT/TT vs. CC as referent).

Table 4. SNPs Above GWAS Threshold with p < 1 × 10−6 (Meta-analytic p-values and Betas).

Chr Bp SNP p β Gene Location

5 17775271 rs369093426 9.82 × 10−7 3.2095 LOC105374666 Intron

5 121258204 rs76190408 8.14 × 10−7 3.0447 None Intergenic

8 50958714 rs203964 1.70 × 10−7 2.7085 SNTG1 Intron

8 141085471 rs56990580 1.77 × 10−7 −3.3244 TRAPPC9 Intron

13 985899842 rs8000063 9.82 × 10−7 2.6203 None Intergenic

21 20182990 rs112560854 2.58 × 10−7 −3.7805 None Intergenic

Chr–chromosome number, Bp = basepair location. Gene and location were ascertained using Ensembl v.104.
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PPIAP22 is a pseudogene and thus is not translated into a functional protein. It is a
pseudogene for Cyclophilin A, a protein that is an important mediator of the inflammation
response [36]. While PPIAP22 is not translated into protein, it is transcribed into RNA, and
evidence from the DICE database shows that it is expressed in a number of immune cells,
with CD4+ T cells showing the highest expression (Figures 6 and 7) [37].

The minor allele for rs114945555 exists almost exclusively in East Africa, based on the
1000 G project’s data, with a 7% MAF in the LWK population (a population based in Kenya).
Outside of Africa, the MAF is 1% or 0% in every population and the LWK have the highest
MAF in any African sub-population. In our data, the MAF was 9%, and this did not differ
substantially with the East African data from 1000 G. The direction of the interaction in
the L4.6/Ugandan lineage is consistent with the hypothesis concerning effect modification
of the relationship between genotype and severity by MTB lineage. Specifically, in the
presence of the ancestral generalist MTB lineage (i.e., L4) with which the population has
had a longer exposure history, we hypothesized that the derived allele associates with
more severe disease relative to the ancestral allele. In the presence of the more newly
emergent specialist MTB lineage (i.e., L4.6/Uganda), we expected that the derived allele
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would associate with less severe disease relative to the ancestral allele. This was true for the
interaction between rs114945555 (the only SNP showing a GWAS-significant interaction)
and MTB lineage (Figure 4).
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Although we adjusted for HIV status in our analyses, we recognize that it is possible
that these adjustments may not be sufficient. Therefore, we performed sensitivity analyses
with only the HIV- subset to assess whether HIV status affected our results significantly.
The results of our sensitivity analysis showed that our results between the analyses above
with all samples and in only HIV- subjects were similar. While our p-values were slightly
higher, this was likely due to the reduced sample size as an impact of excluding HIV+
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patients. The lack of an effect of HIV status was further supported by the fact that the
direction of effect was identical in the meta-analytic results for all SNPs in the results above.
Further, the beta values were almost identical in analyses with all subjects and only those
who are HIV- and the p-values were still significant in each cohort individually, despite
not reaching the GWAS threshold after the exclusion of HIV+ subjects (Supplementary
Materials Table S2). To further assess this point, we also conducted an ANOVA analysis
to determine whether TBscore differed by HIV status, and it did not (p = 0.69). This lends
additional weight to the argument that our inclusion of HIV+ subjects did not alter our
major findings.

The MAGMA gene-based analysis included a total of 19,229 protein-coding genes
represented by the SNPs in our data, and thus the threshold for significance was 2.6 × 10−6.
Our results did not show any GWAS-significant effects for gene-level analysis, gene set
enrichment, or tissue specificity, but the gene with the strongest interactions was CA12
(p = 6.7 × 10−3), a carbonic anhydrase gene. The GSEA from the GENE2FUNC analyses
showed significant enrichment for two of the chemical and genetic perturbation pathway
gene sets (MsigDB c2) and two gene sets reported in the GWAS catalog (Table 5). Specifically,
a breast cancer gene set containing “genes within amplicon 16p13 identified in a study of
191 breast tumor samples” and a gene set containing “Genes with copy number gains in
primary neuroblastoma tumors” were significantly enriched in MsigDB c2. In the GWAS
catalog, the nephrolithiasis and urolithiasis gene sets were significantly enriched.

Table 5. Gene Set Enrichment for SNPs by Lineage Interactions.

GeneSet N n p-Value Adjusted p Genes Database

Breast Cancer
Amplicon 329 24 3.5 × 10−23 1.15 × 10−19

GPRC5C, TMEM104, GRIN2C, FADS6,
CDR2L, KCTD2, ATP5H, SLC16A5,

ARMC7, NT5C, HN1, SUMO2, NUP85,
GGA3, MRPS7, MIF4GD, SLC25A19,
GRB2, KIAA0195, CASKIN2, TSEN54,

LLGL2, RECQL5, EXOC7

Chemical and
Genetic

Perturbations
(MsigDB c2)

Neuroblastoma
Copy Number

Up
181 9 8.92 × 10−8 0.000147

GPRC5C, ATP5H, ARMC7, HN1,
SUMO2, NUP85, MRPS7, SLC25A19,

TSEN54

Nephrolithiasis 8 3 4.33 × 10−6 7.87 × 10−3 INMT, FAM188B, AQP1, AQP1 GWAS Catalog
Urolithiasis 17 3 5.12 × 10−5 0.046 TFAP2B, INMT, FAM188B

N indicates the total number of genes in the set while n shows the number of genes that SNPs mapped to in our GWAS data. Gene sets
were queried using FUMA GWAS. The adjusted p is an FDR-corrected p-value based on the number of gene sets examined.

For the SNPs showing interaction with the L4.6 sub-lineage (p < 1 × 10−5), we found
that 21 of the 81 SNPs were eQTLs spanning 36 different genes for a total of 528 eQTL effects
across the different tissues and databases (Figure 8, Supplementary Materials Table S1). A
STRING DB analysis for PPIs among the genes showed significant enrichment for protein–
protein interactions (PPI p-value = 0.0089; 11 edges) and was significantly enriched in six
KEGG pathways (Table 6). From the STRING diagram and the table of KEGG pathways
showing significant enrichment, we can see that many of these results are driven by the
same proteins downstream of the genes from the eQTL analysis. Specifically, GUCY1B3
and GUCY1A3 are in every single pathway that was enriched, and the diagram shows
interaction between them. AGTR1 is also present in 4/6 of these KEGG pathways. Several
of the enriched pathways appear to be related to renal function but are also closely tied
to the regulation of vascular tone, endothelial permeability, and platelet aggregation. It
has previously been suggested that these processes play a role in the response to infection
and/or in the infection-induced inflammatory response [38–42].
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Table 6. Significantly Enriched KEGG Pathways for eQTL Response Genes.

KEGG Pathway # Genes # In Set Strength FDR Matching Proteins

Renin secretion 3 63 1.44 0.0166 GUCY1B3, GUCY1A3, AGTR1

Gap junction 3 87 1.3 0.0207 GUCY1B3, GUCY1A3, GRB2

Renin-angiotensin system 2 23 1.7 0.0234 CPA3, AGTR1

Vascular smooth muscle contraction 3 119 1.16 0.0251 GUCY1B3, GUCY1A3, AGTR1

cGMP-PKG signaling pathway 3 160 1.03 0.0459 GUCY1B3, GUCY1A3, AGTR1

Purine metabolism 3 173 1 0.0474 NT5C, GUCY1B3, GUCY1A3

Our previously published analysis of how the interaction between the L4.6/Ugandan
sub-lineage and host genotype affects severity identified rs17235409, an exonic SNP within
SLC11A1, a gene that has been well-studied in the context of TB susceptibility. Cohort 2 is
comprised of the same subjects utilized in our prior study, so we examined the interaction
between rs17235409 and the L4.6/Ugandan sub-lineage in Cohort 1 only, as replication in
a distinct cohort. We did not have data available for rs17235409, so we examined SNPs
within +/- 5 kb of SLC11A1 on chromosome 2. We identified two SNPs with a p-value
below 0.05: rs13390257 and rs116577076. Both are located within introns of DIRC3 (which
stands for disrupted in renal carcinoma gene 3), a long non-coding RNA gene characterized
by its role in renal carcinoma (data not shown).

3. Discussion

Overall, our results showed that there are interactions between the human genome
and MTB phylogenetic lineage that are associated with TBscore (i.e., active TB severity).
The strongest interaction showed the same directionality of effect modification that we
hypothesized and have previously published [26]. In these data, the difference in TB score
between the two MTB lineage categories among those with the derived allele is very large.
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The beta value for the interaction term is −4.13. A TBscore difference of this magnitude is
very clinically meaningful and represents a substantial difference in disease experience,
level of disability, and risk of mortality. As the correlation with eventual mortality is a big
driver of selection, our finding adds to the plausibility of the argument that coevolution is
at play.

The GWAS-significant SNP, rs114945555, shows the highest MAF in the 1000 G pop-
ulation (LWK) that is closest to Uganda in geographical proximity. The fact that the
derived allele, which associates with relatively less severe disease in the presence of the
more recently derived MTB lineage, is more prevalent in a TB endemic region where the
L4.6/Ugandan lineage is found, and is consistent with positive selection for this variant
only where the new lineage exists, supports the coevolutionary hypothesis. If there is an
evolutionary advantage to this allele in this specific population, then it is logical that it
would increase in frequency. PPIAPP22 is a pseudogene, and thus it is difficult to discern
its functional role in the immune response to active TB. However, the evidence from the
DICE database shows that it is differentially expressed in immune cells that are relevant
to TB. Further, studies have shown that pseudo-genes may play an important regulatory
role in human genetic diseases, with the potential to regulate protein-coding genes [43].
Some pseudogenes show a tissue-specific pattern of activation, and some pseudogene
transcripts can be processed into short interfering RNAs (siRNAs) capable of regulating
protein-coding genes [43]. In cancer and pharmacology, pseudogenes have been shown to
have an important regulatory role in pathogenesis and are even considered therapeutic
targets [44]. Thus, while PIAPP22 is unlikely to play a direct role in the immune response,
it may have important regulatory functions relevant to its interaction with MTB lineage.

The gene set analyses were also difficult to interpret, as breast cancer, kidney cancer,
and stones found in the kidneys and urinary tract bear little obvious relevance to tubercu-
losis. However, it is possible that the pleiotropic effects of the gene pathways have not yet
been elucidated, and there may yet be functional relevance of these gene sets. Many genes
associated with cancer phenotypes may have general functions in cellular replication and
metabolism. Thus, while they were shown as being important in cancer, they might have
functions that affect a variety of phenotypes. Cancer-related gene sets have previously
been shown to be enriched in several non-cancer phenotypes, and in previous studies a
lack of apparent connection to TB does not necessarily indicate that there is no biological
function [45]. Rather, it will be important to determine to what extent these genes may have
functions outside of known associations. For the gene sets related to kidney function and
kidney stones, pleiotropic effects may also be possible. Kidney complications in pulmonary
TB are not uncommon and pulmonary TB has systemic effects on numerous organs because
of generalized inflammation. Further, the kidneys play an important role in regulating
homeostasis, particularly with respect to blood pressure and fluid levels. These may act
to affect TBscore-related phenotypes. As such, it is possible that these results might yield
interesting connections to TB severity upon further examination.

A subset of the eQTL SNPs that showed interaction with lineage appears to collec-
tively be involved in the biological processes that regulate coagulation and vascular tone.
The enrichment for processes shown in Table 6 appears to be driven primarily by the
same three genes, GUCY1B3, GUCY1A3, and AGTR1. Five of these processes (renin, the
renin–angiotensin system, gap junctions, vascular smooth muscle contraction, and the
cGMP pathway) are involved in the regulation of blood pressure and vascular tone. Under
normal physiological conditions, these pathways are part of a system that regulates blood
pressure in response to factors such as fluid levels, electrolyte concentrations, stress, and
cardiovascular output [46]. The vasculature also plays an important role in the response
to infection, making changes that allow immune effector cells to move to where they
are needed [40,41]. Under conditions of acute stress, and particularly in the context of
infection-induced inflammation, this system can be perturbed and lead to acute hyperten-
sion (increase in blood pressure) that can reduce blood flow to vital organs [47]. In some
cases, such as a cytokine storm in the context of septic shock, there can also be damage
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or death caused by hypotension, i.e., a decrease in blood pressure [48]. More specifically,
the renin–angiotensin system (RAS) has been implicated as an important driver of the
inflammation response in studies of lung damage and pulmonary vascular disease, where
the changes in vascular tone of the micro-vasculature within the lungs can dictate the
extent of alveolar damage and potential for recovery [49].

The cGMP pathway is also important to platelet homeostasis and the coagulation
cascade and has previously been shown to be an important regulator of the cell migration
and T cell polarization in the host immune response [50,51]. Platelets play an important
role in the immune and inflammatory response to infection [38,42]; the dysregulation of the
system as a result of infection has been well-documented in other infectious diseases [39],
and active TB patients experience a pro-coagulatory state as a result of systemic inflamma-
tion [52,53]. cGMP pathways have also been directly implicated as a driver of inflammation
in the context of infectious disease, and specifically in the context of pulmonary infectious
diseases. For example, they may represent a therapeutic target that can mitigate the most
severe forms of COVID-19 [50,54,55]. Thus, the enrichment results indicate that the con-
sequences of systemic inflammation may be driving more severe manifestations of TB
disease. This is important, as prior studies of TB susceptibility have primarily identified
immune response genes (though there is some overlap), indicating that different biological
processes may be at play in susceptibility and severity.

This study was not without limitations. This sample was limited to 279 subjects across
the two cohorts, which is relatively small compared to many modern GWAS studies, which
can include thousands of subjects. While we were able to detect one GWAS-significant
interaction, there were six other SNP by lineage interactions with p < 1 × 10−6 and con-
sistency across our two cohorts. Thus, it is possible that with a larger sample size, these
interactions might have achieved GWAS significance. Nonetheless, we were able to detect
one interaction that may play a role in TB severity, and we generated a list of 91 SNPs with
p < 1 × 10−5 that showed enrichment for multiple gene sets. Finally, we were able to pro-
vide further evidence for the phenomenon of human–MTB co-evolution and demonstrate
how this can be performed in genetic epidemiology studies.

4. Materials and Methods
4.1. Study Participants

The data in this study were drawn from the Kawempe Community Health Study
(KC Health Study) in Kampala, Uganda [54]. The KC Health study enrolled 3818 total
participants that included 1045 active TB cases, from which the study population in this
paper is derived. Our analyses included only individuals with available data on human
genotype, clinical symptoms related to active TB severity, and information on the specific
lineage/sub-lineage of MTBC with which the patient is infected. The TBscore was devel-
oped for adults and may not be appropriate for individuals under 15. Thus, our sample was
limited to subjects 15 years old and older. We examined two samples collected separately
as part of this study that will be referred to as Cohort 1 and Cohort 2 (n = 149 and n = 127,
respectively). The two cohorts were recruited at different times and genotyping of the
humans was performed using different arrays for them, as described below. Ascertainment
criteria did not differ.

All TB cases were culture-confirmed positive based on the isolation of MTB in sputum
or gastric samples, and the clinical characteristics were collected as part of the visit during
which subjects were diagnosed with active TB. Chest radiographs (X-rays) were performed
at the Uganda Cancer Institute on subjects with confirmed active TB. The study protocol
was approved by the National HIV/AIDS Research Committee of Makerere University
and the institutional review board at University Hospitals Cleveland Medical Center. Final
clearance was given by the Uganda National Council for Science and Technology. All
participants provided written informed consent. Additional details about the original
study protocol are described elsewhere [54]. The two cohorts differed in percentage of
HIV-positive individuals (Table 1); therefore, HIV status was used as a covariate in all
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regression models. Previous analyses of microsatellite data from these cohorts indicated no
substantial population substructure, as previous principal component (PC) analyses have
corroborated [26,55].

4.2. Human Genotyping and QC

Cohort 1 was genotyped on the Illumina Infinium MegaEX chip, comprising 2.1 M
markers genome-wide. For Cohort 2, we used the Illumina HumanOmni5 microarray
comprising 4.3 M markers genome-wide, offering high genome-wide coverage of com-
mon genetic variation even within African populations [56]. The difference in choice of
genotyping chips was based only on commercial availability at the time of genotyping.
Only SNPs that had a call rate greater than 0.98, MAF > 0.05, and did not show deviation
from the Hardy–Weinberg equilibrium (p < 10−6) prior and subsequent to imputation in
both samples were used in the analysis. The genotype data for Cohort 1 initially included
2,036,060 SNPs. After QC and prior to imputation, there were 717,705 SNPs remaining.
After imputation and QC, we had 8,146,092 SNPs. The genotype data for Cohort 2 included
2,989,642 SNPs to start. After QC, 1,931,961 SNPs remained prior to imputation. After
imputation and another round of QC thresholds, there were 9,626,100 SNPs. These were
the final numbers of SNPs in each cohort prior to meta-analysis. The total number of
SNPs that overlapped between the two cohorts was 6,421,278. Principal components were
computed using Plink v1.9 [57].

4.3. Determination of MTB Lineage

MTB was isolated from the sputum of each of these subjects, and lineages were
classified according to lineage-identifying SNPs using real-time PCR and validated with
long sequence polymorphism (LSP) PCR and sequencing [12,58]. Lineage was determined
from three SNPs that accurately distinguish the MTBC L4.6 Uganda, MTBC L3, and
MTBC L4 lineages, as previously described [4,6,7]. The classifications delineated by these
SNPs were then compared to previously established LSP-based lineages to validate these
distinctions. In the context of this study setting, the relevant MTBC lineages were MTBC
Lineage 4 (referred to in this paper as L4/Non-Uganda), MTBC Lineage 3 (L3 also known
as Central Asian Strain), and MTBC Lineage 4.6/Uganda, which is a sub-lineage of MTBC
L4 that is only found in Uganda and the countries immediately surrounding it [4,6,7,9,12].
The MTBC L4.6/Uganda is the most recently evolved of the three, a sub-lineage of the
MTBC L4 generalist lineage, and is unique to this part of Africa [4,9].

SNP and LSP-based phylogeny have been proven to be consistent in multiple stud-
ies of MTBC sub-lineages, and the body of literature on MTBC lineages indicates that
this is an excellent method for differentiating the MTBC L4 sub-lineages [6,28,59]. Low
sequence variation and the lack of horizontal transfer make SNPs and LSPs a method
well-suited to distinguish lineages, and this approach has been previously validated and
published [6,12,13]. MTBC L4.6 is the most common lineage among active TB cases in this
cohort [6,7,9,12]. This sub-lineage has been shown to have highly conserved T-cell epitopes
(i.e., a lower proportion of variable epitopes) and a much smaller geographic range than
non-specialized lineages, indicating that it may be adapted to a specific host population(s) [4].

4.4. Statistical Analysis

To assess the association between variants and TBscore, we utilized a linear regression
model with sex and HIV status as covariates in Plink v1.9 software. For the interaction
term between lineage and human genotype, we chose to operationalize lineage as a bi-
nary variable. Each subject is coded as 1 for the L4.6/Ugandan lineage or as 0, which
encompasses the L4/Non-Uganda and MTBC L3/Central Asian Strains together. As the
L4/Non-Uganda and L3/Central Asian lineages have a longer history of human contact
compared to the L4.6/Uganda, which is a newer sub-lineage, we can examine coevolution
as we are contrasting a lineage that is more recent, relative to the two older lineages (MTBC
L3 and MTBC L4). As we expected a longer historical coexistence to associate with lesser
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severity and the introduction of a newer sub-lineage to associate with greater severity,
we grouped the two older lineages together. This also affords greater power to detect a
difference than if we were to examine all 3 lineages independently. A power calculation
showed that we have 70% power to detect a 2.5 point change in TBscore due to the interac-
tion (the beta value from our previous paper) at p = 5 × 10−6. The regression equation for
modeling co-evolution was: Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5 (X2X3) + ε, where
X1 = HIV-positive status, X2 = L4.6/Uganda lineage, X3 = SNP, X4 = sex. In these analyses,
we used a dominant model of inheritance (homozygous minor allele and heterozygotes as
effect vs. the homozygous major allele as referent).

We then combined the summary statistics from the two cohorts to generate meta-
analytic p-values. To determine meta-analytic p-values and beta coefficients across the two
cohorts, we utilized random effects meta-analysis with inverse variance weighting. Based
on the Cochrane handbook recommendations, all variants with an I2 > 40% were excluded
from the analysis to reduce heterogeneity between the cohorts [60]. To be considered
GWAS-significant, the interaction term between an SNP and the L4.6 sub-lineage had to
have a p < 0.05 in both cohorts, the sign of the beta value had to be the same in both cohorts,
and the meta-analytic p-value had to be below 5 × 10−8, the canonical GWAS threshold. To
be included in further enrichment and annotation analyses, the meta-analytic p-value had
to be below 1 × 10−5. We chose this threshold because previous studies have shown that
some variants that do not meet the GWAS threshold may still have important regulatory
or biological functions in some cases and may be worthy of further study and follow-up,
especially in the context of gene regulation [59,61,62].

In order to determine the extent to which our results were sensitive to the inclusion
of both HIV-positive and negative subjects, we ran the same analyses described above
among solely the HIV- subjects and compared these meta-analytic summary statistics
to those in our original analyses. While our original analysis already adjusted for HIV
status as a covariate in the regression equations used to assess the interaction between the
interaction of SNP variants and MTB sub-lineage and the association with TB severity, such
an analysis may help show whether or not our results were affected by the inclusion of
both HIV-negative and positive subjects.

We used FUMA GWAS to annotate and enrich our SNPs below the threshold. Analyses
performed through FUMA included gene mapping, regulatory annotation, tissue specificity,
MAGMA analysis (gene-based analysis), gene set enrichment, and pathway analyses [63].
In addition to FUMA, we utilized GeneCards, Ensembl, DICE, and STRING DB to help
annotate and enrich our results with respect to function, expression, and downstream
protein interactions [36,37].
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