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Abstract 

Objective:  The calculation of growth rates provides basic metric for biological fitness and is standard task when 
using microbioreactors (MBRs) in microbial phenotyping. MBRs easily produce huge data at high frequency from 
parallelized high-throughput cultivations with online monitoring of biomass formation at high temporal resolution. 
Resulting high-density data need to be processed efficiently to accelerate experimental throughput.

Results:  A MATLAB code is presented that detects the exponential growth phase from multiple microbial cultiva-
tions in an iterative procedure based on several criteria, according to the model of exponential growth. These were 
obtained with Corynebacterium glutamicum showing single exponential growth phase and Escherichia coli exhibiting 
diauxic growth with exponential phase followed by retarded growth. The procedure reproducibly detects the cor-
rect biomass data subset for growth rate calculation. The procedure was applied on data set detached from growth 
phenotyping of library of genome reduced C. glutamicum strains and results agree with previously reported results 
where manual effort was needed to pre-process the data. Thus, the automated and standardized method enables a 
fair comparison of strain mutants for biological fitness evaluation. The code is easily parallelized and greatly facilitates 
experimental throughout in biological fitness testing from strain screenings conducted with MBR systems.

Keywords:  Microbioreactor, Online biomass monitoring, Growth rate, Exponential growth model, Quantitative 
microbial phenotyping
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Introduction
Quantitative phenotyping of microbial strain libraries 
describes the assignment of performance indicators to 
each library item, i.e. strain, screened. The growth rate 
is an important performance indicator, because it is a 
suitable metric for biological fitness of microbial mutant 
strains [1]. For screening of mutant libraries after strain 
mutagenesis, parallelized and easy-to-handle cultiva-
tion systems are needed to realize sufficient experimen-
tal throughput. In this context, several microbioreactor 
(MBR) systems are available with integrated quasi-con-
tinuous biomass measurement based on optical density 
“BioScreen C” [2], image scanning “Growth profiler” [3] 
or backscatter (BS) signal “BioLector” [4].

Typically, parallel high-throughput growth experi-
ments in MBR involve strain mutants which usually show 
deviating growth behavior like different lag-phases, final 
biomass concentrations, maximum growth rates or even 
bi-phasic growth patterns. Often such phenotypes cannot 
be predicted but need to be revealed in high-throughput 
MBR experiments. Furthermore, strain-specific growth 
patterns may change completely and unpredictably in dif-
ferent nutrition media with, e.g., different carbon sources. 
Therefore, to fully characterize mutant strain libraries, 
many high-throughput MBR growth experiments are 
needed, resulting in big data sets that have to be evalu-
ated accordingly. Thus, researchers are often faced with 
growth curves displaying a great variety of shapes, which 
all need to be processed for extracting meaningful per-
formance indicators.

To calculate the growth rate from an individual culti-
vation, the corresponding data subset covering only the 
exponential growth phase must be determined. Since in 
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MBR many cultivations are performed in parallel, auto-
mation of this data processing task greatly facilitates the 
experimental evaluation. With typically short microbial 
cultivation times of 1  day, the generation frequency of 
such data sets to be evaluated is very high. Most impor-
tantly, the task of biological fitness testing of microbial 
mutant strain libraries should follow a standardized pro-
tocol covering both wet-lab experiments and data pro-
cessing to enable fair comparison. Apparently deviating 
results, e.g., a significantly higher growth rate of a mutant 
strain compared to the wild type strain, are ideally dis-
covered in an automated procedure, and then followed 
by further in-depth manual evaluation including con-
firmatory growth experiments.

To efficiently handle the massive data load obtained 
by MBR, scripting languages are ideally suited for rapid 
development of automated data processing routines, 
yet a very few with specific features are reported and 
freely available [5–7]. Here, a MATLAB code is pre-
sented that facilitates calculation of growth rates in an 
automated way based on biomass readings at high tem-
poral resolution from individual cultivations conducted 
in parallel. This calculation is easily parallelized, as it is 
demonstrated for all 48 cultivations taking place simulta-
neously in one cultivation plate in the BioLector [4] MBR 
device. Growth rate calculation is based on the exponen-
tial growth model, dcX

dt
= µ · cX, considering the growth 

rate μ to be constant. Therefore, cultivation conditions 
have to be defined in a meaningful way to avoid limited 
growth originating from insufficient maximum oxygen 
transfer rates or insufficient pH buffering capacity.

The presented code is applied on an example data set 
from a Corynebacterium glutamicum strain screening 
campaign and results are compared to literature where 
data was processed manually. In principle, the code is not 
restricted to a specific MBR system or scripting language, 
and thus, can be easily adapted for different microbial 
cultivation systems or MBR equipment providing bio-
mass data at high temporal resolution [8, 9]. The anno-
tated source code is given as additional material and can 
be freely downloaded, used and modified without any 
restriction (Additional file 1).

Main text
Specification of MATLAB code
The presented MATLAB code requires five input argu-
ments: (1) a vector of time stamps (2) a vector of corre-
sponding BS readings (=  biomass data) blanked by the 
initial value, (3) a vector of corresponding BS measure-
ment errors, (4) a BS value as user-defined limit of quan-
tification (LOQ) and (5) the adjusted  R2 that has to be 
reached for the regression-based growth rate calculation 
from the data set.

The code, depicted in Codebox 1, is designed to detect 
the exponential growth phase from a given data set by 
iteratively calculating a growth rate. From that calcula-
tion, several stopping criteria serving as metric for rec-
ognition of the exponential growth phase have to be 
fulfilled. During the first iteration, a time series contain-
ing all BS signals between the first measurement where 
BS exceeds the LOQ and the final measurement is evalu-
ated. Typically, the final measurement is taken during the 
stationary phase, i.e., after completion of growth. If the 
stopping criteria (cf. below) are not met, the final meas-
urement is removed for the next iteration, i.e., the penul-
timate measurement is set as new final measurement.

Three conditions are defined as stopping criteria: 
First, the adjusted R2 from the regression must reach a 
certain threshold, a value  >  0.99 was found to be suit-
able. This criterion alone is not sufficient, since the data 
used for regression show a high temporal resolution, so 
that adjusted  R2 is still satisfied if several non-wanted 
data points from the stationary phase are included. 
Thus, the second stopping criterion is that the increase 
in biomass in the last measurement cycle needs to be 
higher than in the previous one. Finally, the third cri-
terion is that these two biomass increases must not be 
negative, which is sometimes observed as technical 
measurement artifact during transition from exponen-
tial to stationary phase.

The blanked BS readings are transformed by natu-
ral logarithm, cX = ln (cX ), to linearize the growth 
data for calculating the growth rate according to 
µ =

1
cX

·
dcX
dt

≈
� ln (cX )

�t
. Although non-linear regression 

(NLR) is considered as “gold-standard”, linear regression 
(LR) after data transformation results in highly compa-
rable growth rates as discussed below. NLR requires an 
initial guess since it is an iterative procedure, and this 
initial guess is reasonably calculated by LR from trans-
formed data. Because each BS signal cX is connected with 
a corresponding measurement error δcX, the growth rate 
calculation is performed as weighted linear regression 
(WLR). Therefore, errors are transformed accordingly 
by δcX = ln (cX )

′
· δcX =

1
cX

· δcX and the inverse squared 
transformed errors, δ−2

cX
, are used as weights.

Processing of data from microbial high‑throughput MBR 
cultivations
To obtain valid growth rates, cultivation conditions 
must be applied ensuring that growth is limited by 
internal factors of the cell only and not by external fac-
tors. This is seen for C. glutamicum and Escherichia 
coli in the left panel of Fig.  1a  and b, respectively. For 
both growth experiments, conducted in the BioLector 
MBR, conditions were chosen that result in an expo-
nential growth phase of the cultures. C.  glutamicum 



Page 3 of 7Hemmerich et al. BMC Res Notes  (2017) 10:617 

was grown in CgXII mineral medium [10] with 10  g/L 
glucose as carbon source (left panel of Fig. 1a). For the 
chosen batch mode of operation with 1000  µL cultiva-
tion volume and the microplate shaken at a frequency 
of 1000 rpm, the BS signal increases exponentially from 
approximately 15 h to 24 h. The dissolved oxygen (DO) 
signal drops accordingly, showing a sharp rise back to 
100% at approximately 24  h, which confirms glucose 

depletion at this point. Thus, the cultivation conditions 
are determined to be suitable for C. glutamicum strain 
screening and calculation of growth rate. In the case 
of E.  coli, two growth phases can be derived from the 
online monitored biomass and DO signals (left panel of 
Fig. 1b). Here, the mineral medium M9 [11] with 20 g/L 
glucose as carbon source was used, with a filling vol-
ume of 1000 µL and a shaking frequency of 1400  rpm. 

Codebox 1  Pseudocode for automated calculation of growth rates, using backscatter (BS) signal as example biomass signal. The procedure starts 
with the calculation of the blank (zero) value from first BS signals, where the cell concentration is below the limit of detection LOD (lines 1–3). 
These first BS signals below the LOD are also used to calculate the BS measurement error which is considered to be additive for all BS signals (lines 
4, 5). Next, the measurement cycle is identified where the BS signal exceeds the user defined limit of quantification LOQ (lines 6–13). To detect the 
exponential growth phase from the complete BS data set, a BS subset is extracted ranging from measurement cycles where the BS signal reaches 
the LOQ to the last one. For this BS subset, the growth rate is calculated by a weighted linear regression and several stopping criteria are evaluated. 
If these criteria are not fulfilled, a new BS subset is evaluated from which the last measurement is removed. This procedure is repeated until the 
stopping criteria are fulfilled. Please note: this is implemented as for-loop in the MATLAB function (lines 14–28). Three stopping criteria are defined: 
A certain adjusted R2 from the regression has to be reached. The last biomass increase has to be higher than the previous one, and these two 
increases need to have a positive sign (lines 29–34)
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An exponential increase of biomass signal is seen until 
approximately 7 h, with the DO signal dropping accord-
ingly until a sharp rise at the same time point. After-
wards, a second, retarded growth phase is visible until 
approximately 15  h, accompanied by a slowly increas-
ing DO signal. Presumably, excreted acetate and other 
overflow metabolites from the first exponential growth 
phase are consumed now, which is a known phenom-
enon for E. coli [12].

After applying the MATLAB code on the data shown 
in the left panels of Fig.  1, the resulting processed data 
is depicted in the corresponding right panels. The single 
exponential growth phase of the C.  glutamicum culture 
is detected precisely, also for a second replicate cultiva-
tion. For E. coli, exhibiting a first exponential and a sec-
ond non-exponential growth phase, the MATLAB code 
is able to detect the first phase safely for all three repli-
cate cultivations, of which one is shown. The growth rate 
for C.  glutamicum and E.  coli is calculated to 0.46 and 
0.61  h−1 on average, respectively. In case NLR instead 
of WLR is used, the same growth rates are determined 

(cf. Table 1), indicating that WLR of transformed data is 
a suitable and reliable method for the determination of 
growth rates (Additional files 1, 2, 3, 4, 5).

Fig. 1  Growth kinetics of C. glutamicum and E. coli from BioLector cultivations and depiction of data processing for automated growth rate calcula-
tion. a Online monitored backscatter and dissolved oxygen (DO) signal for C. glutamicum in CgXII medium with 10 g/L glucose, a filling volume of 
1000 µL and a shaking frequency of 1000 rpm. The panel on the right shows the processed biomass data, i.e. blanked backscatter and data points 
determined automatically for calculation of growth rate. Propagated measurement error for blanked BS signal was calculated to 0.39 a.u. b Online 
monitored signals like in part a, but for E. coli in M9 medium with 20 g/L glucose, a filling volume of 1000 µL and a shaking frequency of 1400 rpm. 
Propagated measurement error for blanked BS signal was calculated to 0.34 a.u. Right panel analogous to the one in part A. Insets in part B magnify 
the first 18 h of cultivation. Measurement cycle time for recording backscatter and DO signals was set to 9 min for both C. glutamicum and E. coli 
cultivations

Table 1  Comparison of  regression methods for  growth 
rate calculation using the presented MATLAB code

Growth rates with corresponding 95% confidence interval (CI) are shown for 
each replicate cultivation of C. glutamicum (n = 2) and E. coli (n = 3)

WLR weighted linear regression, NLR non-linear regression

Cultivated organism Growth rate with 95% CI from regression 
method

WLR after log-transfor‑
mation

NLR

C. glutamicum

 Replicate #1 0.455 (0.448–0.462) 0.456 (0.448–0.463)

 Replicate #2 0.456 (0.448–0.464) 0.457 (0.449–0.465)

E. coli

 Replicate #1 0.601 (0.580–0.622) 0.603 (0.582–0.624)

 Replicate #2 0.615 (0.598–0.632) 0.616 (0.599–0.633)

 Replicate #3 0.617 (0.599–0.635) 0.618 (0.600–0.636)
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Application example: evaluation of biological fitness 
of genome reduced C. glutamicum strains
The presented MATLAB code was used to calculate 
growth rates from a BioLector raw data set of a previ-
ously reported characterization of a library of genome 
reduced C.  glutamicum strains derived from wildtype 
ATCC1303 [13] or lysine producer DM1933 [14]. An 
implementation of this workflow is found as annotated 
MATLAB Live Script in Additional file 2. In Table 2, the 
resulting growth rates were compared to those previously 
reported [13, 14]. More specifically, when comparing the 
deviation of the automatically calculated growth rates 
to the data from literature, Dev.[%] =

∣

∣

∣
1−

µautom.

µLit.

∣

∣

∣
· 100 , 

the following is found: In most cases (13 out of 23) a 
deviation of 10% or less is seen, few values (8 out of 23) 

deviated by 15% or less, and only two growth rates show 
a higher deviation of 16 and 21%. Consequently, growth 
rates calculated from automated detection of the corre-
sponding growth phase agrees very well with literature, 
where manual effort was required, e.g., to remove back-
scatter readings form the stationary phase before data 
fitting.

Furthermore, the presented code was shown to repro-
ducibly detect the exponential phase from multi-phasic 
growth patterns (cf. Fig.  1b). It can be used to rapidly 
characterize mutant strains for different growth regimes, 
such as different media compositions that allow a differ-
ential analysis of genome modification impact on biologi-
cal fitness based on growth rate [13].

Conclusions and outlook
A MATLAB code was presented that allows for model-
based automated calculation of growth rates from high-
throughput parallelized microbial cultivations that were 
monitored at a high-temporal resolution. The code uses 
online biomass data (here: blanked backscatter signal) 
and weighted linear regression in an iterative procedure 
for reliable identification of exponential growth phase 
with growth rate calculation. By applying cultivation 
conditions that satisfy the assumptions of the under-
lying model of exponential growth, the code demon-
strated to safely detect the exponential growth phase and 
reproducible growth rate calculation, even in bi-phasic 
microbial cultivations. An application example data set 
from biological fitness assessment of C. glutamicum 
genome reduced strains was processed using the pre-
sented code and growth rates were in very good agree-
ment with previous results. It is reasonable to assume, 
that the presented code can be also applied to different 
growth conditions or changed media compositions, if 
the obtained data still match to the exponential growth 
model.

The use of MBR systems in high-throughput mutant 
strain screening campaigns and accelerated microbial 
bioprocess development easily produces a huge amount 
of data. Consequently, resulting data needs to be pro-
cessed in an automated, standardized and efficient way. 
Using standardized data output from MBR in spread-
sheet formats, MATLAB routines can be implemented 
which facilitate elevated experimental throughput. Most 
importantly, the application of standardized growth 
rate calculation methods enables a fair comparison of 
screened strains regarding biological fitness.

Limitations
Biomass monitoring in the BioLector MBR relies on BS 
measurements, which is the key feature to temporal high-
density data acquisition in microplate cultivation [4, 15]. 

Table 2  Automated calculation of  growth rates from  dif-
ferent genome reduced C. glutamicum strains with  com-
parison to literature

Data originates from a BioLector raw data set and results are compared to 
previously reported data collections [13, 14]

Data from literature is given as mean ± standard deviation. Strain order 
corresponds to Additional file 2

CI confidence interval
a  For strain WT two data sets from growth duplicates were processed

Strain Growth rate [h−1]

Literature This study (95% CI)

DM1933 0.32 ± 0.01 0.30 (0.29–0.30)

DM1933 ΔCGP1 0.30 ± 0.03 0.30 (0.29–0.31)

DM1933 ΔCGP2 0.31 ± 0.03 0.32 (0.31–0.32)

DM1933 ΔCGP3 0.31 ± 0.02 0.32 (0.31–0.32)

DM1933 ΔCGP123 0.33 ± 0.03 0.33 (0.32–0.34)

GRLP16 0.31 ± 0.02 0.35 (0.34–0.35)

GRLP23 0.33 ± 0.02 0.31 (0.30–0.32)

GRLP41 0.31 ± 0.01 0.29 (0.28–0.30)

GRLP42 0.36 ± 0.06 0.30 (0.29–0.31)

GRLP46 0.30 ± 0.04 0.32 (0.32–0.33)

GRS37 0.45 ± 0.03 0.51 (0.51–0.52)

GRS40 0.44 ± 0.03 0.50 (0.49–0.51)

GRS41 0.41 ± 0.04 0.47 (0.46–0.47)

GRS42 0.39 ± 0.01 0.47 (0.46–0.48)

GRS46 0.43 ± 0.03 0.50 (0.49–0.50)

GRS45 0.31 ± 0.02 0.34 (0.34–0.34)

GRS47 0.41 ± 0.03 0.48 (0.47–0.49)

GRS48 0.45 ± 0.01 0.49 (0.49–0.50)

GRS53 0.44 ± 0.03 0.47 (0.47–0.48)

MB001 0.43 ± 0.04 0.48 (0.47–0.48)

GRS16 0.44 ± 0.03 0.49 (0.48–0.50)

GRS23 0.46 ± 0.02 0.47 (0.47–0.48)

WTa 0.43 ± 0.04 0.46 (0.45–0.46)

0.46 (0.45–0.46)
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In contrast to the determination of biomass concentra-
tion by cell dry weight, optical measurement for biomass 
determination via BS was found to be organism specific 
[16]. Hence strain specific correlations for BS and opti-
cal density measurements need to be determined and 
have been reported [8]. Issues like optical crosstalk or 
cell morphology have to be considered for biomass deter-
mination by optical measurements in general [9, 17, 18]. 
Consequently, for meaningful interpretation of screen-
ing results, biomass calibration should be an integral part 
of strain screening campaigns with the BioLector device 
and other MBRs. Furthermore, cultivation conditions 
(media composition, filling volume, shaking frequency) 
should be verified to fulfill the underlying assumptions of 
the exponential growth model since the presented MAT-
LAB code calculates growth rates based on this model. 
Therefore, conditions causing diauxic growth behavior, 
e.g., oxygen limitation or the use of complex media, may 
result in erroneous growth rate calculation. In such cases, 
a differential method that calculates a dynamic growth 
rate over time may be more suitable for data interpreta-
tion for changing growth regimes. This holds especially 
true for microscale cultivations of microorganisms that 
do not show an exponential growth [19] or exhibit com-
plex morphology [20].
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