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Coronavirus disease 2019 (COVID-19), human erythrocytes and the PKC-alpha/- 
beta inhibitor chelerythrine –possible therapeutic implication
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ABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19. Until 
now, diverse drugs have been used for the treatment of COVID-19. These drugs are associated 
with severe side effects, e.g. induction of erythrocyte death, named eryptosis. This massively 
affects the oxygen (O2) supply of the organism. Therefore, three elementary aspects should be 
considered simultaneously: (1) a potential drug should directly attack the virus, (2) eliminate 
virus-infected host cells and (3) preserve erythrocyte survival and functionality. It is known 
that PKC-α inhibition enhances the vitality of human erythrocytes, while it dose-dependently 
activates the apoptosis machinery in nucleated cells. Thus, the use of chelerythrine as 
a specific PKC-alpha and -beta (PKC-α/-β) inhibitor should be a promising approach to treat 
people infected with SARS-CoV-2.
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Introduction

The error-prone nature of RNA polymerases, a 
pre-requisite for fast genomes evolution of RNA 
viruses

Evolutionary more highly evolved species with 
their corresponding large genome size require 
sophisticated energy- and time-consuming 
mechanisms to produce precise and viable genome 
copies. This needs DNA polymerases to operate 
with the highest degree of proofreading to keep 
error frequencies and mutation rates very low. 
However, there are exceptions, i.e. suppression or 
bypass of proofreading mechanisms in some 
phases of B-cell development to generate the great-
est variability of immunoglobulin molecules [1,2] 
(for reviews see: [3,4]). This is an important aspect 
of the immune response to maintain the genetic 
health of mammalian populations.

RNA replicating viruses are naturally equipped 
with an error-prone RNA polymerase, allowing 
them a “turn-on-mutagenesis” status and thus, 
the highest mutation rates and variability, rapid 
adaptability and fast genomes evolution [5]. 
Thus, the RNA viruses are always in attack mode 

in terms of variability and pathogenicity, and their 
host must first develop a suitable immune 
response. The single-stranded RNA virus SARS- 
CoV-2 with its ~30 kb genome and remarkable 
capability to transmit between humans, caused 
COVID-19 [6], affected public life worldwide in 
an unprecedented way and has so far cost 
a million people their lives. The respiratory disease 
COVID-19 has a devastating effect on the health 
of elderly and people with preexisting conditions, 
e.g. immunocompromised patients. Currently, sev-
eral substances are used for COVID-19 treatment, 
such as glucocorticoids [7] and anti-malaria 
agents, e.g. chloroquine [8]. The latter usually 
induce eryptosis. Chloroquine exacerbates virus- 
associated anemia by enhancing virus replication 
[9]. Glucocorticoids limit the production of pro- 
inflammatory cytokines, but as immunosuppres-
sants they also impair the protective function of 
the T cells, which are urgently needed to combat 
COVID-19. Furthermore, glucocorticoids inhibit 
the activity of macrophages and antibody- 
producing B cells. Thus, a sustained increase in 
plasma viral load is pre-programmed [10]. In this 
context, glucocorticoids´ ability to limit the 
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overproduction of inflammatory cytokines trig-
gered by SARS-CoV-2 should not be overesti-
mated. Hence, the use of substances for COVID- 
19 treatment that inhibit the protective effect of 
immune cells and impair the functionality of ery-
throcytes or even induce their death is counter-
productive. The immediate consequence is 
a sustained increase in plasma viral load and sub- 
optimal oxygen (O2) supply of the organism, 
respectively.

Immuno-modulatory and anti-inflammatory 
function of human erythrocytes

Human erythrocytes play a vital role in immune 
and defense mechanisms. They attach to bac-
teria, transport them to liver and spleen for 
final elimination [11,12]. Human erythrocytes 
function as a sink for sphingosine-1-phosphate 
(S1P) [13] and release on demand this molecule 
into the plasma through a finely regulated 
mechanism. S1P negatively regulates lympho-
cytes circulation [14], maintains endothelial cell 
barrier integrity [15] and exerts a protective 
effect on kidney (for reviews see: [16,17]). In 
addition to this, kidney vascular development is 
positively regulated by interplay between S1P, 
erythroblasts and vascular endothelium [18]. 
Each single human erythrocyte contains approxi-
mately 270 millions hemoglobin molecules and 
thus 1.1 billion heme groups. Heme inhibitory 
binding to pro-inflammatory cytokine IL-36α (in 
a ratio of 2:1) negatively regulates IL-36 depen-
dent IL-6 and IL-8 expression [19]. Heme- 
regulated proteins are involved in several phy-
siological processes, e.g. protein synthesis [20]. 
Physical interaction of human erythrocytes with 
a sub-group of dendritic cells (slanDCs) prevents 
their maturation. The maturation inhibitory 
effect of erythrocytes ends when slanDCs leave 
the blood and reach their target tissue, where 
they mature and acquire an IL-12 and TNF-α 
producing capacity to fight off pathogens [21]. 
Human erythrocytes with their unique chemo-
kine receptor are capable to bind an array of 
inflammatory chemokines [22] including IL-8 
[23], and thus avoiding the excessive 

inflammatory response. Interestingly, 20% of 
SARS-CoV-2 infected patients develop acute 
respiratory distress syndrome which is associated 
with abundance release of chemokines and pro- 
inflammatory cytokines (e.g. IL-8) culminating 
in multi-organ failure (for review see: [24]). 
These data show that human erythrocytes have 
not only respiratory but also immuno- 
modulatory and anti-inflammatory functions. 
Thus, the application of such substances which 
improve the vitality of erythrocytes and simulta-
neously eliminate pathogens or pathogen- 
infected host cells is the best choice and of 
utmost importance for treating COVID-19.

Activation of protein kinase C-alpha (PKC-α) in 
respiratory diseases, its role in nuclear export of 
viral genome and its inhibition by chelerythrine

Respiratory diseases of viral and bacterial origin 
are associated with PKC-α activation [25,26]. 
Viral life cycle follows a certain pattern. The 
negative-strand influenza A RNA virus exclu-
sively persues a nuclear replication and PKC-α 
promotes the export of ribonucleoproteins 
(RNPs) complexes from the nucleus of infected 
cells [27]. Subsequently, RNPs are packaged into 
budding progeny virions at the cell membrane. 
The following remarkable review illustrates the 
principle of virus assembly and budding for an 
influenza A virus [28]. It is to note that matura-
tion of progeny virions and the intracellular sites 
at which they bud is determined by the accumu-
lation of their glycoproteins. This principle was 
demonstrated four decades ago with coronavirus 
MHV-A59 [29]. Latest studies suggest that posi-
tive-strand SARS-CoV-2 RNA virus also follows 
a nuclear replication strategy [30]. The suppres-
sion of PKC-α mediated nuclear export of viral 
RNPs will be one of the potential targets for 
chelerythrine, thereby disrupting the formation 
of the emerging SARS-CoV-2 virions. The fol-
lowing publications describe more details about 
the pathogenic mechanisms of SARS-CoV-2 
[31,32]. The bioactive molecule chelerythrine, 
a natural product of plant origin is a specific 
PKC-α/-β inhibitor [33–36], which can exist in 
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its charged monomeric iminium or neutral alka-
nolamine forms, enhances the vitality and biolo-
gical functions of human erythrocytes and 
prevents stress-induced eryptosis [37]. Several 
studies underpin the versatility of chelerythrine’s 
mode of action in terms of apoptosis induction 
[38–40], in vivo tumor growth delay [35], kidney 
[41] and lung protection. The inhibitory effect of 
chelerythrine on Gram-positive bacteria [42], 
and its ability to bind to DNA (five nucleotides 
per chelerythrine) [43–47] and RNA [48] (for 
reviews see: [49,50]) further underscores the 
potential of chelerythrine for the use against 
many diseases including COVID-19.

Inhibitory effect of chelerythrine on virus- 
mediated PKC-α/-β activation and RNA 
polymerase phosphorylation

Viral RNA sensing retinoic acid-inducible gene 
I (RIG-I) as an integral part of host pattern 
recognition receptors is able to detect both sin-
gle and double-stranded RNAs in cytosol and 
initiate the primary line of defense by interferon 
(IFN)-mediated anti-viral response [25,51,52]. 
The following work shows some aspects of the 
SARS-Cov-2 mode of action to undermine IFN- 
signaling pathways [32]. Both conventional 
PKC-α and PKC-β are negative regulators of 
RIG-I. Chelerythrine could reverse PKC-α/-β- 
mediated RIG-I inhibition and thus initiate the 
IFN-mediated immune response and, if neces-
sary, depending on the concentration used, elim-
inate the virus-infected (nucleated) host cells by 
apoptosis. Several enzymes engaged in DNA and 
RNA metabolism, e.g. DNA-dependent poly-
merases and RNA-dependent polymerases, are 
phospho-activated proteins. It exists a direct cor-
relation between phosphorylation level of hepa-
titis C RNA polymerase and its RNA replication 
[53]. In this concept, chelerythrine-mediated 
inhibition of a putative kinase X activity should 
decrease RNA polymerase phosphorylation of 
SARS-CoV-2, severely impair RNA replication 
and simultaneously enhance RIG-I-dependent 

INF-mediated anti-viral immune responses. The 
reciprocal relationship between kinases and 
phosphatases activities suggests that the use of 
the kinase inhibitor chelerythrine automatically 
promotes phosphatase(s) activities. In addition, 
the protective effect of chelerythrine on human 
erythrocytes, especially in case of respiratory dis-
eases, is another central point to consider che-
lerythrine as a potential drug for COVID-19 
treatment.

Human erythrocytes vs. SARS-CoV-2

Intact human erythrocytes promote proliferation 
of activated CD8+ cells [54] whereas they inhibit 
CD4+ proliferation [55]; they actively adsorb 
infectious HIV-1 virions [56] for review see: 
[57], hence reducing HIV infection of CD4+ 

T-cells. The interaction between virus and the 
receptive cell is a carbohydrate-dependent 
mechanism. Human erythrocyte gangliosides 
[58] as well as sialoglycoprotein glycophorin 
A (GPA), act as receptors for numerous viruses 
[59–63] resulting in reduction of both viral 
infectivity and pathogen load in the circulation 
[60,64]. In other words, the larger the erythro-
cyte-bound fraction of a virus, the greater its 
blood clearance and elimination rate. Each single 
human erythrocyte with 1 × 106 GPA molecules 
is capable to bind 1.5 × 105 virions with max-
imum uptake attaining within 1–2 hours [65,66]. 
According to the same principle, intact human 
erythrocytes can capture not only SARS-CoV-2 
but also the active particles of this virus and 
deliver them to macrophages resident in the 
spleen and liver for final elimination. The elim-
ination of erythrocytes-bound pathogens is 
a common mechanism. Complement receptor 
1-dependent attachment of erythrocytes to bac-
teria and viruses leads also to phagocytosis and 
elimination of erythrocyte-bound bacteria [67] 
(for review see: [68]) and viruses [69,70]. 
Furthermore, the complexity and high efficiency 
of the circulatory clearance of bacteria and the 
involvement of innate (liver, our firewall) and 
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adaptive (spleen) immunity requires the contri-
bution of additional cells such as platelets 
[71,72] for preview see: [73].

Inhibitory effect of chelerythrine on 
mTORC2-dependent, mTORC1-mediated 
protein synthesis

Host cell protein synthesis does not necessarily 
have to be accompanied by its proliferation [74]. 
This principle can be used by a wide variety of 
intracellular parasites to proliferate with high velo-
city, e.g. malaria, or to be multiplied, e.g. viruses. 
Intense multiplication of SARS-CoV-2 within 
a single host cell requires the activation of both 
mammalian targets of rapamycin complexes 1 
(mTORC1) and 2 (mTORC2) and the associated 
protein synthesis machinery. mTORC2 acts as an 
upstream kinase of serum and glucocorticoid- 
inducible kinase-1 (SGK-1) and protein kinase 
B (PKB also called Akt) which in turn activate 
mTORC1. It is to note that mTORC2 kinase activ-
ity is PKC-α-dependent [75]. Phosphorylation- 
dependent Akt activation is regulated by the fol-
lowing kinases: (a) PKC-α/mTORC2 and (b) phos-
phoinositide 3-kinase (PI3K)/3�-phosphoinositide 
-dependent kinase-1 (PDK1). Phosphorylation of 

BAD (a BH3-only pro-apoptotic protein) by Akt 
or protein kinase A (PKA) leads to BAD inactiva-
tion and promotion of cell survival (for review see: 
[76]). By activating PKC-α-mTORC2 and PI3K- 
PDK1 signaling pathways, SARS-Cov-2 could 
induce the mTORC1-dependent protein synthesis 
and Akt-dependent pro-survival machinery, thus 
accelerating its multiplication. The majority of 
these processes could be inhibited by chelerythrine 
(Figure 1).

Conclusions

The remarkable properties of chelerythrine: (a) 
fast diffusion across the cell membrane [77], (b) 
asymmetric distribution between cytosol and 
membrane particulate fractions [78], (c) preferen-
tial inhibition of both conventional PKC-α and -β 
(d) causing a pro-apoptotic effect in nucleated cells 
and thus creation of a hostile environment for 
intracellular parasites including viruses, (e) creat-
ing a pro-survival effect in enucleated human ery-
throcytes and thus enhancing the anti-viral and - 
bacterial activities of these cells, (f) its curative 
effect against viral and bacterial infection- 
associated anemia [79], and (g) its capability to 
interact with divers DNA and RNA confirmations, 

Figure 1. Proposed mechanism of SARS-CoV-2 action and its inhibition by chelerythrine. mTORC2-dependent, mTORC1-mediated 
protein synthesis as well as mTORC2/PI3K-PDK1-dependent Akt activation and the resulting promotion of cell survival is the basic 
prerequisite for the synthesis of viral proteins and replication of its genome by the host cell biosynthetic machinery . Therefore, the 
inhibition of various enzymes of the host cell involved in virus production is an adequate means to stop these processes. 
Chelerythrine as a specific inhibitor of the protein kinases C alpha and beta (PKC-α/-β) can play an elementary role to accomplish 
this task. Furthermore, chelerythrine could directly inhibit the upstream kinase of the RNA polymerase of SARS-CoV-2, thus causing 
its inactivation.
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allows the legitimate hypothesis that chelerythrine 
is predestined for COVID-19 treatment.
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