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Abstract: The oxygen evolution reaction (OER) can enable green hydrogen production; however,
the state-of-the-art catalysts for this reaction are composed of prohibitively expensive materials. In
addition, cheap catalysts have associated overpotentials that render the reaction inefficient. This
impels the search to discover novel catalysts for this reaction computationally. In this communica-
tion, we present machine learning algorithms to enhance the hypothetical screening of molecular
OER catalysts. By predicting calculated binding energies using Gaussian process regression (GPR)
models and applying active learning schemes, we provide evidence that our algorithm can improve
computational efficiency by guiding simulations towards candidates with promising OER descriptor
values. Furthermore, we derive an acquisition function that, when maximized, can identify catalysts
that can exhibit theoretical overpotentials that circumvent the constraints imposed by linear scaling
relations by attempting to enforce a specific mechanism. Finally, we provide a brief perspective on
the appropriate sets of molecules to consider when screening complexes that could be stable and
active for this reaction.

Keywords: water splitting; oxygen evolution reaction; machine learning; catalyst design; scaling
relations

1. Introduction

With improved computing power and increased accessibility to said power, large-scale
simulations in computational catalysis have become more feasible. This has paved the way
for deriving statistical knowledge from quantum chemical simulations, which has opened
a new era of data-driven catalyst discovery. Recent examples include the elucidation of a
CO2 electroreduction catalyst [1] and a spinel oxygen evolution reaction (OER) catalyst [2].
To the best of our knowledge, these catalyst discoveries have been limited to heterogeneous
systems, and in each case, machine learning (ML) was applied to a single continuous
variable. In this communication, we outline how ML can be applied to multiple relevant
OER intermediates in homogeneous systems while incorporating information about the
mechanism for M-O bond activation that we have gathered from a previous work [3].

Studying OER mechanisms is more straightforward in molecular catalysts than in
heterogeneous systems since the nature of the active site is less ambiguous. An exciting
prospect for these molecular catalysts is that, due to their inherent three-dimensional nature,
they offer greater flexibility with which to attempt to circumvent scaling relations that
limit their activity [4]. This circumvention could occur through geometric effects from a
second or third coordination sphere [5,6], a concrete demonstration of which seems to have
appeared recently from Llobet and co-workers [7]. Significant challenges remain, however,
and a mononuclear first-row transition metal catalyst with comparable activity to Ru or Ir
complexes is yet to be found. This is due, in part, to issues relating to stability, although it is
not clear a priori why first-row mononuclear catalysts cannot exhibit turnover frequencies
matching those of Ru or Ir. As an avenue to investigate this, we have recently proposed
that earth-abundant Cr, Mn and Fe-based catalysts could exhibit low overpotentials for this
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reaction, assuming they undergo an extra oxidation mechanism [8]. To efficiently search
such possibilities, ML algorithms can enable an efficient exploration of possible candidate
molecules through active learning (AL).

Herein, we set out to showcase a data-driven approach to homogeneous catalyst
discovery using an ML-based surrogate function to suggest promising complexes based
on intermediate binding energies along the water nucleophilic attack (WNA) mechanism.
We restrict our analysis to intermediates that precede the O-O bond formation, since that
step is best studied using explicit solvent. Such ML-based approaches must be flexible
enough to discover catalysts that evolve oxygen through distinct mechanisms, which may
require distinct objective functions while using the same surrogate function. With this
premise in mind, we inspect how to use surrogate functions that predict OER descriptors
to optimize catalysts for this reaction. Through an expansion of the data acquired in our
recent manuscript [3], we set out to design ML algorithms with the intention of making
a surrogate model to guide future calculations with AL. Due to the modest size of our
dataset, we employed Gaussian processes (GPs) to our problem. These models define prior
probability distributions over functions that predict an important value which is later used
to construct posteriors by sampling examples. Some applications of GPs include Gaussian
process regression (GPR), which has seen application in optimizing the nudged-elastic
band method [9], predicting solubility parameters [10], nanoparticle alloy composition [11],
redox-flow battery couples [12] and Pourbaix diagrams [13]. However, to the best of our
knowledge, these methods have not been applied to homogeneous OER catalysts [14]. For
further details on GPs and our implementation, we refer the reader to Refs. [15,16] and the
Computational Methods section, respectively.

2. Results and Discussion
2.1. Machine Learning Models

To represent the modelled OER catalysts, we used reduced autocorrelation (RAC)
functions taken from the molSimplify-generated HO* intermediate [17]. First described by
Kulik et al. [18], this vectorial representation of molecules is graph based and describes
how the individual atoms of a molecule relate to atoms in the nth coordination sphere.
This method has shown success in predicting spin-splitting and metal-oxo formation
energies [18,19]. Vector features for each catalyst are then made from multiplication and
subtraction of continuous-valued atomic properties, P, namely electronegativity, covalent
radius, polarizability and nuclear charge of a given set of atoms at a given bond-wise
distance or depth, d, as shown in Equation (1).

Pmd = ∑i ∑j PiPj∆
(
dij, d

)
; Psd = ∑i ∑j(Pi − Pj)∆

(
dij, d

)
(1)

where ∆ is the Kronecker delta function and dij is the bond-wise distance between atoms i
and j. These indices are chosen such that they are either metal-centred, so that i is fixed as
the metal atom index, or ligand-centred, so that i runs over atoms in the first coordination
sphere of the metal. We take the unoptimized geometries since we are mimicking a situation
wherein we do not have the DFT data at our disposal. However, the values of the features
defined in Equation (1) may be sensitive to flexible ligand frameworks.

2.2. Active Learning Applied to the OER Descriptor

Firstly, we aim to use ML to predict the OER descriptor, ∆GO(IV)∗ −∆GHO(I I I)∗ , since
this descriptor is known to be one of the most descriptive binding energy values and has
recently been used as a correlate of the ‘kink’ potential at which a Tafel slope transition
occurs for transition metal oxides [20]. For this, we have increased our dataset of OER
descriptors from our previous work [3], while using the same subset of catalysts to generate
251 catalyst OER descriptor pairs, as shown in Figure 1. To enable ML for the OER
descriptor, we created feature vectors from Equation (1) using unoptimized cartesian
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coordinates of the catalysts, so that the speed of predictions on new complexes using ML
increases by orders of magnitude over density functional theory (DFT) methods.
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from Ref. [3] under the terms of the Creative Commons CC-BY license. Each ligand is labelled first by their denticity (i.e. 1,
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site. Where there are two monodentate ligands, they can either be in cis or trans to each other, leading to the labels 31c or 31t,
respectively. The 41 geometry contains the porphyrin ligand 4a along with one of the three monodentate ligands.

To reduce overfitting, and since our dataset is modest in size, we have applied leave-
one-out cross validation (LOOCV) to evaluate the performance of the GP model. This
means that the OER descriptors are predicted using 251 different training and test sets,
so that each catalyst is evaluated as its own test set. To determine the form of the RACs
to represent catalysts, we have used a grid search over the space of metal-centred depths
ranging from 2 to 4, and ligand-centred depths of either 0 or 1 (see Equation (1)). Based on
the result of each combination (Figure S1), we have taken the combination that produces
the lowest error while leading to the minimum number of features, which corresponds to
a metal-centred depth of 3 and a ligand-centred depth of 0. Notably, our model, shown
in Figure 2a, produces a LOOCV mean absolute error (MAE) of only 0.06 eV and a root
mean square error (RMSE) of 0.08 eV, respectively, which is within the error of DFT
calculations and within previous standard deviations of cross-functional binding energies
for heterogeneous OER and ORR catalysts [21]. We note, however, that applying a coarse
baseline model that simply predicts the OER descriptor as the mean value for a given set
of metals provides a similar MAE and RMSE, i.e., 0.08 and 0.10 eV, respectively. The data
and analysis of the influence of individual features on the performance of this procedure
are presented in Table S1 and in the “Feature importance” section of the Supplementary
Information. This implies that the covalent radii and the features generated at a bond
distance of 1 are the most important features for this approach. Yielding more descriptive
design rules, however, will necessitate the generation of a larger dataset, which is not the
focus of this communication. In addition to this, we have tested support vector regression,
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random forest regression and kernel ridge regression with hyperparameter optimization in
an attempt to reduce the errors further. In Table S2, we present the best result for a given
algorithm after hyperparameter tuning over the primary parameters for each algorithm,
with support vector regression and random forest regression exhibiting a similar error to the
GPR to the first significant figure. Yet, we have opted to use GPR over these other models
since they provide mathematically-derived uncertainty estimates along with predictions,
which can be exploited by acquisition functions to perform Bayesian optimization on the
OER descriptor as part of AL, as we describe in the following. One foreseen drawback of
GPR methods, however, is their poor O

(
n3) scaling, which will be a limitation for a higher

volume of data. If this becomes prohibitive, we may utilize a scheme to handle uncertainty
quantification using deep learning methods, as has been recently described by Kulik and
co-workers [22].

Molecules 2021, 26, x FOR PEER REVIEW 4 of 12 
 

 

focus of this communication. In addition to this, we have tested support vector regression, 
random forest regression and kernel ridge regression with hyperparameter optimization 
in an attempt to reduce the errors further. In Table S2, we present the best result for a 
given algorithm after hyperparameter tuning over the primary parameters for each algo-
rithm, with support vector regression and random forest regression exhibiting a similar 
error to the GPR to the first significant figure. Yet, we have opted to use GPR over these 
other models since they provide mathematically-derived uncertainty estimates along with 
predictions, which can be exploited by acquisition functions to perform Bayesian optimi-
zation on the OER descriptor as part of AL, as we describe in the following. One foreseen 
drawback of GPR methods, however, is their poor ܱ(݊ଷ) scaling, which will be a limita-
tion for a higher volume of data. If this becomes prohibitive, we may utilize a scheme to 
handle uncertainty quantification using deep learning methods, as has been recently de-
scribed by Kulik and co-workers [22]. 

 
Figure 2. Machine learning applied to OER catalysts: (a) results of leave-one-out cross validation using the GPR model for 
each ܩ߂ை(ூ௏)∗−ܩ߂ுை(ூூூ)∗ descriptor value. The dashed line represents the equation ݕ =  while the uncertainties in the ,ݔ
predictions are represented as x-axis error bars. (b) Bayesian optimization starting from different sets of unseen data, 
showing the number of evaluations needed to converge to the desired ܩ߂ை(ூ௏)∗−ܩ߂ுை(ூூூ)∗ value as dictated by the prob-
ability of improvement acquisition function, depicted in the top left. When maximized, this function iteratively determines 
the most promising catalyst to evaluate. This equation and the terms are explained in the main text. 

Herein, we have applied Bayesian optimization through the surrogate GPR model 
function, ݂, which can be evaluated with ease compared to DFT, and it approximates the 
OER descriptor value well. Then, knowing the current best value, ݂∗, one can maximize 
an acquisition function, ߤ, which approximates the probability that the evaluated catalyst 
has a more favourable OER descriptor than the current best ݂∗. In our case, we define the 
best ܩ߂ை(ூ௏)∗ −  ,ுை(ூூூ)∗ to be 1.7 eV, based on the scaling relation shown in Figure S2ܩ߂
which identifies this value to be the optimal range when complexes are constrained by the 
established scaling relation, although the best value can be tailored to the type of mecha-
nism one wishes to optimize, as we outline later. 

To test the ability of this model to perform Bayesian optimization, we have applied 
the probability of improvement (PI) acquisition function: ߤ(࢞ሬሬԦ) = ߔ ቆ|1.7 − |(∗ሬሬԦ࢞)݂ − |1.7 − (ሬሬԦ࢞)ߪ|(ሬሬԦ࢞)݂  ቇ (2)

where, ࢞ሬሬԦ represents the feature vector of a given catalyst, ߪ is the uncertainty from the 
GPR, ߔ is the cumulative distribution function of a normal distribution, ࢞ሬሬԦ∗ represents 

Figure 2. Machine learning applied to OER catalysts: (a) results of leave-one-out cross validation using the GPR model
for each ∆GO(IV)∗ −∆GHO(I I I)∗ descriptor value. The dashed line represents the equation y = x, while the uncertainties
in the predictions are represented as x-axis error bars. (b) Bayesian optimization starting from different sets of unseen
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the probability of improvement acquisition function, depicted in the top left. When maximized, this function iteratively
determines the most promising catalyst to evaluate. This equation and the terms are explained in the main text.

Herein, we have applied Bayesian optimization through the surrogate GPR model
function, f , which can be evaluated with ease compared to DFT, and it approximates the
OER descriptor value well. Then, knowing the current best value, f ∗, one can maximize
an acquisition function, µ, which approximates the probability that the evaluated catalyst
has a more favourable OER descriptor than the current best f ∗. In our case, we define the
best ∆GO(IV)∗ −∆GHO(I I I)∗ to be 1.7 eV, based on the scaling relation shown in Figure S2,
which identifies this value to be the optimal range when complexes are constrained by
the established scaling relation, although the best value can be tailored to the type of
mechanism one wishes to optimize, as we outline later.

To test the ability of this model to perform Bayesian optimization, we have applied
the probability of improvement (PI) acquisition function:

µ(
→
x ) = Φ

(
|1.7− f (

→
x
∗
)| − |1.7− f (

→
x )|

σ(
→
x )

)
(2)

where,
→
x represents the feature vector of a given catalyst, σ is the uncertainty from the

GPR, Φ is the cumulative distribution function of a normal distribution,
→
x
∗

represents the
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feature vector of the catalyst that has a value for the OER descriptor closest to the optimum
(i.e., 1.7 eV) and f (

→
x ) is the GPR prediction for

→
x .

The results of performing Bayesian optimization on sets of unseen catalyst data
composed of different combinations of the desirable Cr, Mn and Fe metals are presented
in Figure 2b. To simulate what would be conducted in future screening studies, we have
fitted our ML model without exposing it to each combination of abundant metals, and
re-fitting individual catalyst datapoints when Equation (2) suggested that we evaluate
that catalyst. In each case, the optimization strategy converges to the best of the best
possible candidates in less than 30% of the total number of evaluations. We compare this
to an approach using random forest regression, where the uncertainty is defined as the
standard deviation of each estimator. However, in many cases, using this approach does
not lead to convergence to the best value within 50%, as seen in Figures S3 and S4, using the
probability of improvement and expected improvement acquisition functions, respectively.
The GPR approach, therefore, represents a promising route to optimize catalysts for distinct
catalytic properties, since one can choose the desired OER descriptor arbitrarily. In addition,
we have tested the performance of this acquisition function to the same procedure using
the expected improvement (EI) acquisition function by comparing the cumulative regret
of the AL procedure (see Supplementary Materials). This is a common measure of AL
performance, which measures the difference between the best possible value available to
the AL scheme and the value suggested by the scheme over the course of the AL procedure.
The results of this for the two acquisition functions are shown in Figure S5. We note there
are only minor differences in this metric between the two acquisition functions, but the EI
acquisition function does not converge to the optimum catalyst as fast as the PI function
for the Cr, Fe combination (see Figure S6).

In the rest of the communication, we use the results in Figure 2 as a proof of concept
of this Bayesian optimization strategy and assume similar results will be achieved for
other descriptor values, provided enough data are available. Assuming performant GPR
models for these steps, which precede O-O bond formation, we envision two approaches
for optimizing molecular OER catalysts via AL. The first one involves honing in on the
ideal OER descriptor, as we have described above, while the other focuses on optimizing
oxygen evolution via an extra oxidation mechanism [8], which we outline in the following.

2.3. AL for an Extra Oxidation Mechanism

Another AL approach that we could apply to our catalysts aims to find catalysts with
overpotentials that are not dictated by scaling relations, but instead evolve oxygen via an ex-
tra oxidation mechanism [8]. For this, we attempt to strike a balance between having a low
overpotential and having a proton transfer barrier, which makes fast OER feasible. We know
from the scaling shown in Figure S2 that ∆GHOO(I I I)∗ −∆GHO(I I I)∗ ≈ 3.4 eV, and that if we
are to evolve oxygen via the extra oxidation mechanism, there will be a proton transfer step
from M(V)-O to M(III)-OOH. This chemical step, defined in terms of binding energies as
∆GHOO(I I I)∗ −∆GO(V)∗ , effectively determines what values of ∆GO(IV)∗ −∆GHO(I I I)∗ and
∆GO(V)∗ −∆GO(IV)∗ are desirable, (i.e., (∆GO(IV)∗ −∆GHO(I I I)∗)/2), leading to the possibil-
ity of overpotentials lower than those imposed by the scaling. While lower overpotentials
are of course desirable, we also need to concern ourselves with the proton transfer step.
Tangible evidence for this is provided by our recent computational results using the same
DFT methodology for an amidate-ligated Fe OER catalyst [23], for which we predicted
an extremely low overpotential of 0.08 V, and a proton transfer barrier of 1 eV [3]. This
corroborates experiments, as the catalyst exhibits extremely low overpotential of 0.02 V,
while also showing a very low turnover number [23]. We therefore set a value that we
propose to be achievable for the proton transfer, i.e., ∆GHOO(I I I)∗ −∆GO(V)∗ = 0.5 eV. This
value is chosen so that we can find catalysts with overpotentials of at least 220 mV, while
exhibiting a realizable proton transfer step; however, the choice of ∆GHOO(I I I)∗ −∆GO(V)∗
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value is to some extent arbitrary. Concretely, then, we want the following three conditions
to hold:

∆GO(IV)∗ −∆GHO(I I I)∗ = 1.45 eV (3)

∆GO(V)∗ −∆GO(IV)∗ = 1.45 eV (4)

∆GO(IV)∗ < ∆GHO(IV)∗ (5)

where the conditions expressed in Equations (3) and (4) ensure that the energies of the
elementary steps preceding M(V)-O are equally distributed between M(V)-O and M(III)-
OH, as (3.4− 0.5)/2 = 1.45 eV, and the condition in Equation (5) ensures that the extra
oxidation mechanism occurs, as opposed to the mechanism involving only the traditional
OER descriptor.

If the condition in Equation (5) is met, then:

∆GO(IV)∗ −∆GHO(I I I)∗ < ∆GHO(IV)∗ −∆GHO(I I I)∗ (6)

Given that we have established scaling relations for Mn and Fe, which are oxidation
state independent [3] for a given metal, we can make the following approximations:

∆GO(V)∗ = mM∆GHO(IV)∗ + cM (7)

∆GO(IV)∗ = mM∆GHO(I I I)∗ + cM (8)

where mM and cM denote the slope and intercept, respectively, for a given metal determined
by scaling relations. The assumption of these values is a limitation of this approach and
may require an on-the-fly update of the scaling relations through calculation of the ‘vacancy’
intermediate for a subset of catalysts. In any case, assuming fixed mM and cM, we arrive at
the expression:

∆GO(V)∗ −∆GO(IV)∗ ≈ mM

(
∆GHO(IV)∗ −∆GHO(I I I)∗

)
(9)

The demonstration of this relationship described in Equation (9) is presented in Figure 3,
and the scaling relations used to arrive to the values for mM are shown in Figure S7.
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With the relationship described in Equation (9), we can use our ML models to begin
to formulate an AL strategy aiming to meet the conditions imposed in Equations (3)–(5).
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That is, given the predicted ∆GO(IV)∗ −∆GHO(I I I)∗ and ∆GO(V)∗ −∆GO(IV)∗ values, we can
prioritize those catalysts that are forecast to satisfy such conditions. To achieve this, we
propose the following acquisition function, which we will aim to maximize:

Φ(
|1.45− f1(

→
x
∗
)| − |1.45− f1(

→
x )|

σ1(
→
x )

)Φ(
|1.45− f2(

→
x
∗
)| − |1.45− f2(

→
x )|

σ2(
→
x )

)(
1

mM
f2(
→
x )− f1(

→
x )) (10)

Note that, in Equation (10) we used the same definitions as in Equation (2), and we fur-
ther defined f1 and σ1 as the outputs of the GPR model predicting ∆GO(IV)∗ −∆GHO(I I I)∗

and f2 and σ2 as the outputs of the model predicting ∆GO(V)∗ − ∆GO(IV)∗ . The value
of 1.45 eV in the cumulative distribution function of a normal distribution is chosen
to satisfy Equations (3) and (4), while the final value in the product is used to satisfy
Equation (6). With these premises, we have developed the preliminary model to predict
∆GO(V)∗ −∆GO(IV)∗ , shown in Figure 4. Note that we do not carry out Bayesian optimiza-
tion for this procedure since we do not have enough examples of Mn or Fe catalysts with
∆GO(V)∗ −∆GO(IV)∗ .
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The calculated MAE for the ∆GO(V)∗ −∆GO(IV)∗ predictions in Figure 4 is larger than
the model represented in Figure 2a (0.15 eV vs. 0.06 eV). However, the predictions in
Figure 4 are much more performant than the baseline approximation, which forecasts the
descriptor value to be the average value for a given metal (i.e., the baseline model gives
a MAE = 0.40 eV). This demonstrates that these models can generalize and predict these
energies with reasonable accuracy. The criteria outlined in Equations (3)–(5) could, for
example, be generalized to higher oxidation states, since it has been shown that Fe(VI) states
could be important in catalyzing water splitting for NiFe oxyhydroxides [24]. Maximizing
Equation (10) amounts to optimizing the redox potentials approach M(V)-O from M(III)-
OH, but to generalize to M(VI)-O, we would need to start from M(IV)-OH; otherwise,
there are more intermediates involved to consider, and creating an acquisition function (or
functions) to handle this is outside the scope of this communication.

Finally, we note that this AL approach does not tackle the kinetics involved in the
O-O bond formation itself, often thought to correlate with the binding energy of the HOO*
intermediate. While we focus on the steps before this, optimizing the HOO* binding
energy, given appropriate WNA intermediate energies preceding this step, is an exciting
prospect. This could be achieved, for example, by tuning the metal ligands or by designing
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complexes so that the M(V)-O intermediate is flexible enough to selectively bias O-O bond
formation, although this is outside the scope of the present work.

2.4. Dataset Bias

We now inspect how our current dataset leads our model to be overfit to the set
of complexes we previously studied [3]. The ligands in our original high-throughput
study were chosen since they were found in active Ru-based complexes, meaning the
dataset was implicitly biased towards this type of catalyst. This presents a challenge as
well as an opportunity for creating a balanced dataset. To demonstrate that there is a
far larger space of transition metal chemistry to explore, in Figure 5a,b, we present the
t-distributed stochastic neighbour embedding (t-SNE) [25,26] and principle component
analysis (PCA) [27] dimensionality reduction techniques, respectively, applied to the RACs
used to train our GPR model. For further details on t-SNE and PCA techniques, see
Refs. [25,28], respectively. In short, using these dimensionality reduction techniques, we
can reduce the size of our feature vector space to a two-dimensional space that we can
visualize. We then compare the RACs from our study to a comparable set of RACs that
we could expect to see in future studies. To form this representative set of complexes,
we have used the tmqm dataset [29], which includes a subset of mononuclear complexes
taken from the well-known Cambridge Structural Database (CSD) [30]. Within this dataset,
we searched for either Cr, Mn, Fe, Co or Ru octahedral complexes which contain an HO*
adsorbate. The choice of the HO* adsorbate was made to allow a fair comparison to the
original RACs.
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From Figure 5, we can indeed observe that the distance between the space of com-
plexes, which represents only a small sliver of the entire chemical space, shows that there
are more catalysts to explore. In particular, we note that, for each metal, there are points
from the tmqm dataset that lie far away from the set of catalysts we have studied; hence, we
can assume that our GPR will have low confidence. This impels the generation of balanced
datasets while performing AL by assessing the feature space prior to evaluating a given
catalyst so that there are no similar complexes. This could be mitigated by the acquisition
functions Equations (2) and (10), since the uncertainty measures will correlate to the prior
exposure of the model to similar structures, i.e., the more uncertain the model is, the larger
the acquisition function value is, by design.
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2.5. Outlook

In the final part of this communication, we propose that the space of ligands that
could make up effective OER catalysts must fulfil certain criteria, which will help to
constrain our search. Firstly, we posit that metal ligands must be multidentate to handle
the lability of first-row transition metal complexes; multiple monodentate ligands are likely
to become hydrolysed, so the appropriate catalyst to model in this case would be some
MOxHy-type catalyst. While utilizing predominantly monodentate or bidentate ligands
allows for greater combinatorial flexibility and much larger datasets, their inclusion is not
realistic for the labile first-row transition metal with which we want to use to design active
catalysts. Secondly, any organic ligand framework proposed for water oxidation must
also be oxidatively stable. An inspiring and insightful overview of these considerations
was recently outlined in a perspective by Nocera and Thorarinsdottir [31]. Here, we
highlight two of the useful instructions that the authors summarized from seminal works
by Collins [32], outlining an instructive ruleset for making oxidatively stable organic
ligands: “(1) elimination of β-H atoms, especially if the α atom can support an increase
in bond order with β-H elimination; (2) elimination of heteroatoms that can stabilize the
cationic character that remains on atoms from which oxidative bond cleavage has occurred”.
We highlight these considerations specifically since ligands can be filtered computationally
on this basis by creating code that can distinguish types of H atoms and iteratively apply
point (2). Concrete demonstrations of the first rule for molecular OER were provided
by Fillol and co-workers reporting a five-fold improvement in turnover number after
deuterating β-H atoms [33]. Furthermore, the same authors also showed that deuteration
of methyl groups could lead up to a ca. 10-fold improvement in turnover frequency.
This was proposed to be due to C-H hydroxylation whereby the H atom was transferred
to the Fe(V) = O site. In this context, our recent computational insights suggested the
importance of having at least a 3.0 A distance between the WNA active site and the most
proximal methyl group [34]. In any case, tight collaboration between computational and
inorganic chemists is required to realize the potential of any endeavour to create a useful
and applicable search space of OER catalysts.

3. Materials and Methods

DFT calculations and the calculation of binding energies reported in this work were
carried as described in Ref. [3] using the meta-GGA functional TPSSh [25], as implemented
in Gaussian09 [35]. To describe the Ru, Mn, Fe, Cr and Co metals, the Lanl2dz effective
core potential was used, along with f -polarization functions, with exponents 1.235, 2.195,
2.462, 1.941 and 2.78, respectively [36]. The more electronegative O and N atoms were
described using the 6–31+G(d) basis set, and the 6–31 g(d,p) basis set was used for C and
H atoms. Molecular structures were optimized in water (ε = 78.3553) with the implicit
SMD solvation model [37]. Gibbs energies were calculated at the temperature of 298.15 K
and pressure of 1 atm, except for the isolated H2O molecule that was computed at the
temperature and pressure at which both the liquid and gas phases were in equilibrium,
i.e., 300 K and 0.035 atm. Relative Gibbs energies are referenced to H2O and H2 in solution
to avoid introducing the error associated with the modeling of O2 with DFT methods,
and the global reaction Gibbs energy was fixed to the experimental value of 4.92 eV. To
ensure sound geometries, we inspected any intermediate where atoms coordinated to the
metal change or where a bond distance changed by 20% or more. The ML analysis was
repeated using the TPSSh-optimized geometries to ensure that the results and conclusions
remained salient using differing geometries. These results can be found in Figures S8–S10
in the “Model sensitivity to input geometries” section in the Supplementary Materials.
Grimme D3 dispersion corrections [38] were added via single-point calculations at the
optimized geometries.

To perform Gaussian process regression, we used scikit-learn [39]. The kernel was
described using a scaled squared exponential kernel, with a noise of 0.01 added to the
diagonal of the kernel, which was increased so that the model could converge. The
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bounds for this kernel were increased with respect to the default value from scikit-learn
to optimize the RMSE. Each RAC feature vector was scaled such that it had a mean of
0 and variance of 1. We also use scikit-learn for random forest regression, kernel ridge
regression and support vector regression. The software optuna [40] was used to optimize
hyperparameters, with the search space defined in the section titled “Hyperparameter
search” in the Supplementary Materials.

4. Conclusions

In this communication, we have outlined a preliminary AL scheme to be applied in
the screening of homogeneous OER catalysts. The proposed scheme uses a surrogate GPR
model to predict binding energies, which thereby guide future calculations by optimiz-
ing for either the ideal OER descriptor, or for optimized oxygen evolution via the extra
oxidation mechanism, using previously derived scaling relations to guide AL strategies.
This model can be applied to force field-optimized geometries and is therefore orders of
magnitude faster than present-day DFT at predicting relevant OER binding energies. It is
also noteworthy that individual metals may require individual screening strategies that
account for the constraints imposed by scaling relations, instead of assuming universal
descriptors across metal centers. The challenges and outlook for generating realizable
and useful datasets with which to apply these AL strategies have also been outlined and
discussed, which are expected to be useful to future screening studies in the homogeneous
OER domain. These studies should utilize ML models to guide computational simulations
as described in this communication. This is in part because it will allow faster discovery,
but also because it will avoid simulations that are needless and time consuming. It must be
remembered that computing time has an associated carbon footprint [41], which should
be minimized where possible. AL schemes such as the ones we have put forward aim at
reducing this burden and can be easily applied to heterogeneous OER studies.

Supplementary Materials: The following are available online: The results of applying GPR to dif-
fering combinations of RAC metal and ligand-centered depths is outlined (Figure S1); the scaling
relations used to derive the acquisition functions (Figures S2 and S7); feature importance (Table S1);
hyperparameter search and details for the performance of standard ML algorithms (Section Hy-
perparameters Search and Table S2, respectively); random forest regression applied to Bayesian
optimization using PI and EI acquisition functions (Figures S3 and S4, respectively); comparisons
of PI and EI acquisition functions by comparing cumulative regret (Figure S5); the performance of
applying EI acquisition function mirroring the results shown in Figure 2b of the main text (Figure S6);
metal-dependent scaling relations (Figure S7); the performance of the models using TPSSh-optimized
geometries (Figures S8–S10) and details of the energies and cartesian coordinates are provided in the
Supplementary Materials.
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