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To the Editor: Confronted with increasing infertility
worldwide, this decade has witnessed a sharp rise in the
utilization of artificial reproduction technology (ART).[1]

Nevertheless, the success rate of in vitro fertilization (IVF)/
intracytoplasmic sperm injection (ICSI) depends on many
factors. Moreover, patients receiving ART not only incur
highexpensesbutalsoan increasedriskofsevere sideeffects,
such as ovarian hyperstimulation syndrome, infection, and
multiple pregnancies.[2] Consequently, the accurate predic-
tion of ART outcomes has attracted tremendous interest.

A considerable number of logistic regression models have
beendeveloped topredict ovarian stimulation,[3] pregnancy
outcomes,[4] and adverse obstetric outcomes.[5] Although
prediction models based on traditional statistical methods
have been broadly applied, their clinical utility is hindered
by their low predictive efficacy. Therefore, more accurate
models to predict IVF/ICSI outcomes are needed.

The accelerating development of computer technology
heightened the popularization of artificial intelligence in
medicine. These new machine learning methods are
distinguished with their enhanced performance in compar-
ison to the conventional methods. As one of the well-
received machine learning techniques, eXtreme Gradient
Boosting (XGBoost), has been gradually put into medical
use and recognized for its remarkable capacity to mine
data.[6-8]XGBoost, adecision-tree-basedalgorithm,proved
to be the best algorithm formachine learning in a prediction
competition hosted by Kaggle.com.[9]

To better predict pregnancy outcomes and provide patient-
tailored counseling and management for IVF/ICSI, we
designed this study and selected XGBoost to build the
prediction model. The aim of this study was twofold. First,
we sought to develop a new prediction model based on the
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machine learning method to predict IVF/ICSI outcomes.
Second, by comparing the performance of the machine
learning model and the conventional logistic regression
model, we attempt to determine the efficacy of the machine
learning model.

We retrospectively studied continuous patients’ data from
the Peking Union Medical College Hospital, China, from
July 2014 to March 2018. The patients were referred to
the hospital for IVF/ICSI treatment with tubal or male
infertility. All data were de-identified and relabeled with
uniquepatients’ identifier codes. Exclusion criteria included
donor oocyte or sperm use; patients with endometriosis or
endocrine diseases, such as hyperandrogenism, diabetes,
or thyroid diseases; and patients with missing data. The
study was approved by the Institutional Review Board of
Peking Union Medical College Hospital (S-K829).

The clinical characteristics, sex hormone levels, and
controlled ovarian hyperstimulation (COH) features of
the IVF/ICSI cycles were used as model construction
variables. Each patient’s age, body mass index (BMI),
infertility type, infertility duration, and COH protocol
(gonadotropin-releasing hormone antagonist [GnRH-a]
long protocol, GnRH-a ultra-long protocol, GnRH-a
short protocol, GnRH antagonist protocol, and mini-
stimulation protocol) were extracted from the medical
records. The serum levels of the sex hormones (human
follicle-stimulating hormone [FSH], estrogen [E2], lutei-
nizing hormone [LH], prolactin [PRL], and testosterone
[T]) were collected at two time points during the IVF/ICSI
cycle (basal: 0; the second day after trigger: 1). Live birth,
defined as giving birth to live newborns at >28 weeks of
gestation, was the primary study outcome. We evaluated
the cumulative outcome of each patient, including the first
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Figure 1: (A) The ROC curves of the two models. The XGBoost model presented a higher discriminatory power than the conventional one (AUC [conventional]: 0.724,95% CI 0.708–0.741;
AUC [XGBoost]: 0.901,95% CI 0.890–0.912; P < 0.001). (B) The DCA of the two models. The DCA curve of the XGBoost model was above that of the conventional model with a greater
range on the axes, indicating that the net benefit of the XGBoost model was larger than the conventional model. (C) The calibration curves of the two models. Both models presented a good
calibration of the probability of live birth. AUC: Area under the curve; CI: Confidence interval; DCA: Decision curve analysis; ROC: Receiver operating curves; XGBoost: eXtreme Gradient
Boosting.
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fresh cycle and all subsequent freeze-thaw cycles from the
same ovarian stimulation and identified them as live and
no live births.

Statistical analyses were performed using R (http://www.
R-project.org) and EmpowerStats software 2.2 (http://
www.empowerstats.com, X&Y Solutions, Inc., Boston,
MA). We built a conventional logistic regression model
based on multivariate logistic regression analysis. A
backward stepwise variable selection procedure with
bootstrap resampling was applied to select the variables.
And then the open-source XGBoost package was applied
to analyze feature importance and acquired the probabil-
ity threshold of live births. The predictive efficacy of the
two models was evaluated by measuring their sensitivity,
specificity, positive predictive value, and negative predic-
tive value. Receiver operating curves and corresponding
area under the curve (AUC) values of the two models were
compared. Then, the calibration curves were assessed. The
decision curve analysis (DCA) was performed to compare
the clinical utility of the models.

A total of 3012 patients were included in the model
construction with 2101 IVF and 911 ICSI cases. The
patients’ clinical characteristics, sex hormone levels, and
COH features are listed as two groups (live birth and no
live birth) in Supplementary Table 1, http://links.lww.
com/CM9/A835.

The top vital features selected by the XGBoost model were
age, estrogen levels on the second day after trigger (E21),
PRL levels on the second day after trigger (PRL1), basal LH
levels (LH0), LH levels on the second day after trigger
(LH1), E20 (basal estrogen levels), basal PRL levels (PRL0),
total consumption of FSH. And the contribution of each
feature to the model construction is illustrated in Supple-
mentary Table 2, http://links.lww.com/CM9/A835 and
Supplementary Figure 2, http://links.lww.com/CM9/A835.

The features of the conventional model, selected by
backward stepwise analysis, included age, secondary
infertility, ICSI, No. of previous IVF, total consumption
of FSH, FSH0, T0, PRL1, LH1, E21, P1, and T1
[SupplementaryTable 3, http://links.lww.com/CM9/A835].
998
The predictive performance of the twomodels is presented
in Supplementary Table 4, http://links.lww.com/CM9/
A835 and Figure 1. Compared with the conventional
logistic regressionmodel, the XGBoost model had a higher
AUC value, which represented a better discriminatory
power (AUC [conventional]: 0.724, 95% confidence
interval [CI] 0.708–0.741; AUC [XGBoost]: 0.901,
95% CI 0.890–0.912; P<0.001). Good calibration was
observed for the probability of live birth in both models.
The DCA curve of the XGBoost model was greater than
that of the conventional model, indicating a larger net
benefit of the XGBoost model.

In this study, to predict the IVF/ICSI outcomes for patients
with tubal or male infertility, we built an XGBoost model
that showed higher performance and better discriminative
capacity than a conventional logistic regression model.
According to the DCA results, the XGBoost model also
had a larger net benefit than the conventional model,
indicating its better clinical potential.

For patients receiving ART, an accurate prediction of the
success rate and subsequent individualized treatment
strategies can be beneficial.[10] Numerous studies have
been conducted to estimate the chance of live birth. The
most popular model is the McLernon model, based on the
UK national data of 184,269 complete cycles since 1991,
providing a personalized estimated cumulative chance of
live births before treatment and after the first fresh embryo
transfer (C-indexof 0.72–0.73).However, some imperative
factors thatmight be potential predictors for live birth, such
as anti-Müllerian hormone and BMI, were not
included.[11,12] In addition, compared with the previous
studies using traditional statistical methods, the XGBoots
model in our study showed better performance with a high
AUC value of 0.901.

Among various machine learning algorithms, XGBoost
is one of the most clinically recognized because of its
remarkable predictive ability. XGBoost is a decision-tree-
based algorithm that collects multiple decision trees to
improve its classification capabilities.[13] The decision
trees are developed by selecting the most discriminative
features from the feature candidate pool, allowing the
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classifier to interact directly with the features. Hence,
XGBoostcanassemblemodelswithaweakpredictiveability
or missing data and demonstrate excellent prediction
competence to solve complicated problems.[14] Similar to
our study, others have constructed prediction models with
XGBoost and have confirmed its higher clinical value
compared to the traditional methods.[15] Qiu et al[16] used
XGBoost algorithm for personalized prediction of live
births for IVF/ICSI patients, with an AUC of 0.73. Amini
et al[17] used different machine learning approaches to
predict the probability of successful delivery and suggested
thatrandomforestshadthebestperformance(AUC= 0.81).
Compared with our study, none of the aforementioned
studies verified the superiority of the machine learning
models over conventional prediction models.

Although the better predictive performance of XGBoost
has been demonstrated, some limitations of this study
must be highlighted. This study’s retrospective design was
a major limitation, preventing the exclusion of all
potential biases. In addition, patients were recruited from
a single-center, which reduced its generalizability. Finally,
the lack of external verification limits its clinical
application. Hence, further studies should be implemented
in larger cohorts with external validation.

To conclude, we developed a prediction model using
XGBoost, a machine learning algorithm, to predict the live
birth rate of IVF/ICSI patients based on their clinical
characteristics, sex hormone levels, and COH features.
Compared with the model constructed using conventional
multivariate logistic regression, the XGBoost model
showed a higher discriminative ability and net benefit,
indicating its potential clinical value.
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