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Commentary

Hematologic malignancies encompass a wide array of disease including leukemia, 

lymphomas, myelodysplastic syndrome, and multiple myeloma. These malignancies result 

from bone marrow dysfunction that yields clinical entities ranging from smoldering pre-

leukemia states to outright acute leukemia. Aside from representing a diverse set of 

hematologic disease, these malignancies are also prevalent and projected to account for eight 

to nine percent of all newly diagnosed cancers in 2018 [1]. When Thomas Hodgkin first 

described his namesake lymphoma in seven patients from Guy’s Hospital nearly 200 years 

ago, virtually all hematologic cancers were fatal. The nineteenth century English physician 

Thomas Fowler, who utilized arsenic in the treatment of leukemia, proposed one of the first 

uses of cytotoxic chemotherapy [2,3]. Similarly, Sidney Farber’s studies of aminopterin in 

children with acute lymphoblastic leukemia demonstrated the ability of chemotherapy to 

produce disease remission [4,5]. As oncology’s understanding of hematologic cancers 

progressed, so did the character of the field’s chemotherapeutics. When the Bcr-Abl 

chromosomal rearrangement was linked to the pathogenesis of chronic myelogenous 

leukemia, a new class of chemotherapy emerged: small molecule inhibitors [6,7]. The 

archetype of this class of chemotherapy is imatinib, a small molecule developed to 

specifically inhibit the action of the Bcr-Abl fusion kinase protein. The action of this small 

molecule effectively induces clinical, and potentially molecular, remission in patients with 

the fusion onco-protein [8,9]. With the success of imatinib, small molecule inhibitors 

garnered much excitement, which furthered research on their therapeutic potential. However, 

while the development of chemotherapeutics for hematologic cancers has advanced 

tremendously, much progress remains. One area in which the frontier of cancer treatment is 

being pushed is in multiple myeloma.

Multiple myeloma is the neoplastic proliferation of plasma cells in the bone marrow leading 

to extensive osteolytic lesions, osteopenia and anemia. Multiple myeloma accounts for one 

to two percent of all cancers and around seventeen percent of hematologic malignancies in 
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the United States annually [1]. Multiple myeloma predominantly occurs in older adults with 

a median age at diagnosis of sixty-six [10]. The disease occurs slightly more frequently in 

men and evidence suggests it has a higher incidence in people of African American 

background compared to Caucasians and Asians [11,12]. Response to therapy is 

heterogeneous with some patients demonstrating treatment refractory disease while others 

experience lasting remission. The median overall survival rate for patients with multiple 

myeloma is 5.2 years [13]. All symptomatic patients undergo induction therapy unless 

toxicities are evident. Patients who undergo hematopoietic stem cell transplantation have 

been shown to have better survival outcomes than those who receive only chemotherapy 

[14,15]. To date, effective therapy for multiple myeloma is autologous stem cell 

transplantation with chemotherapy [16]. The therapy is not curative and it carries notable 

treatment associated mortality [16]. However, with the advent of CRISPR and its utilization 

in cancer immunotherapy, new therapies for multiple myeloma are actively being developed.

CRISPR technology has revolutionized the biomedical sciences [17,18]. The simplicity of 

type II CRISPR systems allows an investigator to edit virtually any element of a genome 

using a two-component system consisting of a CRISPR endonuclease and a guide RNA 

[19,20]. The regions in the genome that are amenable to editing by CRISPR are defined by 

an approximately three-base sequence—the protospacer adjacent motif (PAM), which is 

directly recognized by the CRISPR endonuclease [21]. To modify a specific segment of a 

genome an investigator needs to ensure that a PAM exists in the target region and then 

modify an approximately twenty-base region of a guide RNA such that it is complementary 

to the DNA adjacent to the PAM. Ensuring the precision of guide RNAs to a target site can 

be established using currently available bioinformatics software [22,23]. Together the 

CRISPR endonuclease and guide RNA target a specific genomic location and induce a 

double strand break. The cell typically repairs the double strand break through either non-

homologous end joining (NHEJ) or homology-directed repair (HDR) [24]. NHEJ leads to 

variable length deletions or insertions and can lead to loss of function if used against gene 

exons [25]. HDR allows for the precise modification of a segment of DNA using exogenous 

donor DNA templates [25]. Combined, NHEJ and HDR repair mechanisms allow for an 

array of modifications to a genomic target region. The promise CRISPR editing technology 

holds for cancer research and treatment is immense. Perhaps nowhere is this promise more 

exciting than in CRISPR mediated immunotherapy for multiple myeloma.

Currently, a phase one clinical trial underway at the University of Pennsylvania utilizes 

CRISPR technology to edit patient T-cells in order to re-sensitize them towards multiple 

myeloma cells (NCT03399448). These T-cells undergo several CRISPR induced 

modifications to augment their efficacy as a therapeutic. The experimental therapy 

transduces autologous T-cells with a lentiviral vector expressing NY-ESO-1 T-cell receptor 

(TCR). NY-ESO-1 is a gene that has restricted expression in wild-type tissue but is 

frequently expressed in neoplastic tissue and found to be expressed in 37% of multiple 

myelomas [26,27]. Transducing T-cells with NY-ESO-1 TCR should sensitize them towards 

cancer cells expressing NY-ESO- 1. The T-cells then receive CRISPR guide RNAs to disrupt 

the expression of three endogenous genes: PD-1, TCRα and TCRβ. PD-1 is a 

transmembrane protein expressed on T-cells and B cells that binds to the PD-L1/2 ligand 

found on many tumor cells that directly inhibits apoptosis, promotes T effector cell 
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exhaustion, and enhances conversion of T-effector cells into Treg cells [28,29]. By disabling 

the PD-1 gene, the investigators seek to prevent T-cell inactivation by cancer cells. 

Disrupting endogenous T-cell receptor (TCR α/β) expression is important to prevent off-

target activity of the modified T-cells [30]. These CRISPR modified T-cells are designed 

specifically to target NY-ESO-1 cancer cells and be immune to inactivation by the cancer 

cell. Although adverse side effects for this therapy are unknown due its nascent stage, other 

similar therapies have observed cytokine release syndrome (CRS) in some patients [30]. 

CRS is a constellation of inflammatory symptoms resulting from elevated cytokine levels 

linked to T-cell activity and proliferation [31]. In most patients, the symptoms are flulike 

however severe and acute onset of CRS can be fatal. Some argue that CRS is likely a 

necessary consequence of T-cell activation and the use of corticosteroids to mitigate CRS 

reduces the efficacy of the therapy. Some suggests an IL-6 blockade by tocilizumab is 

effective at reversing CRS while having limited effect on T-cell efficacy [31].

Throughout the history of oncology, the treatment of hematologic malignancies 

foreshadowed the trajectory of cancer treatment as a field. CRISPR based immunotherapy 

has the potential to revolutionize how we treat and understand not only hematologic cancers, 

but all cancers. It holds the promise of being the new frontline of chemotherapy and allow 

for the personalization of cancer treatment.
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