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Abstract
Detection of secretory antibodies in the airway is highly desirable when evaluating mucosal protection by
a vaccine against a respiratory virus like the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). We show that a single intranasal delivery of an attenuated SARS-CoV-2 (Nsp1-K164A/H165A) induced
both mucosal and systemic IgA and IgG in Syrian hamsters. Interestingly, either active or passive
immunization of hamsters with Nsp1-K164A/H165A offered protection against heterologous challenge
with variants of concern (VOCs) including Delta, Omicron BA.1, and Omicron BA.2.12.1. Among
challenged animals, Nsp1-K164A/H165A vaccination speci�cally reduced viral loads in the respiratory
tract and suppressed infection-induced macrophage accumulation and MX1 upregulation in the lung. The
absence of variant-speci�c mucosal and systemic antibodies was associated with breakthrough
infections, particularly of the nasal cavity following challenges with Omicron isolates. Together, our study
demonstrates that an attenuated nasal vaccine may be developed to boost mucosal immunity against
future SARS-CoV-2 VOCs.

Introduction
The early success of the two mRNA vaccines against SARS-CoV-2 boasted up to 95% e�cacy against the
most severe disease outcomes1,2. Nevertheless, the emergence of new virus variants has resulted in
reduced vaccine effectiveness against symptomatic COVID-19. Since the emergence of the Omicron
variant of concern (VOC) in late 2021, SARS-CoV-2 Omicron sub-lineages (e.g., BA.1, BA.2, BA.3, BA.4,
BA.5, etc.) have gradually replaced previously circulating variants worldwide3. Owing to increased
immune evasion, infection with Omicron has led to large numbers of hospitalizations and deaths4–6.
Vaccine effectiveness against Omicron after two BNT162b2 doses was modest at 2 to 4 weeks and fell
to nearly zero after 6 months or more7–9. A third and fourth mRNA vaccine booster did improve e�cacy
against Omicron to 60–70%10–12, but the durability of protection was less than impressive, with a mean
30-day rate of decay in neutralizing antibody titers of nearly 20% against BA.4/513.

Several studies have suggested that COVID-19 vaccine performance might be improved if mucosal
immunity can be enhanced. For example, a recent study demonstrated that combining systemic mRNA
vaccination with mucosal adenovirus-S immunization induced strong neutralizing antibody (nAb)
responses against both the ancestral virus and the Omicron BA.1.1 variant in mice. By contrast, systemic
mRNA vaccination alone induced weak respiratory mucosal neutralizing antibody responses14. Earlier in
another proof-of-concept study, an intranasal vaccination with nonadjuvanted spike subunit protein
following intramuscular mRNA vaccinations in mice elicited protective mucosal immunity via memory
T/B cells and IgA that signi�cantly lowered viral load in the upper and lower airways and prevented
disease and death from a lethal SARS-CoV-2 challenge15. These �ndings highlight the importance of
understanding the mucosal immunogenicity and e�cacy of next-generation nasal vaccines 16.



Page 4/31

Of the many vaccines in development against SARS-CoV-2, live attenuated virus (LAV) vaccines are a
substantial minority despite the potential for nasal administration and the advantage of presenting all
viral antigens to the host immune system17–19. To facilitate the evaluation of LAVs, we recently
developed a genetic approach to attenuate SARS-CoV-2. Our strategy consists of three modi�cations to
the viral genome: the removal of the furin cleavage site (PRRA)20, the deletion of ORFs 6-821, and
introduction of a pair of mutations to the Nsp1 gene (Fig. 1a)22. The resulted WA1-ΔPRRA-ΔORF6-8-
Nsp1K164A/H165A (abbreviated as Nsp1-K164A/H165A in this paper) is attenuated both in vitro and in vivo
compared to wildtype virus and was immunogenic and protective against the ancestral SARS-CoV-2
challenge23. In the current study, we assessed the mucosal immunogenicity, e�cacy in protecting
diseases caused by recent variants of concern, as well as the transmission of a candidate attenuated
SARS-CoV-2 vaccine.

Results

Mucosal and systemic immunogenicity of Nsp1-
K164A/H165A
First, we assessed anti-SARS-CoV-2 spike Immunoglobulin G (IgG) and IgA in serum samples and nasal
washes from Syrian hamsters after intranasal inoculation of 100 PFU Nsp1-K164A/H165A or WA1/2020
SARS-CoV-2. Sera collected at 14- and 30-days post-infection (DPI) from both groups contained high
titers of IgG antibodies speci�c for the WA1/2020 receptor binding domain (RBD) (Fig. 1b). Serum nAb
titers increased from 0 to 14 DPI (p < 0.0001, mixed-effects analysis) and then from 14 to 30 DPI (p < 
0.0001) for both groups of animals. Geometric mean titers (GMT) of serum nAbs against WA1/2020,
indicated by 50% focus forming reduction neutralization titers (FRNT50), were 2100 and 3169 at 30 DPI
for Nsp1-K164A/H165A and WA1/2020 groups, respectively (Fig. 1c). At 30 DPI, IgA titers detected in
nasal washes were signi�cantly higher (p < 0.0001) in Nsp1-K164A/H165A (GMT 145) and WA1/2020
(GMT 68) groups compared to naive controls (Fig. 1d). In this experiment, there was 2-fold higher IgA
titers (p = 0.0336) in the Nsp1-K164A/H165A group than in WA1/2020 infected animals. When the same
sera were measured for anti-Delta variant RBD IgG, a 2-fold reduction was observed in both the
WA1/2020 (GMT 139621 versus 250997) and Nsp1-K164A/H165A (GMT 127911 versus 243465) groups
in comparison to WA1/2020 RBD-speci�c IgG titers (Fig. 1e in comparison to Fig. 1b). Concomitantly,
serum nAb titers against Delta variant dropped by near 10-fold compared to those against the ancestral
WA1/2020 for both Nsp1-K164A/H165A (GMT 215) and WA1/2020 (GMT 285) groups (Fig. 1f in
comparison to Fig. 1c). Similarly, serum Omicron BA.1 RBD-speci�c IgG titers, in comparison to
WA1/2020 RBD-speci�c IgG titers, decreased by nearly 4-fold in Nsp1-K164A/H165A-vaccinated animals
(GMT 243465 versus 70613) and in WA1/2020-infected (GMT 250997 versus 62749) hamsters at 30 DPI
(Fig. 1g compared to Fig. 1b). NAb against the BA.1 variant reached titers just above the limit of detection
from both the Nsp1-K164A/H165A-vaccinated group (GMT 36, i.e., a > 50-fold reduction compared to nAb
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titers against the ancestral WA1/2020) and the WA1/2020-infected group (GMT 44.2, i.e, a > 70-fold
reduction compared to nAb titers against the ancestral WA1/2020) (Fig. 1h in comparison to Fig. 1c).

To ensure the loss of serum neutralization antibody to Omicron BA.1 was not due to the low vaccine dose
(100 PFU), we vaccinated Syrian hamsters with 104 PFU Nsp1-K164A/H165A and characterized mucosal
antibody response to and neutralization of Omicron subvariants. Because secretory IgA (SIgA) is critical
to antiviral immunity in the lungs24, we assessed anti-SARS-CoV-2 spike IgG and IgA in bronchoalveolar
lavage �uid (BALF) and serum. At 14 and 28 DPI, serum anti-RBD IgG titers against WA1/2020 (GMT of
137772 and 163840, respectively) were 20-fold higher (p < 0.0001) than those against BA.1 variant (GMT
of 3044 and 12177, respectively) (Fig. 2a). BALF collected on 14 and 28 DPI contained detectable levels
of IgG speci�c for ancestral RBD (GMT of 452 and 761, respectively), however, IgG titers speci�c for BA.1
RBD were below the limit of detection (Fig. 2b). Serum WA1/2020 RBD-speci�c IgA titers decreased by
5.65-fold from 14 (GMT 115852) to 28 DPI (GMT 20480) (p = 0.0233, Sidak’s multiple comparisons test),
whereas serum anti-BA.1 RBD-speci�c IgA titers stayed at comparable levels at 14 and 28 DPI (Fig. 2c). In
BALF, BA.1 RBD-speci�c IgA was undetectable at 14 and 28 DPI, but WA1/2020 RBD-speci�c IgA was
detected at both 14 DPI (p = 0.0003) and 28 DPI (p < 0.0001) (Fig. 2d). NAb titers against WA1/2020 were
761 (GMT, 14 DPI) and 640 (GMT, 28 DPI) with great than 32-fold reductions when measured against
Omicron subvariants BA.1, BA.2.12.1, BA.4, and BA.5 (Fig. 2e). Lastly, we assessed the cellular immunity
elicited by Nsp1-K164A/H165A vaccination. Signi�cant induction of IFNγ-secreting cells was observed at
14 DPI in splenocytes harvested from vaccinated group pulsed with nucleocapsid antigen pools N1 (p = 
0.0096), N3 (p = 0.0096), and N4 (p < 0.0001) by ELISpot assays (Fig. 2f). Taken together, a single dose of
Nsp1-K164A/H165A, when administered intranasally, induced IgA/IgG against SARS-CoV-2 spike protein
in both respiratory tract and in circulation. However, these anti-Spike antibodies are variant-speci�c and
subject to evasion by Omicron variants.

E�cacy of Nsp1-K164A/H165A against challenge with
Delta and Omicron variants
To assess whether intranasal administration of Nsp1-K164A/H165A offers protection against VOCs,
male, 5-month-old Syrian hamsters were inoculated with 100 PFU of Nsp1-K164A/H165A (n = 14) or
WA1/2020 (n = 14) by the intranasal route (derived from the study depicted in Fig. 1). At 35 days-post-
infection (DPI), the vaccinated and convalescent hamsters (n = 7 per group) along with unvaccinated
controls (n = 8 per group) were challenged with 104 PFU of a Delta isolate (hCoV-19/USA/MD-
HP05647/2021) or an BA.1 Omicron isolate (hCoV-19/USA/HI-CDC-4359259-001/2021). On 4 and 7
days-post-challenge (DPC), animals were euthanized to collect tissues for analysis of viral replication and
pathology (Fig. 3a). Nasal wash samples were also collected from each hamster following challenge. We
beheld a signi�cant reduction of infectious virus in nasal wash samples at 2, 3, 4, and 5 DPC for the Delta
challenged groups (p < 0.0001) inoculated with Nsp1-K164A/H165A or WA1/2020 compared to
unvaccinated controls (Fig. 3b). Similarly, Nsp1-K164A/H165A vaccinated and WA1/2020 convalescent
hamsters also exhibited reduced nasal viral load at 1 (WA1/2020, p = < 0.0001; Nsp1-K164A/H165A, p = 
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0.0001), 2 (WA1/2020 only, p = 0.0002), 3 (p < 0.0001), and 4 (p < 0.0001) DPC upon BA.1 challenge. By 5
DPC, infectious virus titers declined to baseline in all BA.1 challenged animals (Fig. 3c). At 4 DPC,
envelope (E) subgenomic viral RNA (sgRNA), a hallmark of viral replication, was readily detected in the
lungs, trachea, and nasal turbinates of Delta- and BA.1- challenged unvaccinated animals (Fig. 3d). By
contrast, sgRNA levels were reduced by more than 4400-fold (p = < 0.0001) in the lungs, around 300-fold
in trachea (p < 0.0001), and 300-fold in nasal turbinates (p < 0.0001) of Nsp1-K164A/H165A vaccinated
and WA1/2020 convalescent animals after challenge with the Delta variant. As to BA.1 challenged
animals, the reduction of sgRNA was greater than 100-fold in lungs (p < 0.0001), trachea (p = 0.0041), and
nasal turbinates (p < 0.0001) at 4 DPC in both Nsp1-K164A/H165A vaccinated and WA1/2020
convalescent animals compared to the unvaccinated group. Infectious viral titers in lung homogenates
also diminished below the limit of detection in Nsp1-K164A/H165A vaccinated and WA1/2020
convalescent groups following either Delta or Omicron BA.1 challenge at 4 DPC (Fig. 3e). At 7 DPC,
sgRNA levels in the lungs were below the limit of detection except for the unvaccinated/challenged
hamsters (Fig. 3f). Taken together, these results indicate that intranasal vaccination with Nsp1-
K164A/H165A effectively reduces viral loads in both upper and lower respiratory tract of Syrian hamsters
upon heterologous virus challenge.

To further examine the presence of viral antigens and host innate immune activation, lung sections from
uninfected (mock) or challenged hamsters were stained with hematoxylin and eosin (H&E) and also
immunostained for viral nucleocapsid protein (NP) and myxovirus resistance 1 (MX1), an interferon-
induced antiviral host response marker25,26 (Fig. 4). Lungs from Delta-challenged unvaccinated hamsters
at 4 DPC showed widespread immune in�ltrates and regions of viral NP deposition characterized by
prominent staining of the epithelial lining of infected bronchioles accompanied by intense staining of
surrounding alveolar epithelium (Fig. 4a&b). Two of the four BA.1-challenged unvaccinated animals at 4
DPC showed NP deposition with a similar staining pattern (Fig. 4b&c). Delta- and BA.1-challenged
unvaccinated groups also showed increased MX1 immunoreactivity in these NP-positive lung regions
particularly evident in the bronchiolar epithelium. Vaccination with Nsp1-K164A/H165A or infection with
WA1/2020 blocked NP deposition and MX1 upregulation in the Delta- and BA.1-challenged groups
(Fig. 4b&c). High resolution imaging of representative lung sections from Delta-challenged unvaccinated
hamsters highlighted the pronounced upregulation of MX1 in nuclear and cytoplasmic compartments of
infected bronchiolar epithelial cells and the attenuation in Nsp1-K164A/H165A-vaccinated hamsters
(Fig. 4d). Altogether, the absence of NP staining and MX1 upregulation implies that the challenge virus,
whether it is the Delta or Omicron BA.1 variant, failed to establish infection in the lungs of Nsp1-
K164A/H165A-vaccinated and WA1/2020-convalescent hamsters.

Among the Delta-challenged hamsters, only the unvaccinated group (n = 8) signi�cantly lost body weight
over the course of 7 days (Fig. 5a). By contrast, none of the three groups lost weight after BA.1 challenge
(Fig. 5a). At 4 DPC, percent of lung consolidation in Delta variant-challenged hamsters was signi�cantly
reduced in WA1/2020- (p = 0.0352, n = 3) and Nsp1-K164A/H165A- inoculated groups (p = 0.0386, n = 4)
compared to unvaccinated controls (Fig. 5b). Accumulated pathology scores were also signi�cantly lower
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at 4 DPC in Delta-challenged WA1/2020 (p = 0.0002) and Nsp1-K164A/H165A groups (p < 0.0001) as
opposed to the unvaccinated- and Delta-challenged animals (Fig. 5b&c). Differing from the Delta variant,
Omicron BA.1 challenge resulted in low pathology overall, with minimal consolidation (Fig. 5b) and low
pathology scores at 4 DPC (Fig. 5c&d). At 7DPC, among Delta-challenged hamsters, both Nsp1-
K164A/H165A and WA1/2020 inoculated groups (n = 3) had signi�cantly (p < 0.0001) reduced
consolidation compared to unvaccinated controls (Fig. 5e). Following BA.1 challenge, only two animals in
the unvaccinated group had > 20% lung consolidation at 7 DPC (Fig. 5e), however, lung pathology was
evident in 3 out of 4 animals within this group (Fig. 5f&g). In comparison, nearly no lung pathology was
detected from Nsp1-K164A/H165A-vaccinated animals (n = 3, p = 0.0195).

To further characterize these histopathological changes using speci�c markers of in�ammation and
epithelial damage, serial lung sections from uninfected hamsters (mock), unvaccinated hamsters, and
WA1/2020-convalescent and Nsp1-K164A/H165A-vaccinated hamsters were immunostained for Iba1 (a
marker of macrophages), prosurfactant protein C (ProSPC, a marker of AT2 cells), RAGE (a marker of AT1
cells), and E-cadherin (a marker of intercellular epithelial junctions). At 7 DPC, lungs from all four Delta-
challenged unvaccinated hamsters and two of the four BA.1-challenged unvaccinated hamsters showed
regions of consolidation by H&E that corresponded with areas containing extensive accumulation of
Iba1-expressing macrophages (Fig. 6a&b) and increased terminal deoxynucleotidyl transferase dUTP nick
end labeling (TUNEL) (Fig. S1). These consolidated regions also showed marked reduction of ProSPC-
expressing AT2 cells and pronounced loss of alveolar RAGE expression along the borders of AT1 cells.
Distinct areas of epithelial cell loss and Iba1-positive macrophage consolidation formed around E-
cadherin-labeled bronchioles that were presumably subject to virus attack (Fig. 6c). Increased E-cadherin
staining also identi�ed hyperplastic epithelium in consolidated spaces that was particularly prominent in
Delta-challenged unvaccinated lungs. Vaccination with Nsp1-K164A/H165A attenuated Iba1-positive
macrophage consolidation and protected against the loss of ProSPC and RAGE expression in Delta- and
BA.1-challenge groups (Fig. 6a-c). Prior infection with WA1/2020 also protected against epithelial
damage in the Delta-challenge group but, interestingly, appeared less effective in protecting against BA.1-
induced in�ammation and damage.

We then performed a correlational analysis between serum binding IgG, serum nAB, and nasal SIgA titers
and tissue viral loads and severity of lung pathology. In general, antibody titers inversely correlated with
tissue viral loads and severity of lung pathology, i.e., lower antibody titers correlate with increased
frequencies of breakthrough infections (i.e., detectable viral loads) (Fig. S2). The exception is found in
nasal turbinates following challenge with Omicron BA.1, where no clear correlation between antibody
titers and viral loads was noticed. A plausible explanation of this �nding is that the very low level or
absence of BA.1-speci�c mucosal and systemic neutralizing antibodies failed to offer any protection in
nasal turbinates (Fig. S2).

Transmission of Nsp1-K164A/H165A in Syrian Hamsters
To characterize the transmissibility of Nsp1-K164A/H165A, we performed an additional study in an
airborne transmission model (Fig. 7a) in which two Syrian hamsters in the same cage are separated from
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each other by a customized, perforated metal divider that prevents physical contact while permitting air
exchange (Movie. S1)27.

We �rst inoculated donor hamsters (male, 4-month-old, n = 14) with 100 PFU of WA1/2020 or Nsp1-
K164A/H165A, which was previously shown to be immunogenic and protective against WA1/2020
challenge. Signi�cant body weight loss was observed in WA1/2020 infected hamsters at 3–9 (p < 
0.0001), 10–11 (p < 0.001), and 12–14 (p < 0.01) DPI and one had to be euthanized due to presentation of
severe clinical signs (hypothermia, hunched posture, lethargy) at 7 DPI (Fig. 7b). By contrast, no
signi�cant weight loss was observed in Nsp1-K164A/H165A vaccinated animals (n = 14). WA1/2020
inoculated hamsters also exhibited signi�cantly higher infectious viral loads in nasal wash samples at 1,
2, 3 DPI than Nsp1-K164A/H165A inoculated group (1 DPI, 158-fold, p < 0.0001; 2 DPI, ~ 33-fold, p = 
0.0003; and 3 DPI, 10-fold, p = 0.0105) (Fig. 7c).

At 1 DPI, 7 sentinel hamsters were paired individually with either a WA1/2020 or a Nsp1-K164A/H165A
inoculated hamster in cages with dividers. Nasal washes were collected from the sentinel hamsters from
1–4 days post-exposure (DPE) and seroconversion was determined after two weeks to con�rm infection.
Nasal wash infectious virus titers from Nsp1-K164A/H165A-exposed sentinels were undetectable at 1
DPE and then signi�cantly lower at 2 DPE (> 100-fold, p = 0.0006) and 3 DPE (> 290-fold, p < 0.0001)
compared to those from WA1/2020-exposed sentinels (Fig. 7d). At 4 DPE, there was no statistically
signi�cant difference between sentinel groups although 2 of the Nsp1-K164A/H165A sentinels had nasal
wash titers below the detection limit (200 TCID50/mL). Overall, the transmission of Nsp1-K164A/H165A
to sentinel hamsters exhibited a delayed kinetics. No weight loss was evident in the sentinel hamsters
exposed to Nsp1-K164A/H165A, however, WA1/2020-exposed sentinels experienced weight loss at 4–5
(p < 0.05), 6 (p = 0.0005), 7–12 (p < 0.0001), 13 (p = 0.0003), and 14 (p = 0.0016) DPE with a maximum
mean weight loss of 15.6% on 9 DPE (Fig. 7e). By 14 DPE all exposed sentinel animals had high levels of
anti-RBD IgG in serum (Fig. 7f) except one animal from the Nsp1-K164A/H165A-exposed sentinel group,
which did not seroconvert (there was also no detectable infectious virus in nasal washes collected from
this animal).

At 4.5 months after exposure (MPE), all seroconverted sentinel animals were tested for nAb titers against
WA1/2020 and BA.2.12.1. Serum nAb titers against WA1/2020 from WA1/2020 exposed sentinel animals
(GMT 4637) were 4-fold higher (p = 0.0026, unpaired t-test) than Nsp1-K164A/H165A-exposed sentinel
hamsters (GMT 1140) (Fig. 7g). Neutralization of BA.2.12.1, however, was observed in only 2 animals
from the Nsp1-K164A/H165A sentinel group and 5 animals from the WA1/2020 sentinel group prior to
challenge (Fig. 7h).

Passively immunized sentinel hamsters are protected from
BA.2.12.1 challenge
Four and half months after the initial exposure, seroconverted sentinel hamsters from Fig. 7 were
challenged with 104 FFU Omicron BA.2.12.1 by the intranasal route. Weight loss did not occur in any
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BA.2.12.1 challenged hamsters (Fig. 8a). Reduced nasal viral loads in WA1/2020-exposed sentinel
hamsters (n = 7) were noticed on days 3 (p = 0.0492) and 4 (p = 0.0.0011) DPC compared to naïve
hamsters that were challenged with BA.2.12.1 (Fig. 8b). Interestingly, despite low or absent BA.2.12.1-
speci�c nAB titers in Nsp1-K164A/H165A sentinel animals (Fig. 7h), nasal viral load of these animals
was signi�cantly lower compared to controls at 4 DPC (p = 0.0094) (Fig. 8b). Infectious virus titers in
BALF were at least one-log lower in WA1/2020 and Nsp1-K164A/H165A sentinel hamsters than in naïve
controls at 4 DPC (p < 0.0001) (Fig. 8c). Infectious virus titers in lung homogenates of the BA.2.12.1
infected control animals (n = 4) were around 1000 FFU/mL at 4 DPC, whereas 2 out 4 sentinel hamsters
had no detectable infectious virus in the lungs (Fig. 8d). Consequently, log10-transformed sgRNA copies
detected in both Nsp1-K164A/H165A (p = 0.0043) and WA1/2020 sentinel hamster lungs (p = 0.0004)
were at least one order of magnitude lower compared to controls at 4 DPC (Fig. 8e).

Histopathology analyses of �xed lungs revealed minimal consolidation at 4 DPC (n = 4) and 7 DPC (n = 3)
in all groups. A slightly higher percentage of lung consolidation (Fig. 8f) was observed in WA1/2020-
exposed sentinels compared to Nsp1-K164A/H165A (4 DPC, p = 0.0490) or Nsp1-K164A/H165A sentinel
hamsters (p = 0.0269) and control animals (p = 0.0326) at 7 DPC. The consolidation is most likely
remnant pathology from the initial WA1/2020 infection, but not due to BA.2.12.1 challenge. There was no
signi�cant difference in pathology scores at 4 or 7 DPC between groups (Fig. 8g), although WA1/2020-
exposed sentinel hamsters did show bronchiole mucosal hyperplasia at 4 DPC (Fig. 8h) and 7 DPC
(Fig. 8i). Noticeable lung pathologies in naive animals after BA.2.12.1 challenge included alveolar wall
thickening, airway in�ltrates, and type II pneumocyte hyperplasia. By contrast, such pathologies were
absent in the lungs of Nsp1-K164A/H165A exposed sentinel hamsters after challenge (Fig. 8h&i).
Altogether, Nsp1-K164A/H165A exposed sentinel hamsters were protected from BA.2.12.1 challenge in
the lungs.

Discussion
Current SARS-CoV-2 vaccines, particularly the mRNA-based ones, induce robust systemic humoral and
cellular immunity and prevent severe disease caused by SARS-CoV-228. However, protection against
infection and transmission of SARS-CoV-2 variant viruses, in particular the Omicron sub-lineage viruses,
by mRNA vaccines may be limited29–31. Results from recent studies suggest that intramuscular
vaccination tends to induce potent systemic but not local humoral response at the mucosa. By contrast,
nasal vaccines induce more robust mucosal immune responses, characterized by secretion of IgA and
IgG at mucosal surfaces and detection of resident memory T/B cells in respiratory tract16,24,32−34. Here
we show that intranasal immunization of Syrian hamsters with an attenuated SARS-CoV-2 (Nsp1-
K164A/H165A) induced SIgA and IgG at respiratory mucosa, albeit the levels of mucosal IgA/IgG
appeared to be at least two orders of magnitude lower than their serum counterparts. Vaccinated
hamsters were largely protected in the lungs from subsequent challenge with Delta, Omicron BA.1 and
BA.2.12.1, even when circulating nAb titers against the latter two variants were below limit of
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quanti�cation. Together, our study demonstrates the great potential of attenuated Nsp1-K164A/H165A as
a nasal vaccine capable of inducing SIgA/IgG in the respiratory mucosa.

Many of the pathologies found in human cases of COVID-19 are recapitulated in mature (> 4-6-month-old)
Syrian hamsters, making them an excellent animal model for studying SARS-CoV-2 pathogenesis35. For
example, the damage to AT1 and AT2 cells with the prominent in�ltration of macrophages observed in
the lungs of Delta- and BA.1-challenged unvaccinated hamsters partially mimics the histopathology of
COVID-19 in humans36,37. One of the challenging aspects of this model, however, is the relative lack of
species-speci�c reagents that has made immunological analyses in Syrian hamsters di�cult. In this
study we established methods to reliably measure SIgA/IgG in nasal wash and BALF samples. These
techniques have now enabled us to assess the mucosal immunogenicity of SARS-CoV-2 vaccine
candidates in Syrian hamsters. We detected signi�cant amounts of SIgA/IgG in nasal wash and BALF
samples from hamsters after intranasal vaccination of Nsp1-K164A/H165A. One signi�cant and
noteworthy observation is that SIgA/IgG titers, like circulating nAb titers, inversely correlate with viral
loads in respiratory tract and the severity of lung pathology (Fig. S2). When SIgA/IgG is speci�cally raised
against the ancestral virus (WA1/2020) and hence does not e�ciently neutralize Omicron subvariants,
vaccinated hamsters were not free of virus in the upper respiratory tract upon challenge with Omicron
sub-lineage viruses. This �nding is in line with the recent observation that anti-Spike mucosal IgA protects
against SARS-CoV-2 Omicron infection in human population38. Interestingly, Nsp1-K164A/H165A-
vaccinated animals were protected in the lung against both Delta and Omicron BA.1 challenge. It is
possible that cellular immunity, induced by Nsp1-K164A/H165A, contributes to the protection against
heterologous virus challenge, as we detected splenocytes reacting to the nucleocapsid protein of the
virus. Future research is warranted to decipher the mechanism of live attenuated viral vaccines in
conferring cross-protection in hamsters as more reagents become available.

An early and robust activation of interferon (IFN) signaling pathways contributes to the protective
mucosal immune response against viral infections in the respiratory tract39. Viral recognition in infected
immune and/or epithelial cells triggers the production of IFNs (types I, II, and III) that subsequently limit
viral replication and dissemination by activating the transcription of numerous antiviral IFN-stimulated
genes (ISGs) including IFIT1-3, OAS1, IRF7 and MX1 in infected cells and bystander cells. While IFNs are
critical to the antiviral host defenses, excessive or persistent IFN signaling may also aggravate lung
pathologies of viral infections including SARS-CoV-240. Activation of IFN signaling in the lungs of Delta-
and BA.1 unvaccinated animals was clearly evidenced by the robust upregulation of MX1 protein that
localized speci�cally to infected bronchioles and neighboring alveolar parenchyma stained by viral NP. In
this regard, we surmise that the lack of MX1 upregulation in the lungs of Nsp1-K164A/H165A-vaccinated
hamsters supports that the vaccine exerts a strong and speci�c protective response along the upper
airways that blocks viral dissemination in the lungs. The lack of macrophage accumulation in the lungs
of Nsp1-K164A/H165A-vaccinated hamsters suggests that robust viral infection did not occur, hence
vaccinated animals did not develop pneumonia.
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Methods

Cells and Viruses
Vero E6 cell line (Cat # CRL-1586) was purchased from American Type Culture Collection (ATCC) and
cultured in Dulbecco’s minimal essential medium (MEM) supplemented with 10% fetal bovine serum

An intrinsic safety concern for a LAV against a pandemic virus is the potential transmission of the
vaccine virus. In principle, transmission of a vaccine virus may contribute to the establishment of herd
immunity, but there is a possibility that an attenuated virus may directly or through reversion to a more
virulent form cause illness among some at-risk individuals. We have previously demonstrated the
genome stability of Nsp1-K164A/H165A23. Here we found that the airborne transmission of Nsp1-
K164A/H165A was less e�cient compared to wild-type SARS-CoV-2 in hamsters, but most (except for
one animal) sentinel hamsters became seroconverted after 14 days. Airborne transmission of Nsp1-
K164A/H165A did not cause weight loss in sentinel hamsters. Another intriguing �nding is that four and
half months after the initial exposure, these seroconverted hamsters were largely protected from a
BA.2.12.1 challenge. Thus, passive immunization via transmission of Nsp1-K164A/H165A was achieved.
Nonetheless, the risks and bene�ts of administering an infectious attenuated SARS-CoV-2 vaccine will
need to be further evaluated.

Study Limitations
Typically, SARS-CoV-2 infection of Syrian hamsters induces pronounced consolidation and pathologies in
the lung at 7 DPC35. However, lung pathology was limited to a subset of BA.1 and BA.2.12.1-infected
hamsters rather than being widespread as in Delta challenged animals. For this reason, determination of
vaccine e�cacy against Omicron sub-lineage viruses using Syrian hamsters was problematic due to the
low pathogenicity of BA.1 and BA.2.12.1 in this species. Low pathology scores in unvaccinated controls
led to di�culties in determining e�cacy of vaccination in preventing lung damage post-challenge.
Additionally, persistent damage after WA1/2020 infection likely led to increases in bronchiole mucosal
hyperplasia in hamsters observed at 4 DPC in convalescent animals challenged with Delta as well as
BA.1 and BA.2.12.1 Omicron. In separate experiments being prepared for publication, we have observed
long-term lung damage (including hyperplasia in bronchioles) in hamsters up to 4 weeks after WA1/2020
infection by the intranasal route. This would provide an explanation for the observed lung pathology in
WA1/2020 convalescent hamsters after Omicron challenge which was not observed in control or Nsp1-
K164A/H165A vaccinated animals.

Concluding Remarks
Nsp1-K164A/H165A vaccination induces humoral immunity at mucosa as well as cellular-immunity
targeting nucleocapsid protein. Additionally, transmission of Nsp1-K164A/H165A leads to passive
immunization. Thus, Nsp1-K164A/H165A may be further developed into a nasal vaccine for primary
series or as a booster.
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(Invitrogen) and 1% penicillin/streptomycin and L-glutamine. Calu-3 cell line (Cat # HTB-55) was obtained
from ATCC and maintained in EMEM + 20%FBS. H1299-hACE2 is a human lung carcinoma cell line stably
expressing human ACE2. It was made by S. Liu in our group from the NCI-1299 human lung carcinoma
cell line (ATCC CRL-5803). H1299-hACE2 cells were maintained in DMEM supplemented with 5% penicillin
and streptomycin, and 10% fetal bovine serum (FBS) at 37°C with 5% CO2.

Production of Nsp1-K164A/H165A was described elsewhere23. The SARS-CoV-2 isolate WA1/2020 (NR-
52281, lot 70033175) was obtained from BEI Resources, NIAID, NIH, and had been passed three times on
Vero cells and 1 time on Vero E6 cells prior to acquisition. It was further passed once on Vero E6 cells in
our lab. SARS-CoV-2 hCoV-19/USA/MD-HP05647/2021 (Delta variant, Pango lineage B.1.617.2) was
obtained from BEI resources, NIAID, NIH (NR-55672, Lot 70046635) and had been passaged once in Vero
E6-TMPRSS2 and once in Calu-3 cells prior to acquisition. It was passaged once more in H1299-hACE2
cells in our lab to generate viral stocks. Passaged viruses were deep sequenced to con�rm identity. SARS-
CoV-2 isolates hCoV-19/USA/HI-CDC-4359259-001/2021 (B.1.1.529 Omicron, NR-56475), hCoV-
19/USA/NY-MSHSPSP-PV56475/2022 (BA.2.12.1 Omicron, NR-56782), USA/MD-HP30386/2022 (BA.4,
Omicron, NR-56802), and hCoV-19/USA/COR-22-063113/2022 (BA.5 Omicron, NR-58620) were obtained
from BEI resources and used directly in experiments.

Hamster Challenge Experiments
Adult male and female outbred Syrian hamsters were previously purchased from Envigo and held at FDA
vivarium. All experiments were performed within the biosafety level 3 (BSL-3) suite on the White Oak
campus of the U.S. Food and Drug Administration. The animals were implanted subcutaneously with
IPTT-300 transponders (BMDS), randomized, and housed 2 per cage in sealed, individually ventilated rat
cages (Allentown). Hamsters were fed irradiated 5P76 (Lab Diet) ad lib, housed on autoclaved aspen chip
bedding with reverse osmosis-treated water provided in bottles, and all animals were acclimatized at the
BSL3 facility for 4–6 days or more prior to the experiments. The study protocol details were approved by
the White Oak Consolidated Animal Care and Use Committee and carried out in accordance with the PHS
Policy on Humane Care & Use of Laboratory Animals.

Adult male (5–6 months old) Syrian hamsters (Mesocricetus auratus) were anesthetized with (3–4% v/v)
iso�urane and oxygen following procedures as described previously 35,41,42. Intranasal inoculation was
done by pipetting 102 PFU or 104 PFU SARS-CoV-2 in 50 µl volume dropwise into the nostrils of the
hamster under anesthesia. Following infection, hamsters were monitored daily for clinical signs and
weight loss. Nasal washes were collected by pipetting ~ 200 µl sterile phosphate buffered saline into one
nostril when hamsters were anesthetized by 3–5% iso�urane. Nasal swabs were done as described
previously 32.

For airborne transmission, a subset (n = 7) of hamsters inoculated with 102 PFU WA1/2020 or Nsp1-
K164A/H165A were paired in divided cages to prevent direct contact to measure transmission to naive
sentinels 27. One hamster (WH363), paired with an actively shedding Nsp1-K164A/H165A vaccinated
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animal, did not show evidence of productive infection or seroconvert at 14 DPE and remained
seronegative until just prior to BA.2.12.1 challenge 4.5 months later. For these reasons, WH363 was
removed from the challenge datasets.

For tissue collection, a subset of hamsters was humanely euthanized by intraperitoneal injection of
pentobarbital at 200mg/kg at 4 and 7 DPC. Lungs, trachea, and nasal turbinates were dissected for
histopathology or homogenized for RNA extraction or titration in cell culture. Blood collection was
performed under anesthesia (3–5% iso�urane) through gingival vein puncture or cardiac puncture when
animals were euthanized. The left lobes of hamster lungs (~ 0.2 gram) were diced, divided, and
resuspended in 1 milliliter MEM or TriZol reagent (RNA extraction) and homogenized on a Precellys
Evolution tissue homogenizer with a Cooling Unit (Bertin). Trachea and nasal turbinates were
homogenized the same way in TriZol Reagent. Splenocytes were extracted at 14 DPI from vaccinated and
naive hamsters and IFNγ-secreting cells were identi�ed after stimulation with spike and nucleocapsid
antigen pools (Genscript) by ELISpot (MABTECH, 3102-2H).

RNA isolation and qRT-PCR
Procedures as described previously35,41. In brief, RNA was extracted from 0.1-gram tissue homogenates
using QIAamp vRNA mini kit or the RNeasy 96 kit (QIAGEN) and eluted with 60 µl of water. 5 µL RNA was
used for each reaction in real-time RT-PCR. When graphing the results in Prism 9, values below the limit of
quanti�cation (LoD) were arbitrarily set to half of the LoD values. Unless otherwise speci�ed, the unit for
RNA copies are as presented as Log10 RNA copes/µg tissue RNA.

Histopathology Analyses
Procedures as described previously35,41. Tissues (lungs, trachea, and nasal turbinates) were �xed in 10%
neutral buffered formalin overnight and then processed for para�n embedding. The 5-µm sections were
stained with hematoxylin and eosin for histopathological examinations. Images were scanned using an
Aperio ImageScope. Blinded samples were graded by a licensed pathologist for the following twelve
categories: consolidation, alveolar wall thickening, alveolar airway in�ltrates, perivascular in�ltrates,
perivascular edema, type II pneumocyte hyperplasia, atypical pneumocyte hyperplasia, bronchiole
mucosal hyperplasia, bronchiole airway in�ltrates, proteinaceous �uid, hemorrhage, and vasculitis.
Grading: 0 = none, 1 = mild, 2 = moderate, 3 = severe. A graph was prepared by summing up the score in
each category.

Virus titration
Tissue culture infectious dose 50% (TCID50) assays were done described previously 35,41 for initial nasal
wash titrations post-inoculation. In brief, Vero E6 cells were plated the day before infection into 96 well
plates at 1.5 × 104 cells/well. On the day of the experiment, serial dilutions of 20 µl nasal wash samples
were made in media and a total of six to eight wells were infected with each serial dilution of the virus.
After 48 h incubation, cells were �xed in 4% PFA followed by staining with 0.1% crystal violet. The TCID50
was then calculated using the formula: log (TCID50) = log(do) + log (R) (f + 1). Where do represents the
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dilution giving a positive well, f is a number derived from the number of positive wells calculated by a
moving average, and R is the dilution factor.

For focus-forming assay, nasal wash, BALF, and lung homogenate samples were 10-fold serially diluted
in 96-well plates and dilutions added to 96-well black-well plates for �uorescent focus forming assays in
H1299-hACE2 cells43. After 1 h the Tragacanth gum overlay (�nal concentration 0.3%) was added. Cells
were incubated at 37°C and 5% CO2 for 1 day, then �xed with 4% paraformaldehyde, followed by staining
of cells with primary rabbit anti-N Wuhan-1 antibody (Genscript) overnight followed by secondary anti-
rabbit Alexa-488 conjugated antibody and DAPI staining. The infectious titers were then counted using
Gen5 software on a Cytation7 machine and calculated and plotted as focus forming units per milliliter
(FFU/ml).

SARS-CoV-2 neutralization assay
Samples were serially diluted 2-fold in 5% FBS DMEM and mixed with 100 PFU of SARS-CoV-2 in a 96-
well plate at 37°C for 1 hour. Sample:virus mixtures were then added to con�uent H1299-hACE2 cells in
96-well plates. Cells were infected for 1 hour before the inoculum was removed and washed three times
with DPBS. A second overlay containing 1.2% Tragacanth gum, 2X MEM, 5% FBS, and DMEM was added
to the plate. Cells were incubated at 37°C for 1 day, then �xed with 4% paraformaldehyde, followed by
staining of cells with primary rabbit anti-SARS-CoV-2 N antibody (Genscript U739BGB150-5) overnight
followed by secondary anti-rabbit Alexa-488 conjugated antibody and 4′,6-diamidino-2-phenylindole
(DAPI) staining. Plates were imaged on a Cytation7 (Agilent), and foci were counted using Gen5 software.
For the neutralization assays, recombinant LY-CoV555 (Bamlanivimab) mixed with WA1/2020 44 was
included as a positive control. The 50% endpoint neutralization titers were determined as the reciprocal of
the highest dilution providing ≤ half of the number of foci obtained from the negative control well (plain
DMEM mixed with 100 PFU virus).

Measurement of antibody by ELISA
The preparation of SARS-CoV-2 RBD antigen in a baculovirus expression system and its use in ELISA
were previously described45. ELISAs were performed with slight modi�cations. Brie�y, Immulon 2HB plates
were coated with recombinant RBD protein at 1 µg/mL overnight at 4°C. Test serum samples were pre-
diluted in assay diluent (PBS containing 0.05% Tween-20 [PBST] and 10% fetal bovine serum), followed
by serial two-fold dilutions of each sample in duplicates across the plate. A starting dilution of 1:160,
1:80, and 1:20 was used for serum (IgA and IgG), BALF (IgG) and nasal wash and BALF (IgA) samples,
respectively. Plates were incubated with the test serum samples for 2 h at 37°C. After rigorous plate
washes in a microplate washer, plates were incubated with anti-hamster antibodies. For IgG ELISA, a
1:4000 dilution of an HRP-conjugated goat anti-hamster IgG (6060-05, Southern Biotech, Birmingham,
Alabama) was added to assay wells. For IgA ELISA, a rabbit anti-hamster IgA antibody [sandwich
antibody; (cat. #sab 3001a) Brookwood Biomedical, Jemison, Alabama] was added to assay wells at
1:4000 dilution and plates incubated for 1 hour at 37°C. Unbound sandwich antibody was washed off
and a 1:4000 dilution of an HRP-conjugated goat anti-rabbit IgG (4030-05, Southern Biotech, Birmingham,
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Alabama) was added to assay plates. In both IgG and IgA ELISAs, incubation with HRP-conjugated
secondary antibodies lasted 1 hour after which plates were rigorously washed to remove unbound
antibodies. The ABTS/H2O2 peroxidase substrate (SeraCare, Gaithersburg, Maryland) was added to
assay wells and plates left at room temperature for 20 to 30 minutes. Color development was stopped by
adding 1% SDS and OD405 values were captured on the VersaMax microplate reader with Softmax Pro 7
software (Molecular Devices). In the IgG ELISA, the mean OD405 values of PBS treatment groups were
subtracted from the mean OD405 values from other treatment groups and the assay endpoint was a mean
OD405 value 0.05 (i.e., after background subtraction). In the IgA ELISA, the assay endpoint was a mean
OD405 value 0.02 of duplicate wells. Antibody titer was de�ned as the reciprocal of the highest dilution of
a sample at which the mean OD405 value for duplicate wells was 0.02 (IgA) or 0.05 after background
subtraction (IgG).

IFN-gamma ELISpot
Hamster interferon gamma (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) analysis was performed
using the Hamster IFN-γ ELISpotBASIC (MABTECH Mabtech 3102-2H, Nacka Strand, Sweden) kit
according to the manufacturer’s instructions. MSIP Plates (Millipore) were washed 5 times with sterile
water, coated with mAb (MTH21) and incubated overnight at 4°C. Coated plates were washed 5 times
with 1X PBS, blocked for 30 minutes (room temperatures) with supplemented RPMI 1640 (GibcoBRL)
containing 10% heat inactivated FBS, 1% 100x penicillin, streptomycin, and L-Glutamine solution
(GibcoBRL). 2.5x105 freshly isolated splenocytes were seeded in each well and stimulated for 45–48
hours at 37°C with SARS CoV-2 Spike proteins peptide pools (2 µg/ml each peptide) (BEI Catalog No. NR-
52418) or Nucleocapsid proteins peptide pools (2 µg/ml each peptide) (BEI Catalog No. NR-52419)
prepared in serum free RPMI 1640. Negative and positive plate controls were medium or 2µg/ml
concanavalin A (ConA, Sigma-Aldrich), respectively. Plates were incubated with 1µg/ml mAb (MTH29-
biotin) for 2 hours, and then 1 hour with Streptavidin-HRP, and �nally developed after adding TMB
substrate (product No. 3651-10). Distinct spots typically emerge within 20 minutes. After drying, spots
were counted using a BioTek Cytation 7 imaging reader (Agilent) and analysis software Gen5 Version No.
3.11. ELISpot data was analyzed in Microsoft excel. The average number of spots from two negative
wells (unstimulated cells) was subtracted from peptide pools stimulated wells for each plate. Results
were expressed as difference in spots forming cells (SFC)/106 PBMC between negative control and
peptide pools stimulations conditions. Results were plotted using GraphPad Prism 9.

Lung immuno�uorescence analyses
Formalin-�xed para�n-embedded (FFPE) lung sections 4 µm thick were dewaxed, rehydrated, and heat-
treated in a microwave oven for 15 minutes in 10 mM Tris/1 mM EDTA buffer (pH 9.0). After cooling for
30 min at room temperature, heat-retrieved sections were blocked in PBST with 2.5% bovine serum
albumin (BSA) for 30 min at RT followed by overnight incubation at 4°C with primary antibodies in 1%
BSA. Primary antibodies used included SARS nucleocapsid protein (NP) (1:800, Sino Biologicals, 40143-
MM05), MX1 (Proteintech, 13750-1-AP), prosurfactant protein C (ProSPC) (1:200, EMD Millipore, AB3786),
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Iba1 (1:100, Abcam, ab5076), RAGE (1:400, Abcam, ab216329), and E-cadherin (ECAD) (Abcam,
ab219332). Sections were rinsed and incubated with Alexa Fluor 488 (A-21206) and Alexa Fluor 647-
conjugated secondary antibodies (A-31571, A-21447) for 1 hour at RT (ThermoFisher, Waltham, MA).
Nuclei were counterstained with Hoechst 33342. For double labeling experiments, primary antibodies
were mixed and incubated overnight at 4°C. For negative controls, sections were incubated without the
primary antibody or mouse and rabbit isotype antibody controls. Sections stained with conjugated
secondary antibodies alone showed no speci�c staining. Whole slide �uorescence imaging was
performed using a Hamamatsu NanoZoomer 2.0-RS whole-slide digital scanner equipped with a 20x
objective and a �uorescence module #L11600. Analysis software NDP.view2 was used for image
processing (Hamamatsu Photonics, Japan). Immuno�uorescence and differential interference images
were also captured using an Axio Observer Z1 inverted microscope (Carl Zeiss, Thornwood, NY) equipped
with an Axiocam 506 monochrome camera, an ApoTome.2 optical sectioning system, and a Plan-
Apochromat 63x/1.4NA oil immersion with WD = 0.19 and Plan-Apochromat 20x/0.8 objective lens.
Digital image post-processing and analysis were performed using the ZEN 2 ver. 2.0 imaging software.
Images were constructed from Z-stack slices collected at 0.48 µm intervals (5 µm thickness in total) and
visualized as maximum intensity projections in orthogonal mode. For semiquantitative analysis of NP
staining, high resolution whole-slide digital images of each lung section were acquired and the NDP.view2
software was used to measure the NP-stained area as a percentage of total area of the section. For
TUNEL staining, sections were depara�nized, hydrated, and pretreated with Proteinase K, followed by
EDTA, distilled H O wash, and BSA blocking. Sections were then incubated in a reaction mixture (TdT,
dUTP, and buffer), washed, and incubated with anti-digoxigenin antibody. Sections were then visualized
with alkaline phosphatase-ImmPACT Vector Red and counterstained with hematoxylin.

Statistical analysis
One-way ANOVA or Student t-test was used to calculate statistical signi�cance through GraphPad Prism
(9.1.2) software for Windows, GraphPad Software, San Diego, California USA, www.graphpad.com.

DATA and MATERIALS AVAILABILITY
All data are available in the main text or the supplementary materials. All unique/stable reagents
generated in this study are available from the Lead Contact with a completed Materials Transfer
Agreement.
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Figure 1

Intranasal immunization with 100 pfu Nsp1-K164A/H165A induces IgG and IgA. a Genome organization
of the attenuated SARS-CoV-2-DPRRA-DORF6-8-Nsp1K164A/H165A (abbreviated as Nsp1-K164A/H165A).
The polybasic insert “PRRA” together with ORF6-8(green) were removed from the WA1/2020 genome.
Locations of K164A/H165A within Nsp1 are indicated at the bottom left of the panel. b to h Hamster sera
or nasal wash samples were collected at 14- and 30-days post-intranasal inoculation of 100 PFU Nsp1-
K164A/H165A or WA1/2020 and then tested for binding to WA1-2020 receptor binding domain (RBD) by
ELISA (b) and for neutralization against WA1/2020 (c). Samples from naïve hamsters were included as
negative controls. d Secretory IgA levels in nasal wash samples (NW IgA) collected 30 DPI were measured
by ELISA (n=14). e-h Hamster sera of 30 DPI were measured for anti-Delta RBD IgG (e) and neutralization
(f), for anti-Omicron BA.1 RBD IgG (g) and neutralization (h). Bar graphs indicate mean titers with
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standard deviations shown as error bars. Each solid circle indicates individual hamsters from a single
experiment. Statistical differences were calculated using ordinary one-way analysis of variance (ANOVA)
in GraphPad Prism 9.4.0 with Tukey’s multiple comparisons tests. For statistical signi�cance, * indicates
p<0.05 and **** indicates p<0.0001. DPI= days post-infection.

Figure 2

Intranasal immunization with Nsp1-K164A/H165A induces mucosal and systemic humoral immunity and
cellular immunity. Male (4-month-old, n=8) Syrian hamsters were intranasally vaccinated with 104 PFU
Nsp1-K164A/H165A. Animals were bled at 14 and 28 DPI to collect sera and n=4 animals were
euthanized at each time point to collect broncho-alveolar lavage �uid (BALF). Anti-RBD IgG titers against
WA1/2020 (blue) or BA.1 (red) in serum (a) and BALF (b) were measured by ELISA. Anti-RBD IgA was
likewise quanti�ed in serum (c) and BALF (d). e Serum nAb titers at 28 DPI were measured against
WA1/2020 (WA1), Delta (B.1.617.2), as well as Omicron subvariants (BA.1, BA.2.12.1, BA.4, BA.5) using a
50% focus reduction neutralization (FRNT50) assay. f Splenocytes were isolated from naive and
vaccinated hamsters at 14 DPI and pulsed with 10 mM WA1/2020 Spike (S) and Nucleocapsid (N)
antigen pools for 48 hours. IFNg-secreting splenocytes were enumerated by ELISPOT. Bar graphs in
panels a-e represent samples collected at two time points from the same animals in a single experiment
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with dots representing individual animals. Statistical differences were calculated using ordinary one-way
analysis of variance (ANOVA) in GraphPad Prism 9.4.0 with Tukey’s multiple comparisons tests. ELISPOT
data were compared using two-way ANOVA with Sidak’s multiple comparison test. For statistical
signi�cance, * indicates p<0.05, ** indicates p<0.01, and **** indicates p<0.0001. DPI= days post-
infection.

Figure 3

Intranasal immunization of Syrian hamsters with 100 PFU Nsp1-K164A/H165A signi�cantly reduces viral
loads in both upper and lower respiratory tract following challenge with Delta and Omicron variants. a
Syrian hamsters were vaccinated with 100 PFU Nsp1-K164A/H165A or infected with 100 PFU WA1/2020
35 days prior to challenge with 104 PFU Delta (n=6) or BA.1 Omicron (n=7) isolates on day 0. b-c from 1-5
DPC, infectious virus from nasal wash samples was quanti�ed by focus-forming assays in vaccinated,
convalescent, or unvaccinated hamsters (n=8 for Delta, b; n=7 for Omicron BA.1, c). Graphs for (b) and (c)
indicate mean values from a single experiment with standard deviations shown as error bars. d Viral
sgRNA levels in lung, trachea, and nasal turbinate samples from 4 DPC (n=4 each, except WA1/2020-
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Delta at n=3) were measured by qRT-PCR. e Infectious virus titers of lung homogenates at 4 DPC were
determined by focus-forming assays. f Viral sgRNA levels in lungs and trachea at 7 DPC with Delta and
BA.1 Omicron were measured by qRT-PCR. Dot plots represent samples collected from individual animals
in a single experiment. Statistical differences were calculated using ordinary one-way analysis of
variance (ANOVA) in GraphPad Prism 9.4.0 with Tukey’s multiple comparisons tests. For statistical
signi�cance, ** indicates p<0.01, *** indicates p<0.001, and **** indicates p<0.0001. Δ: Delta variant
challenge. Ο: Omicron BA.1 challenge. DPC: Days post-challenge.

Figure 4

Nsp1-K164A/H165A vaccination blocks virus propagation and MX1 induction in hamster lungs

Syrian hamsters were vaccinated with a low (100 PFU) dose of Nsp1-K164A/H165A or WA1/2020 35
days prior to challenge with a Delta or BA.1 isolate on day 0. Serial lung sections from non-infected non-
vaccinated hamsters (mock) or hamster at 4 DPC were stained by (a) H&E or double-immunostained for
(b) SARS-CoV-2 nucleocapsid protein (NP) and MX1 (interferon-induced antiviral protein). In (a), images
are shown at one level of magni�cation (0.7x) while corresponding serial immunostained images in (b)
are shown at two levels of magni�cation (0.7x and 5x) with white boxes delimiting the regions of
magni�cation. c Semiquantitative analysis of viral NP staining in hamster lungs at 4 DPC. The plotted
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values represent the percent NP positive area as a function of the total lung area for each section (n = 3-4
animals per group). d High magni�cation immuno�uorescence/differential interference contrast images
of NP and MX1 in representative bronchioles of lung sections from mock hamsters or Delta-infected non-
vaccinated or Nsp1-K164A/H165A-vaccinated hamsters at 4 DPC. Prominent cytoplasmic and nuclear
localization of MX1 was detected in NP-positive bronchiolar epithelium in Delta-infected unvaccinated
hamsters compared to low cytoplasmic expression of MX1 in mock and vaccinated hamsters. Nuclei
were counterstained with Hoechst 33342 dye (blue). Scale bars: 5 mm (0.7x), 500 mm (5x), 20 mm (60x).
Δ: Delta variant challenge. Ο: Omicron BA.1 challenge. DPC: Days post-challenge.

Figure 5
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Intranasal immunization of Syrian hamsters with Nsp1-K164A/H165A protects against Delta and
Omicron challenge. a Weight change was recorded for hamsters (described in Fig. 3a) after challenge by
Delta and Omicron BA.1 variants for 7 days. Percentage of consolidation (b) and pathology score (c) in
�xed lung tissues were compared between WA1/2020 convalescent (n=7), Nsp1-K164A/H165A
vaccinated (n=8), and unvaccinated control (n=8) lungs at 4 DPC. Individual pathologies were graded by
severity and presented in a heat map (d). Percentage of consolidation (e) and pathology score (f) were
also compared at 7 DPC between WA1/2020 convalescent (n=6), Nsp1-K164A/H165A vaccinated (n=6),
and unvaccinated control (n=8) lungs. g Heat-map presentation of individual pathologies at 7 DPC. Dot
plots represent samples collected from individual animals in a single experiment.  Statistical differences
were calculated using ordinary one-way analysis of variance (ANOVA) in GraphPad Prism 9.4.0 with
Tukey’s multiple comparisons tests. For statistical signi�cance, * indicates p<0.05, *** indicates p<0.001,
and **** indicates p<0.0001. Δ:Delta variant challenge. Ο: Omicron BA.1 challenge. DPC: Days post-
challenge.

Figure 6

Nsp1-K164A/H165A vaccination protects against lung pathology post-challenge with Delta and Omicron
isolates
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Syrian hamsters were vaccinated with a low (100 PFU) dose of Nsp1-K164A/H165A or WA1/2020 35
days prior to challenge with Delta or BA.1 Omicron isolates on day 0. Serial lung sections from non-
infected non-vaccinated hamsters (mock) or 7 DPC-infected hamsters were stained by (a) H&E or double-
immunostained for either (b) Iba1 (macrophage marker) and Prosurfactant protein C (ProSPC, AT2
marker) or (c) E-cadherin (ECAD, epithelial junctional marker) and RAGE (AT1 marker). Delta-infected
unvaccinated lungs (n = 4) show extensive areas of tissue consolidation (a) that correspond with regions
showing abundant Iba1-labeled macrophage accumulation and loss of ProSPC-labeled AT2 cells (b) as
well as loss of alveolar wall RAGE-expressing AT1 epithelium surrounding affected ECAD-stained
bronchioles and aberrant reepithelization (c). Similar though less extensive pathology was observed in
two of four BA.1-challenged unvaccinated hamsters. Nsp1-K164A/H165A or WA1/2020 inoculation
completely prevented or suppressed Delta or BA.1-induced lung pathology. In (a), images are shown at
one level of magni�cation (0.7x) while corresponding serial immunostained images in (b) and (c) are
shown at three levels of magni�cation (0.7x, 10x, and 40x) with white boxes delimiting the regions of
magni�cation. Nuclei were counterstained with Hoechst 33342 dye (blue). Scale bars: 5 mm (0.7x), 250
mm (10x), 100 mm (40x).



Page 28/31

Figure 7

Airborne transmission of Nsp1-K164A/H165A in Syrian hamsters. a Donor Syrian hamsters (male, 5-
month-old) were �rst inoculated with 100 PFU Nsp1-K164A/H165A (n=14) or WA1/2020 (n=14). One day
after inoculation, donor hamsters were paired with recipient hamsters (sentinel, n=7/group) in the
specially designed cages with metal dividers for monitoring airborne transmission. During pairing, nasal
swabs were collected daily from sentinel hamsters for 4 days. b Weight loss pro�le of donor hamsters
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after virus inoculation. Symbols in (b) indicate mean percent weight change data of groups of hamsters
(n=14) relative to initial individual animal weights on day 0. Statistical differences were calculated in
GraphPad Prism 9.4.0 using a 2-way analysis of variance (ANOVA) with Sidak’s multiple comparisons
test. c Infectious virus titers of nasal wash samples collected from donor hamsters were measured by a
TCID50 assay for up to 5 days post-inoculation. Symbols indicate individual hamsters from a single
experiment (n=14 per group). Statistical differences were calculated by Student’s unpaired t-test in
GraphPad Prism 9.4.0. d Infectious virus titers of nasal wash samples collected from sentinel hamsters
were measured by a TCID50 assay for up to 4 days post-exposure (DPE) (n=7 per group). e Weight loss
pro�le of sentinel hamsters (n=7 per group) up to 14 days post-exposure to donor hamsters. f
Seroconversion of sentinel hamsters was con�rmed by ELISA measuring anti-WA1/2020 RBD IgG. Note,
one hamster (indicated by a green diamond) after exposure to Nsp1-K164A/H165A did not seroconvert.
Serum nAB titers against WA1/2020 (g) and BA.2.12.1 (h) in sentinel hamsters (n=6 for sentinels exposed
to Nsp1-K164A/H165A and N=7 for those exposed to WA/2020) after four and half months post-
exposure (MPE) were measured by focus forming reduction neutralization assays.    
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Figure 8

Seroconverted sentinel hamsters (i.e. passively vaccinated through transmission of Nsp1-K164A/H165A)
are protected from BA.2.12.1 challenge. a Seroconverted sentinel hamsters (4.5 months after exposure to
WA1-2020 and Nsp1- K164A/H165A) were challenged with 104 PFU of BA.2.12.1. A group of 8 age-
matched naïve hamsters were also included in the challenge study as controls. Weight change was
recorded for 7 days post-challenge. b-d Infectious virus titers from nasal swabs (b), BALF (c) and lung
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homogenates (d) were measured by focus-forming assays. e Viral sgRNA levels in the lungs were
quanti�ed by RT-pPCR 4 DPC and 7 DPC. Dot plots represent samples collected from individual animals
in a single experiment. Percentage of consolidation (f) and pathology scores in lungs (g) of sentinel
hamsters (n=6 for Nsp1-K164A/H165A, n=7 for WA1/2020, and n=8 for naïve controls) at 4 and 7 DPC
with 104 PFU of BA.2.12.1. Individual lung pathologies at 4 DPC (h) and 7 DPC (i) are presented in heat
maps. Dot plots in this graph represent samples collected from individual animals in a single experiment.
Statistical differences were calculated using ordinary one-way analysis of variance (ANOVA) in GraphPad
Prism 9.4.0 with Tukey’s multiple comparisons tests. For statistical signi�cance, * indicates p<0.05, **
indicates p<0.01), *** indicates p<0.001, and **** indicates p<0.0001. DPC: Days post-challenge.
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