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Fra-1(Fos-related antigen1), a member of transcription factor activator protein

(AP-1), plays an important role in cell proliferation, apoptosis, differentiation,

inflammation, oncogenesis and tumor metastasis. Accumulating evidence

suggest that the malignancy and invasive ability of tumors can be

significantly changed by directly targeting Fra-1. Besides, the effects of Fra-1

are gradually revealed in immune and inflammatory settings, such as arthritis,

pneumonia, psoriasis and cardiovascular disease. These regulatory

mechanisms that orchestrate immune and non-immune cells underlie Fra-1

as a potential therapeutic target for a variety of human diseases. In this review,

we focus on the current knowledge of Fra-1 in immune system, highlighting its

unique importance in regulating tissue homeostasis. In addition, we also

discuss the possible critical intervention strategy in diseases, which also

outline future research and development avenues.
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1 Introduction

In 1988, Cohen DR and Curran T screened rat c-DNA library with FOS DNA probes,

and isolated a new cDNA very similar to FOS, which was named FOS Like 1(FOSL1) (1).

By the same method, Matsui et al. confirmed in 1990 that FOSL1 existed in human cells,

which was 90% similar to that in rats (2). Fra-1, encoded by FOSL1, is one of the

members of the FOS family in activator protein(AP-1). The AP-1 complex results from

dimerization between members of JUN(c-Jun, JunB, JunD), FOS(c-Fos, FosB, Fra-1, and

Fra-2), ATF(Activating Transcription Factor)(ATF2, ATF3/LRF1, B-ATF), and MAF

(musculoaponeurotic fibrosarcoma)(c-MAF, MAFA, MAFB, MAFG/F/K, NRL) (3, 4). A
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large number of studies have shown that the contribution of AP-

1 to determining cell fate depends mainly on the relative

abundance of AP-1 subunits, dimer composition, quality of

stimulation, cell type and cell environment. As a transcription

factor, AP-1 controls genes encoding key cellular regulators. Its

members can be quickly assembled into dimers by

phosphorylation or methylation activation, then bind to the

relevant sites of the target genes, leading to the promotion or

inhibition of gene expression. At the cellular level, it involves

controlling proliferation, differentiation, apoptosis and

responding to environmental signals; at the biological level, it

plays a vital role in organogenesis, immune response and

cognitive function (5–9). The diversity of AP-1 functions

makes it very difficult to be studied, and hinders the answers

to some basic questions about it. Therefore, a clear

understanding of the mechanism of AP-1 members is of great

help to further study AP-1.

The immune system plays a key role in most diseases. It is

very important to find the key factors regulating immune

responses for the pathogenesis and development of various

diseases. Several studies have proved the importance of AP-1

signal in immune cell reactions such as macrophages.

Meanwhile, the promoter of many cytokines contains AP-1

binding sites, but the specific mechanism is still in the

exploratory stage, especially Fra-1. Studies on Fra-1 are mostly

focused on the proliferation, apoptosis, differentiation and

transformation of cancer cells. The mechanism of its function

in bone and tumor biology has been basically established (10,

11), while the properties of immune cell proliferation, activation

and differentiation are rarely studied. With the development of

technology, the inherent idea that Fra-1 mostly binds to the

promoter of target gene to regulate the expression of the target

gene has also been questioned (12, 13). Like AP-1, the function

of Fra-1 is also affected by many factors. Existing studies have

described Fra-1 as a positive regulator of gene transcription

involved in innate immunity (14), as well as an inhibitor of gene

expression in relevant contexts (15, 16). This may relate to the

differences of transcription complex which is consist of Fra-1, as

well as the different environment that the cells in or the different

stimulations it received, also depending on the type of cells and

their initial concentration in the cells. For example, in the case of

Th17 cells, Fra-1 has the opposite effect on differentiation in

mouse and human cells (17, 18). In addition, in different disease

models Fra-1 regulates IL-6 secretion differently even in the

same cells (19–21). Interestingly, the role of Fra-1 is related to its

cellular localization. Fra-1 trapped in the cytoplasm inhibits

Type I interferon responses to Malaria and Viral infections (22),

also might be a driving force for IL-8 overexpression (23).

Therefore, a comprehensive identification of the role of Fra-1

in immune processes may help to delineate new ways to

ameliorate immune-related diseases such as infections, cancer,

and cardiovascular diseases.
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The earliest and most studied Fos family protein is c-Fos,

part of the reason may be that c-Fos knockout does not cause

mice to die, while fetuses lacking Fra-1 suffered severe growth

retardation due to obstructed placental angiogenesis, resulting in

mouse death between E10.0 and E10.5 (24). The importance of

Fra-1 in embryonic development made it difficult to study, but

the subsequent emergence of specific knockout and “omics”

technology made the function of Fra-1 gradually clear. Here, we

discuss the structural characteristics and expression regulation

mechanism of FOSL1. In addition, we reviewed and summarized

some studies on the role of Fra-1 in innate and adaptive immune

regulation, as well as its influence on the occurrence and

development of some related diseases.
2 The identity of Fra – 1: Structure
and expression

2.1 Fra-1 structure

FOSL1 was initially found to be highly expressed in many

cancer cells and was defined as a proto-oncogene, which was

located at locus 11q13.1 and encoded a mature mRNA with a

length of 1.7kb (Figure 1A). FOSL1 encodes a 271 amino acid

protein Fra-1 with a relative molecular mass of 29000, and the

genome structure consists of four exons and three introns (4, 25).

Fra-1 is one of the members of FOS subfamily in the nuclear

transcription factor AP-1 family (3), shares the common

structural characteristics of AP-1. Like other members of AP-

1, Fra-1 is also known as the basic Leucine zipper (bZIP) protein,

where the leucine zipper motif (LZ) is used for dimerization and

the basic region (BR) is used for binding to specific DNA motifs

(Figure 1B). This domain is highly conserved in the AP-1 family

(3, 4), and the bZIP domain of Fra-1 is located at 107-161 amino

acid sites. The Leucine zipper is composed of extended amino

acids, with one leucine occurring every 6 amino acids. The dimer

formed by the interaction between Fra-1 and JUN family, forms

the “zipper” (Figure 1C) (26). The two subunits constituting the

dimer form a continuous a helix, the carboxy-terminal region

forms asymmetric helical coils, and the amino terminal region

performs base-specific binding to DNA in the main groove (27).

Because the amino acid composition in bZIP of FOS family

members is slightly different from that of JUN family members,

it cannot form homologous dimer with their own members like

JUN family, but can only combine with JUN family members to

form heterodimers and play a role (3). Moreover, Fra-1 can also

heterodimers with other ubiquitous bZIP transcription factors

(see Table 1) (13). In addition, related studies have found that

since there is a wide electrostatic interaction network between

subunits in the ahelix, Fos : Jun heterodimer has stronger affinity

to DNA than Jun : Jun homodimer, and it is more stable and

shows stronger transcriptional stimulation activity (38, 39). The
frontiersin.org
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dimer composed of Fra-1 and Jun preferentially binds to the

DNA motif known as the TPA reaction element (TRE; also

called AP-1 motif), it can also bind to cAMP-responsive element

(CRE), although the latter has a slightly lower affinity than the

former. The consensus sequences for TRE/AP-1 and CRE are 5′-
TGA(C/G) TCA and 5′- TCACGTCA motifs, respectively

(Figure 1C) (3, 26). In addition to the bZIP structure, FOS

family members display a second highly homologous at the C-

terminal, that is, the region where one of the two instability

factors of resides. The C-terminal destabilizing domain (DEST)

of Fra-1 protein containing 30-40 residues is necessary for its

transformation activity and one of the reasons for its

intracellular instability (Figure 1B) (40, 41).

Although these proteins belong to Fos family and share

similar structure, the function and expression pattern actually

not exactly the same. Skin sections show that Fra-1 is present in

all layers other basal layer, and Fra-2 is detected in all layers with

an increased level in the upper spinous layer. c-fos is present in

the nuclei of the upper spinous and granular layer cells (42). This

suggests that c-fos family proteins may exert different function

in different types of cells in tissues. Moreover, Fra-1, but not Fra-

2, orchestrates the inflammatory state of macrophages by
Frontiers in Immunology 03
regulating the expression of Arg1 and therefore impedes the

resolution of inflammation (15). Another study demonstrated

that Fra-1, Fra-2 and c-Fos promote the migration and invasion

process of mammary carcinomas with different molecular target

(43). In addition, it’s reported that c-Fos and Fra-1 have

functional equivalence during vertebrate evolution, and Fra-1

rescues c-Fos-dependent functions such as bone development

(44). However, c-Fos cannot totally replace Fra-1 because of the

embryonic lethality in Fra-1-defecient mice. These findings

show that the interaction and regulatory function among c-fos

family proteins are very complicated and highly coordinated,

and a detailed understanding of how these proteins determines

its propensity to regulate cellular biological events remains

further investigations.

Compared with other members of the FOS family, FOSL1

has very similar gene structures both in coding region and

noncoding region, especially the size of the third exon and the

protein encoded are completely the same (25). Although

members of Fos family share similar structural features, there

are also some differences. Firstly, in the mouse genome,

individual genes of FOS family are not closely located. FOSL1

is on chromosome 19, c-Fos is on chromosome 12, and FosB is
A B

C

FIGURE 1

The structure of Fra-1. (A) FOSL1 is on chromosome 19 and located in the 11q13.1. (B) Schematical presentation of the structure of FOS
mambers. bZIP, basic Leucine zipper region for dimerisation and DNA-binding and the FOS family has 90% homology in this region; The
phosphation of Fra-1 at side S252 and S265 inhibits the COOH-terminal destabilizer increasing Fra-1 half-time and the K116 deacetylation
positively controls DNA binding and transactivation. DBD, DNA binding domain; LZ, leucine zipper; TAD, C-terminal transactivating domain.
DEST, destabilizer element; HDAC6, Histone deacetylase 6. (C) X-ray structure of the bZIP dimmer AP-1 bound to DNA; Fra-1 and Jun
preferentially binds to the DNA motif known as the TRE and CRE. TRE, TPA reaction element; CRE, cAMP-responsive element.
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located on chromosome 7. In particular, the N-terminal and C-

terminal of c-Fos and FosB have a transcriptional activation

domain (TAD), while Fra-1 and Fra-2 are not found. At the

beginning of discovery, due to the lack of transactivation

domain, the entire Fra-1 protein fused with the DNA binding

domain of Gal4 shows a lack of any transcriptional activation

function (45), so it was once thought to be a transcription

suppressor (39, 46, 47). But it was subsequently as a

phosphorylation-dependent transcriptional activator (4). In

many tumors, these non-transformed FOS proteins, especially

Fra-1 and Fra-2, are involved in the progression of many tumors

types (4). Thus, the structural characteristics of Fra-1 and the

diversity and specificity of the combined dimers lay the

foundation for its complex and diverse functions.
2.2 Fra-1 expression and regulation

Due to the important and diverse functions of FOS family

members, precise and complex expression regulation is

necessary to avoid the pathological effects of organisms. FOS

and JUN are the main existing forms of AP-1 in mammals. The

induced expression of ATF and MAF family proteins is more

tissue/cell specific than FOS and JUN proteins (3). The

expression level of Fra-1 was low in most tissues, but it was
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found to be quite high in testis and brain (25). In cells, AP-1

family members, including Fra-1, belong to immediate early cell

genes (48). When fibroblasts are stimulated by serum, c-Fos and

FosB are rapidly and transiently induced, Fra-1 and Fra-2

expressions are delayed but more stable, possibly through the

activation of Fra-1 and Fra-2 promoters by Jun/Fos dimer (25,

49, 50). After stimulation, the expression of Fra-1 increased 12

times and lasted longer than that at rest (25). The results showed

that Fra-1 was mainly localized in nucleus during indirect

immunofluorescence assay (51). The expression characteristics

of FOS family proteins may be the basis of their participation in

the transition and asynchronous growth of G0-G1 cells (50)

2.2.1 Transcriptional regulation
The expression of Fra-1 involves the modification of several

histones and recruitment of related proteins, and its

transcriptional initiation is started after phosphorylation of

S10 on H3 (Figure 2) (52). After receiving stimulation such as

serum or growth factor, Myc binds to the corresponding DNA-

binding domain and subsequently recruits Mitogen- and stress-

activated kinases 1(MSK1/2) or proviral integration site for

Moloney murine leukemia virus 1(PIM1) kinase to

dephosphorylate H3S10 (52, 53), while TPA activates the

extracellular regulated protein kinases(ERK) pathway to

mediate Elk1 phosphorylation and TCF-SRE activation, Thus
TABLE 1 | Interaction protein of Fra-1 (HUMAN).

GENE name Protein name Reference

JUNB Transcription factor JunB (28–30)

JUN Transcription factor Jun (28, 31)

ATF4 Cyclic AMP-dependent transcription factor ATF-4 (32)

CREB5-3 Cyclic AMP-responsive element-binding protein 5 (29, 33)

NDK7 Nucleoside diphosphate kinase 7 (29, 33, 34)

RNF11 RING finger protein 11 (35)

TAB2 TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 (29, 36)

BATF3 Basic leucine zipper transcriptional factor ATF-like 3 (29)

KIFC3-5 Kinesin-like protein KIFC3 (29)

CCDC120 Coiled-coil domain-containing protein 120 (29)

GCC1 GRIP and coiled-coil domain-containing protein 1 (29)

NMDE3(GRIN2C) Glutamate receptor ionotropic, NMDA 2C (35)

PIN1 Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (29)

Q0VDCB(FKBP1A) Peptidylprolyl isomerase (35)

HSP72(HSPA2) Heat shock-related 70 kDa protein 2 (35)

CLAT-3(CHAT) Choline O-acetyltransferase (35)

FGFR3 Fibroblast growth factor receptor 3 (35)

USF1 Upstream stimulatory factor 1 (29, 33)

GELS(GSN) Gelsolin (35)

RASH(HRAS) GTPase HRas (35)

LDOC1 Protein LDOC1 (30, 37)

WFS1 Wolframin (35)

KIF1B-2 Kinesin-like protein KIF1B (35)
fro
The table was excerpted from Uniport (https://www.uniprot.org/uploadlists/).
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recruiting Aurora Kinase B (AURKB) to phosphorylate the site

(54). Phosphorylation at H3S10 forces the 14-3-3 protein to be

recruited to chromatin to recognize H3S10ph, which in turn

recruits MOF to chromatin, leading to acetylation of H4K16 and

H3K9. The P-TEFb/BRD4(positive-elongation factor/

Bromodomain Containing 4) complex then recruits to the

acetylation site, and catalyzes the phosphorylation of S2 in the

carboxyl terminal domain of RNA pol-II(polymerase II), and

finally leads to the release of stalled RNSD, resulting in

transcriptional extension of FOSL1 (52, 54). In addition, Signal

transducers and activators of transcription 3(Stat3) can be

phosphorylated and acetylated in response to IL-6 stimulation

and then bind to the promoter of FOSL1 to promote its
Frontiers in Immunology 05
transactivation (55). What’s more, FOSL1 has AP-1 site that

allows it to be regulated by Fra-1 itself and other AP-1 family

members (25, 56). Studies have found that tumor suppressor

gene P53 can recruit to the first promoter region of FOSL1 to

positively regulates its transcription, and FOSL1 is the only

member of the FOS and JUN family with functional P53

binding sites (57–60).

2.2.2 Post−translational regulation
Fra-1 is essentially an unstable protein, and the regulation of

its stability may be the basis of its accumulation (61). Regulation

of Fra-1 occurs at multiple levels, not only at the transcription

and translation levels, but also under the influence of post-
FIGURE 2

Transcriptional and posttranslational regulation of Fra-1. A schematic representation showing the multiple cellular pathways that converge to
regulate Fra-1 function. Stimulation by various factors leads to MAPKs/cAMP/JAK-Stat3 activation, which in turn activates several TFs, causing
the expression and phosphorylation of Fra-1, whose production regulation Fra-1 target gene expression. The unphosphorylated Fra-1 in the
cytoplasm is easily degraded by proteasome. The question mark represents the unknow role of phosphorylated Fra-1 in the cytoplasm and the
sepcific relationship between Fra-1, P53 and miR34. cAMP, Cyclic adenosine monophosphate; CRE, cAMP-responsive element; TRE, TPA
reaction element; SRE, serum response element; PKA/C, protein kinase A/C; CREB, cAMP-response element binding protein; MSK1/2, Mitogen-
and stress-activated kinases 1 and 2; ERK, extracellular regulated protein kinases; AURKB, Aurora Kinase B; P-TEFb, positive-elongation factor;
BRD4, Bromodomain Containing 4; POL-II, polymerase II; ATF1, Activating Transcription Factor 1; Stat3, Signal transducers and activators of
transcription 3; MAPK, mitogen-activated protein kinase; HDAC6, Histone Deacetylase 6; IL-6, interleukin-6; SRF, Serum response factor; JAK,
janus kinase; RAS, rat sarcoma; Raf, Raf protein kinase; PLC, Phospholipase C.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.954744
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2022.954744
translational modification (such as phosphorylation,

ubiquitination, etc.). Many proteins are known to be damaged

through covalently linking ubiquitin chains to lysine residues at

the n-terminal of the protein, which leads the protein to the

proteasome, but there is a class of proteins that do not require

prior ubiquitination to degrade (62–64). As mentioned above,

Fra-1 is one of these non-ubiquitin-dependent proteasomal

degrading proteins, which can be degraded even after all lysine

residues are replaced by arginine or its N-terminal is blocked by

fusion with Myc epitopes (51, 65).

Numerous studies have found that several kinases can

phosphorylate Fra-1 in vitro, including cAMP-dependent

kinase (PKA), protein kinase C (PKC), cyclin-dependent

kinase 1-cdc2(cdc2) and mitogen-activated protein kinase

(MAPK) (8, 41, 66–68). Fra-1 is the target of continuous

activation of MAPK cascade, which can increase the

transcription of FOSL1 (68), enhance the DNA binding

activity of Fra-1 (66), and affect the transcription activity of

Fra-1 after being activated (41). The activation of ERK has the

greatest impact on Fra-1 content, and there is a linear

relationship between the activity of ERK and the Fra-1 protein

production rate in the same cell (60). ERK-based activity induces

transcription of Fra-1, and its strongly increased activity is

required for proteasome-dependent degradation of Fra-1 (20,

69, 70). When two serine residues S252 and S265 at C-terminal

of Fra-1 protein are phosphorylated by ERK1/2, the DEST

region at C-terminal of Fra-1 is inactivated, thus promoting

the stability and accumulation of Fra-1, and the phosphorylation

at both sites shows accumulation effect (51, 71). Therefore,

under the stimulation of mitogen or in thyroid, colon and

breast cancer cells, the high level of Fra-1 expression can be

detected, where ERK pathway is highly active due to activation of

upstream signal effector factors (51). Fra-1 can also be

phosphorylated by protein kinase C (PKC) q (S265, T223,

T230, partially at T217 and T227 residues) and PKCa to

prolong the half-time of Fra-1, its Synergistic phosphorylation

with ERK-mediated phosphorylation stabilizes Fra-1 from

degradation (28, 72, 73). The acetylation at the K116 site in

the Fra-1 bZIP region inhibits the activity of Fra-1 and the

binding ability to c-Jun independently of the protein stability

mechanism. The Histone Deacetylase 6 (HDAC6)-mediated

deacetylation at the Fra-1-K116 site can increase its DNA

binding and transcriptional activity (74).

Studies have shown that downregulation of many tumor

suppressor miRNAs leads to the accumulation of Fra-1 in cells.

For example, miR34 can directly target Fra-1 to downregulate its

expression, and P53 regulates Fra-1 expression through miR34

dependent manner (75, 76). However, some studies have found

that P53 positively regulates the transcription of FOSL1 (57–60),

and the specific mechanism remains to be explored. Several

members of other tumor suppressor miRNA families (such as

miR15/16) also target Fra-1 and affect the disease progression by

regulating Fra-1 expression (see Figure 2) (77–79).
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3 Fra-1-mediated
immune regulation

The research of Fra-1 was focused on tumors and bone

development. Generally, except for cervical cancer (80) and some

controversial tumors (81–86), Fra-1 is highly expressed in most

tumors and promotes malignant progression of them, control the

proliferation and invasion of thyroid (87), bladder (88), lung and

pancreatic cells (89). In mice, overexpression of Fra-1 leads to

osteosclerosis, and conditional knockout leads to reduced bone

mass (90).With the development of technology, there is increasing

evidence that AP-1 controls the transcription of multiple

inflammation-related genes, such as IL-6, IL-1b, and TNF-a,
thereby regulating the inflammation immune response (15, 91, 92).
3.1 Macrophage

Macrophages are cellular components that exist in all tissues

and bodies under homeostasis physiological conditions (93–95),

which can change their phenotypes in response to many different

stimuli. In the early 1990s, two distinct phenotypes of macrophage

were described: one called classically activated (or inflammatory)

macrophage (M1) and the other called vicariously activated (or

wound-healing) macrophage (M2) (96, 97). Macrophages play a

dual role in arthritis, myocardial infarction, or other inflammatory

diseases, initiating and dispelling inflammation, and a mechanism

is needed to program the macrophage phenotype (98). The role of

the key transcription factor (TF) family in defining macrophage

identity and controlling its function by inducing and maintain

specific transcription processes has been fully established (99).

Meanwhile, GO analysis of differentially expression genes

between WT and Fra-1 deficient macrophage highlighted the

important role of Fra-1 in macrophage (15).

First, Fra-1 regulates the secretion of inflammatory cytokines

in macrophages (Figure 3). In LPS-induced lung injury mice,

Fra-1 is mainly expressed in alveolar macrophages (100), and

LPS-induced transcriptional activation of Fra-1 is mediated by

NF-kB and ERK1/2 signal transduction. Fra-1 selectively up-

regulates LPS-induced NF-kB dependent pro-inflammatory

cytokines (IL-1b, MIP-1A) and inhibits the anti-inflammatory

response of alveolar macrophage (decreasing IL-10 expression)

(20). Fra-1 can also affect the polarization state of macrophages.

In myocardial infarction model, Leucine Rich Repeat Containing

G Protein-Coupled538 Receptor 4 (Lgr4)-mediated cAMP/

PKA/CREB pathway promotes transactivation of Fos in pro-

inflammatory macrophage to enhance AP-1 activity, thereby

triggering proinflammatory programming in macrophages to

coordinate the proinflammatory state of infarcted macrophages

(101). In the arthritis model, Fra-1 expression was up-regulated

after LPS activated Toll-like receptors (TLR) cascade, and then it

was directly bound to the promoter region of Arginase 1 (Arg1)
frontiersin.org

https://doi.org/10.3389/fimmu.2022.954744
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2022.954744
to inhibit its transcription, making macrophages transform into

M1 pro-inflammatory phenotype (15). Fra-1 also enhances

osteoclast differentiation (102). In addition, it can also affect

tumor progression by affecting macrophage activity: Breast

cancer cells can overexpress Fra-1 in tumor-associated

macrophages, induce macrophages to differentiate from M1 to

M2, and then promote tumor immune escape, thereby

promoting the invasiveness of breast cancer cells (21, 103).

Signaling from CD137, a member of the tumor necrosis factor

superfamily, can promote the expression of Fra-1, thus

promoting the differentiation and migration of mononuclear

macrophage into osteoclasts, then promoting the metastasis of

tumor cells (104). Fra-1 also has a certain effect on the activation

stage of macrophages. It has been demonstrated that Fra-1 can

bind to Lipocalin 2 (Lcn2) promoter to promote neutropil

gelatinase-associated lipocalin (NGAL) expression in immune

tolerant BMDM(Bone marrow-derived macrophages), which

has been described as a marker of inactivated macrophages (14).
3.2 Monocytes

Bone marrow precursors give rise to monocytes in blood

(105). Together with tissue resident macrophage and dendritic
Frontiers in Immunology 07
cells (DCs), monocytes are classified as mononuclear

macrophages (106), which can serve as a bridge between

innate and adaptive immune responses. Some studies have

shown that monocytes are highly plastic and can differentiate

according to microenvironment changes (107, 108). Most

articles use CD14, CCR2 and CD16 to classify monocyte

subtypes, which are “classical” monocytes (CD14++CD16-

CCR2++), “intermediate” monocytes (CD14++CD16+CCR2+)

and “non-classical” monocytes (CD14+CD16++CCR2-) (109–

111). Among them, the proportion of “classical” monocytes are

the highest, which belongs to inflammatory cells that respond to

many stimuli originated from damaged/infected tissue and

produce inflammatory cytokines (111, 112); “intermediate”

monocytes are highly phagocytic cells that produce high levels

of ROS(reactive oxygen species) and inflammatory mediators

(113, 114); and non-classical monocytes are reparative/

patrolling cells that remove debris from vasculature and

produce high levels of anti-inflammatory factors (115, 116).

The researchers found that classical monocytes produced high

levels of the broadest range of cytokines and chemokines in

response to LPS, and this versability of classical monocytes is

attributed to AP-1 transcription factors that are most highly

expressed at the gene level by classical monocytes (117).

Different combinations of the AP-1 transcription factor
FIGURE 3

Fra-1 mediated immune regulation. A large number of studies have shown that Fra-1 regulates the function and activity of various immune cells in vivo.
At first, the expression level of Fra-1 affects the migration of neutrophils, the differentiation of macrophages and T or B lymphocyte. When the body is
infected or stimulated, the expression level of Fra-1 in immune cells increases, prompting more neutrophils to migrate from blood vessels to the site of
inflammation, promoting M0macrophages to differentiate more into M1-type macrophages and secrete more related pro-inflammatory cytokines. In
addition, Fra-1 has been reported to be the core of T or B lymphocyte differention in the adaptive immune responses.
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components are activated by different stimuli and signaling

pathways, defining the transcription targets for AP-1 (118–

120). What’s more, CD14+ monocytes can up-regulate the

expression of Fra-1 to inhibit the production of type I

proinflammatory cytokines monocytes and affect the effect of

cells after stimulated by RNA virus (121).
3.3 Neutrophil

Neutrophils, which are a type of polymorphonuclear

leukocyte, are well recognized as one of the major players

during acute inflammation. They are typically the first

leukocytes to be recruited to the inflammatory site and can

eliminate pathogens through various mechanisms (122–125).

Meanwhile, inappropriate recruitment can lead to tissue damage

(126). Therefore, proper control of neutrophil activity and

number is important for tissue homeostasis and progression. It

has been reported that TGF-bsignal up-regulates the expression
of Fra-1, c-Fos and c-Jun in neutrophil nucleus (127). In

addition, in most inflammatory diseases, the overexpression of

Fra-1 in mice will cause more neutrophils in blood vessels to

migrate to tissue, aggravating tissue damage (128).
3.4 T lymphocytes

Traditionally, host immunity is divided into innate and

adaptive immune responses. During infection, innate

immunity is first stimulated (inflammation) and fully activated

within minutes to hours (129). When innate immunity fails to

eliminate pathogens, lymphocytes and adaptive immune

mechanisms are activated, which can specifically recognize and

eliminate pathogens, and it is important for host defense during

late infection and secondary infection (130). Modulating

adaptive immunity can play an important role in disease

progression. T lymphocyte and B lymphocyte are the key cells

of adaptive immune response, mainly responsible for the basic

functions of cell-mediated immune response and antibody

production respectively (131).

CD4+T lymphocytes can differentiate into different subtypes

after being stimulated by cytokines, including Th1, Th2, Th9,

Th17, Th22, T follicular helper (Tfh), and regulatory T cell

(Treg). Under the regulation of intracellular transcription

factors, they play different immune roles (132). Studies have

shown that Fra-1 and other members of the AP-1 family play

multifunctional roles in T cell development (7). In melanoma,

Fra-1 is regulated by Ubc13-IKK signaling axis to maintain Treg

cell function and inhibit its transformation into effector T cells

(133). After overexpression of Fra-1 in CD4+T cells, it can act as

a downstream target of Stat3 to induce the differentiation of

Th17 cells (17). CD14+ monocytes can induce Fra-1 expression
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by activating MAPK through TLR7, and preferentially increase

the production of Th17 polarizing cytokines to promote the

polarization of Th17 cells (121). In the psoriatic model, Sobolev,

V., et al. speculated that transcriptional regulation of PPARg
(Peroxisome Proliferator Activated Receptor Gamma)

expression by the Fra-1 and Stat3/FOSL1 feedback pathways

may be at the core of T cell differentiation (134).

IL-6 can promote the specific differentiation of naive CD4 +

T cells, thereby linking congenital and acquired immune

responses. The combination of IL-6 and transforming growth

factor-b (TGF-b) is essential for the differentiation of Th17 cells

(135). It can also inhibit TGF-b-induced Treg differentiation,

and induces CD8 + T cells to differentiate into cytotoxic T cells

(136). As mentioned above, Fra-1 plays an important role in the

process of IL-6 secretion, and it is also the downstream effector

molecule. Fra-1 may be the key transcription factor regulating T

cell differentiation by these cytokines.
3.5 B lymphocytes

Blimp-1 is a transcription factor that plays an important role

in the maturation of plasma cells from B cells to

immunoglobulins and in the regulation of T cell homeostasis

and tolerance (137). Studies have shown that c-Fos, a member of

the Fos family, can positively regulate the expression of Blimp-1

and activate terminal differentiation of B cells (138), and its

overexpression can also inhibit germinal center response (139).

Increased AP-1 activity leads to early expression of Blimp-1,

resulting in premature plasma cell formation and inhibition of

germinal center B cell development (140, 141). However,

subsequent studies have pointed out that Fra-1 can inhibit the

production and development of plasma cells by regulating the

direct combination with the Prdm1/Bimp1(PR/SET Domain 1/B

lymphocyte induced maturation protein 1) promoter (142). In

addition, the activation of B cells by TD antigen can reduce the

expression of Fra-1, which can control the production of IgG-RF

and inhibit the activation of osteoclasts driven by immune

complexes (143). Therefore Fra-1 may be used as a regulator

to block the negative effects of autoimmunity by inhibiting the

formation of immune complexes. At the same time, in another

study, stimulation of CD40 and surface Ig (sIg) receptors on B

lymphocytes significantly induced Fra-1 expression by inducing

protein kinase C (PKC) (144), which is not consistent with the

previously observed phenotype. The regulation mechanism of

Fra-1 expression in B cells still needs more research to clarify.
3.6 Cytokines

Cytokines are a kind of small molecule proteins with

extensive biological activity synthesized and secreted by
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immune or some non-immune cells. They generally regulate cell

growth, differentiation and effect by binding to corresponding

receptors, and regulate immune response. Studies have found

that Fra-1 plays an important role in the synthesis and secretion

of various cytokines as well as the mechanism of action.

Promoter regions of inflammatory cytokines and chemokines

including TNF-a, IL-1b, IL-11, IL-8 and MCP-1 contain AP-1

binding sites (145, 146), but the reregulate mechanism of Fra-1

on cytokine expression is controversial.

We know that IL-6 mediates many inflammatory diseases

and is considered to be an immune regulator that coordinates

innate and adaptive immune responses (19). Morishita, H., et al.

reported that overexpression of Fra-1 in RAW264.7 inhibited

LPS-stimulated IL-6 production (147). In contrast, the study

found that 4T1 breast cancer cells can promote the expression of

Fra-1 in RAW264.7 in response to LPS and increase IL-6

production (21). Meanwhile, in LPS-triggered acute lung

injury models, there was no significant difference in IL-6

production after knockout of Fra-1 in mouse alveolar

macrophages (20). The effect of Fra-1 on cytokines is not

absolute, which may be affected by cell types and the initial

concentration of Fra-1 in cells, etc. The specific mechanism still

needs to be further studied. Interestingly, Stat3 is a major

transducer of signals triggered by cytokines and growth

factors. However, Stat3 responds to the IL-6 signal on the

membrane to phosphorylate downstream Fra-1, resulting in

stable and increased intracellular Fra-1 content (55), which

can further increase IL-6 expression. The expression of Fra-1

may be a positive feedback mechanism, which is similar to the

phenotype that Fra-1 binds to its own promoter to promote

expression. Furthermore, Du’s group reported that CCL-5, CCL-

19 and CCL-21 could be regulated by Fra1 in medulla thymic

epithelial cells (mTECs) and overexpression of Fra1 inhibited

the transcriptional level of IL-1b, IL-6, IL-8 and ICAM1. They

revealed that Fra1 disrupted inflammatory cytokine secretion by

mTECs(medullary thymic epithelial cells) in the MG

(myasthenia gravis) thymus (148). Another study conducted

by Cho demonstrated that Fra-1-JunB complex directly binds to

promoter region of IL-17a and activates its transcription (17).

Ishihara et al. found that silencing Fra-1 by siRNA suppressed

the expression of TNF-a and IL-1b in BV-2, a microglial cell

line (17).

Taken together, these findings indicate that Fra-1 is

intimately linked with the transcription of various cytokines in

immune cells.
4 Immune-related diseases

The role of Fra-1 in the immune system enables it to regulate the

occurrence and development of some diseases (see Table 2). It has

been extensively documented in osteosclerosis and cancer-related

diseases, which can be referred to other reviews (60, 71, 164, 165).
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4.1 Sepsis

Sepsis is a life-threateningdisease causedbyhighmorbidityand

mortality in hospitals (166). It is characterized by excessive

inflammation in the early stage and subsequent abnormal

regression of inflammation associated with long-term

immunosuppression, which may eventually lead to multiple

organ dysfunction. Proper control of inflammation plays an

important role in the recovery of sepsis (167), which WHO has

identified as a global health priority (168). Studies have proved that

Fra-1 plays a certain role in the occurrence and development of

sepsis. First, Matrix Metallopeptidase 9 (MMP9) was found to be

one of the differentially expressed genes involved in the

pathogenesis of sepsis (169). Down-regulation of MMP9 can

reduce inflammation, while Fra-1 can occupy the promoter of

MMP9 (170, 171). The silencing of Fra-1 destroys the expression of

MMP9 (172), thereby reducing sepsis-induced renal inflammation

and apoptosis (149). In addition, many studies have found that

sepsis in mice overexpressing Fra-1 increases the severity of lung

injury (150). In the immunosuppressive phase, specific knockout of

Fra-1 in mouse macrophages leads to increased inflammation in

immune tolerant mice, and Fra-1 can protect mice against

endotoxin-induced sepsis by regulating NGAL (14). The

regulation of Fra-1 on inflammation in sepsis is time-dependent,

and the specificmechanismof action remains tobe studied. Further

studies are expected to find that Fra-1 can provide a new direction

for sepsis treatment, and finally verify the clinical feasibility.
4.2 Cardiovascular system

Knockout of Fra-1 in mice results in embryonic death by

blocking the angiogenesis of fetal placenta, indicating the

importance of Fra-1 in angiogenesis. Prokineticin 2(PROK2)is an

important contributor to tumor angiogenesis (151), Ring Finger

Protein 213 (RNF213) is essential for normal vascular development

(152), and Leucine Rich Alpha-2-Glycoprotein 1 (LRG1) plays a

role in retinal vascularization abnormalities observed in oxygen-

induced retinopathy (154). All three have been found to be

regulated by Fra-1. It may also serve as a mediator of impaired

pulmonary vascular development in neonates (153). In addition,

Fra-1 plays a role in atherosclerosis (155), diabetic vascular

restenosis (156), myocarditis, myocardial infarction (101) and

other diseases. Previous studies suggest that the role of Fra-1 in

regulating inflammatory angiogenesis in organs may be a topic for

future research.
4.3 Respiratory system

Expression of Fra-1 is increased in the lungs of people

stimulated by LPS or infected with bacteria in vitro (100), and

in the adult respiratory distress syndrome (ARDS) (173).
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Knockout Fra-1 in mice reduced LPS-induced acute lung injury

and mortality (128), while overexpression showed opposite

results (173). Studies have shown that Fra-1 plays a key role in

inflammatory lung injury. Fra-1 plays a protective role in

pulmonary fibrosis and regulates early fibro genic response.

Fra-1 mediates anti-fibrosis effects by regulating pro-

inflammatory, pro-fibrotic and fibrotic gene expression in vivo

and in vitro (157, 158). Conversely, Fra-2 has been studied as a

causative factor for human fibrosis, and high expression of Fra-2

was observed in idiopathic and autoimmune-mediated

pulmonary fibrosis samples (174). The structures of Fra-2 and

Fra-1 are very similar, and the opposite effect of the two in the

same disease is also worth thinking and studying, and both are

considered to be therapeutic targets for pulmonary fibrosis.
4.4 Skin-related diseases

Psoriasis is a common inflammatory skin disease that is

autoimmune and affects approximately 3% of the world’s

population. It is characterized by keratinocyte proliferation,

altered differentiation, and increased inflammation and

angiogenesis (175). Fra-1 is very important for the stability of

psoriasis inflammation, and is overexpressed human pathological

tissues (159, 160). PPAR-g inhibits the transcription of IL-17 by

inhibiting its direct transcription factors RORC and STAT3, while

FRA-1 can regulate the expressionof STATA3,RORCand IL-17by

directly inhibiting PPARg, thus regulating the development of

psoriasis (134). Induction of Fra-1 overexpression in

keratinocytes induces increased production of proinflammatory
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cytokines and chemokines (IL-8 and TNF-a), allowing subsequent

immune cells (neutrophils and T cells) to migrate under this

proinflammatory background and inducing plaque development

in psoriasis (176).
4.5 Digestive system

The liver of Fra-1 overexpressed mice was progressively

infiltrated by innate and adaptive immune cells. Compared

with WT mice, the infiltrated cells in the liver of Fra-1

overexpressed mice were mainly composed of neutrophils and

CD3+T cells, while B cells and macrophages rarely appeared in

inflammatory sites, showing increased infiltration of activated

CD4+CD69+ T cells. B cells, NK cells, and NKT cells decreased

dramatically, while neutrophil infiltration increased (161). In

DSS-induced colitis model, overexpression of Fra-1 inhibited the

activation of NF-kB (162) and reduced the inflammatory

response in mice.
4.6 Autoimmune disease

The absence of Fra-1 affects the inflammatory stage of

arthritis, and the severity of the disease after inducing SIA in

Fra-1 deficient mice is reduced. Different from the absence of

other AP-1 members, c-Fos deficient mice have more severe

arthritis (177). Overexpression of Fra-1 in CD4 + T cells can

bind to JunB as a downstream target of Stat3 to induce Th17 cell

differentiation and promote autoimmune arthritis (143).

Inhibition of AP-1 activity can prevent acute graft-versus-host

disease (aGVHD) by altering the differentiation of CD4 + T cells,

such as reduced Th17/Th1 population and increased Treg

population (163). Other studies have found that the expression

of Fra-1 in medullary thymic epithelial cells (mTEC) of

myasthenia gravis (MG) patients is increased, and its

overexpression may destroy the secretion of inflammatory

cytokines in mTEC of MG patients’ thymus. accompanied the

increase of CCL5, CCL-19 and CCL-21, and the decrease of

ICAM1, IL-6, IL-1b (148).
4.7 Tumor

Numerous studies have confirmed that Fra-1 is crucially

involved in human tumor progression and metastasis, thus

representing a promising therapeutic target (178, 179). As we

all know, inflammation and cancer is intimately linked, the

tumor microenvironment (TME) plays a prominent role in the

growth of tumor cells. As the major inflammation component of

the TME, M2d macrophages are educated by the TME such that

they adopt an immunosuppressive role that promotes tumor

metastasis and progression (180). Fra-1 can increase the
TABLE 2 Immune-related diseases.

Disease Reference

Sepsis – (14, 149, 150)

Cardiovascular
system

tumor angiogenesis (151)

vascular development (152, 153)

retinal disease (154)

atherosclerosis (155)

diabetic vascular restenosis (156)

myocardial infarction (101)

Respiratory system acute lung injury (128)

pulmonary fibrosis (157, 158)

Skin-related disease Psoriasis (159, 160)

Digestive system cholangitis (161)

liver fibrosis (161)

colitis (162)

Autoimmune
disease

acute graft-versus-host disease
(aGVHD)

(163)

autoimmune arthritis (143)

myasthenia gravis (148).

Tumor – (21, 55, 74, 103,
104)
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production of the cytokine IL-6 and skew RAW264.7

macrophage cell differentiation into M2d macrophage, then

promotes tumor metastasis and progression (21, 103); CD137

promotes the migration of monocytes/macrophages to tumor

microenvironment by upregulating the expression of Fra1. It

also promoted the differentiation of monocytes/macrophages

into osteoclasts at the same time, thus providing a favorable

microenvironment for the colonization and growth of breast

cancer cells in bone (104); The cytokine IL-6 induces Fra-1

deacetylation, then promoting colorectal cancer stem-like

properties (74); In addition, the existence of an aberrant IL-6/

STAT3/Fra-1 signaling axis leading to colorectal cancer(CRC)

aggressiveness through EMT induction, which suggests novel

therapeutic opportunities for the malignant disease (55). A DNA

vaccine encoding transcription factor Fra-1 and secretory IL-18

induces a long-lived memory T-cell response which can

contribute to tumor regression (181–183). The effect of Fra-1

on immune cells also plays an important role in tumorigenesis.
5 Fra-1 related treatment

The complex and diverse functions of AP-1 have made it an

actively pursued drug target in past studies, but transcription

factors have been considered difficult to target because their

activity is triggered by protein-protein or protein-DNA

interactions. However, inhibiting key transcription factors such

as c-Myc (184, 185), which is previously considered to be drug-

free, and then confirmed, this provides confidence and

foundation for the suppression of other transcription factors

such as AP-1. Selective AP-1 inhibitor T5224 (61) (3-propionic

acid (T-5224)) has been investigated in phase II clinical trials for

novel c-Fos/AP-1 inhibitors for rheumatoid arthritis (186).

Some studies have found that some tumor prevention drugs,

such as resveratrol (187), green tea (188) and curcumin (189),

work by inhibiting Fra-1 expression in the model system. Retinol

like SR11302 inhibits AP-1 activity and FOSL1 expression

without activating RARE transcription (12, 190–194). SR11302

inhibits alloreactive T cell response in a dose-dependent manner,

showing decreased Th17/Th1 population and increased Treg

population in vivo (163). Meanwhile, FOSL1 was found to be the

target of anti-epileptic drug levetiracetam (LEV) for inhibiting

neuroinflammation. LEV can reduce the expression of FOSL1 in

microglia to inhibit its activation and thus inhibit the

inflammatory response involved (195). At present, there is no

specific small-molecule inhibitor of Fra-1 that is effective both in

cells and animals. In fact, the existing selective inhibitors are not

only act on Fra-1, which would elicit undesired side effects. As

extensive screening of specific inhibitors of Fra-1 is still ongoing,

additional improvements may be achieved from future

experimentation. Another strategy for targeting Fra-1 is

genetic inhibition. Vicent’s group reported that deficiency for

Fra-1 in a genetical ly engineered mouse model of
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Cholangiocarcinoma using constitutive and inducible short-

hairpin RNAs extended mouse survival by decreasing the

oncogenic potential of transformed cholangiocytes (179).

Sometimes directly targeting Fra-1 may be difficult at

present, but if more targets for Fra-1 regulation can be found,

it may be relatively easy to control the target gene and obtain the

corresponding phenotype. For example, the expression of the

Mevalonate pathway gene HMGCS1 is controlled by direct

FOSL1 promoter binding. Genetic and pharmacological

inhibition of HMGCS1 and AURKA leads to loss of

FOSL1, which can reduce the carcinogenic potential of

transformed bile duct cells and prolong mouse survival (179).

As previously mentioned, MAP kinase pathway plays a role in

the content and stability of Fra-1 in cells. Inhibition of ERK1/2

pathway can block the recruitment of c-Jun and NF-kB

transcription factors to endogenous FOSL1 promoter after LPS

stimulation to reduce Fra-1 mRNA expression, thereby reducing

the expression of inflammatory factors (20). The progression of

many diseases is influenced by the immune system, and the role

of Fra-1 in the immune system makes it a potential target for

disease treatment. The regulation of Fra-1 and its pre- and post-

effectors has a great impact on the outcome of the disease.

However, the mechanism of Fra-1 in immune cells and immune

responses is still unclear, which needs more research to

elaborate, and then it is expected to develop effective drugs for

clinical use.
6 Discussion

As a member of FOS family, Fra-1 plays an important role in

cell proliferation, differentiation, tumor transformation,

immunity, inflammation and other processes. AP-1 is an

important nuclear transcription factor. FOS and JUN families,

which mainly exist in mammals, bind to form heterodimers

through the leucine zipper domain to regulate the transcription

of related target genes. It is involved in MAPK (196), Wnt (197)

and other important signaling pathways, which accumulate in

cells mainly through transcription and post-translational

modification. Since tumor progression is closely related to the

intensity of immune response, when most studies focus on the

role of Fra-1 in tumors, the other part focuses on the function of

Fra-1 in immunity.

Fra-1 affects the differentiation and activation of immune

cells, especially macrophages, as well as the secretion of many

cytokines (17, 121, 133, 138, 142, 198, 199), but the specific

mechanism remains to be further explored. The regulation of the

immune response of Fra-1 makes its intracellular expression

affect the outcome of many diseases, such as sepsis (149),

atherosclerosis (155), myocardial infarction (101), psoriasis

(134), colitis (162), etc. This evidence points at the importance

of Fra-1 in immune regulation. Thus, it’s necessary to figure out

the molecule controls of Fra-1 that maintain the steady-state
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homeostasis of immune cells and how dysregulation of these

processes could precipitate a wide range of immune-associated

disorders. Meanwhile, targeting Fra-1 is expected to be an

effective intervention strategy. However, there are still many

basic questions about Fra-1 that cannot be answered.

First, why do the same structural molecules play the opposite

effect. The structures of most FOS family members are similar,

especially Fra-1 and Fra-2, both of which lack the trans-activation

domain at their C-terminus (45), but sometimes they show

different results in the same disease. For example, Fra-1 has a

protective effect on pulmonary fibrosis, but Fra-2 is the pathogenic

factor of the disease (157, 158, 174). Secondly, whether the Fra-1/

AP-1 transcription factor only binds to the promoter of the target

gene plays a role. Prior to the emergence of ‘omics’ research, the

molecular transcription research of AP-1 was basically

concentrated in the gene promoter region. This view has

recently been challenged by genome-wide studies showing that

AP-1 frequently binds to enhancer sites far from the gene

transcription start site (TSSs), although the nature of this has

not been determined (13, 31). It has been found that FOSL1 not

only acts on promoters of target genes, but also selectively binds to

its enhancers and corresponding Mediators to establish super

enhancers (SEs), thus promoting the expression of target genes

(12). At present, our understanding of Fra-1 targeted gene and its

transcriptional regulation mechanism is still limited. It is not clear

whether Fra-1 affects chromatin or whether it affects the

expression of target genes in cells by using the preset 3D

structural network. Then, whether Fra-1 must be incorporated

into the nucleus through transcription factors with other proteins

to function. The activation of ERK by Nitrogen mustard (NM)

increases Fra-1 levels in mouse epidermis and cultured human

keratinocytes, where Fra-1 is mainly expressed in the cytoplasm

rather than the nucleus, which contributes to IL-8 expression in

NM-damaged skin (23).

In summary, a large number of studies have found that Fra-1

plays a certain role in the immune response process.

Intervention at the levels of transcription, translation and

post-translational modification can regulate its expression in

cells, thereby regulating some cell activities and molecular
Frontiers in Immunology 12
production. However, the specific mechanism remains unclear,

and many problems still need further study.
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Glossary

AP-1 activating protein-1

Fra-1 Fos-related antigen 1

FOSLl FOS Like 1

bZIP basic Leucine zipper

BR basic region

TRE TPA reaction element

cAMP Cyclic adenosine monophosphate

CRE cAMP-responsive element

SRE serum response element

DEST C-terminal destabilizing domain

TAD Transcriptional activation domain

MSK1/2 Mitogen- and stress-activated kinases 1 and 2

PIM1 (proviral integration site for Moloney murine leukemia virus 1)

SRF Serum response factor

ERK extracellular regulated protein kinases

RAS rat sarcoma

Raf Raf protein kinase

AURKB Aurora Kinase B

P-TEFb positive-elongation factor

BRD4 Bromodomain Containing 4

POL-II polymerase II

ATF1 Activating Transcription Factor 1

Stat3 Signal transducers and activators of transcription 3

PKA protein kinase A

PKC protein kinase C

cdc2 cyclin-dependent kinase 1-cdc2

MAPK mitogen-activated protein kinase

HDAC6 Histone Deacetylase 6

TF transcription factor

MMP matrix metalloproteinase

IL-6 interleukin-6

MIP-1A Macrophage inflammatory protein 1a

Lgr4 Leucine Rich Repeat Containing G Protein-Coupled Receptor 4

CREB cAMP-response element binding protein

TLR Toll-like receptors

Arg1 Arginase 1

Lcn2 Lipocalin 2

NGAL neutropil gelatinase-associated lipocalin

BMDM Bone marrow-derived macrophages

PPARg Peroxisome Proliferator Activated Receptor Gamma

Blimp-1 B lymphocyte induced maturation protein 1

Prdm1 PR/SET Domain 1

PROK2 Prokineticin 2

RNF213 Ring Finger Protein 213

LRG1 Leucine Rich Alpha-2-Glycoprotein 1

aGVHD acute graft-versus-host disease

mTEC medullary thymic epithelial cells

MG myasthenia gravis

(Continued)
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TSSs transcription start site

SEs super enhancers

JAK janus kinase

PLC Phospholipase C.
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