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Abstract

Severe mental illnesses (SMIs) are often associated with compromised brain health, physical 

comorbidities, and cognitive deficits, but it is incompletely understood whether these 

comorbidities are intrinsic to SMI pathophysiology or secondary to having SMIs. We tested the 

hypothesis that cerebral, cardiometabolic, and cognitive impairments commonly observed in SMIs 

can be observed in non-psychiatric individuals with SMI-like brain patterns of deviation as seen 

on magnetic resonance imaging. 22,883 participants free of common neuropsychiatric conditions 

from the UK Biobank (age = 63.4 ± 7.5 years, range = 45–82 years, 50.9% female) were split into 

discovery and replication samples. The regional vulnerability index (RVI) was used to quantify 

each participant’s respective brain similarity to meta-analytical patterns of schizophrenia spectrum 
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disorder, bipolar disorder, and major depressive disorder in gray matter thickness, subcortical gray 

matter volume, and white matter integrity. Cluster analysis revealed five clusters with distinct RVI 

profiles. Compared with a cluster with no RVI elevation, a cluster with RVI elevation across all 

SMIs and brain structures showed significantly higher volume of white matter hyperintensities 

(Cohen’s d = 0.59, pFDR < 10−16), poorer cardiovascular (Cohen’s d = 0.30, pFDR < 10−16) 

and metabolic (Cohen’s d = 0.12, pFDR = 1.3 × 10−4) health, and slower speed of information 

processing (|Cohen’s d| = 0.11–0.17, pFDR = 1.6 × 10−3-4.6 × 10−8). This cluster also had 

significantly higher level of C-reactive protein and alcohol use (Cohen’s d = 0.11 and 0.28, pFDR 

= 4.1 × 10−3 and 1.1 × 10−11). Three other clusters with respective RVI elevation in gray matter 

thickness, subcortical gray matter volume, and white matter integrity showed intermediate level 

of white matter hyperintensities, cardiometabolic health, and alcohol use. Our results suggest 

that cerebral, physical, and cognitive impairments in SMIs may be partly intrinsic via shared 

pathophysiological pathways with SMI-related brain anatomical changes.
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Introduction

Individuals with severe mental illnesses (SMIs), including schizophrenia spectrum disorder 

(SSD), bipolar disorder (BD), and major depressive disorder (MDD), often suffer from 

compromised brain health, physical comorbidities, and cognitive deficits (Felker et al., 1996; 

Firth et al., 2019; Gold and Harvey, 1993; Herrmann et al., 2008; Lee et al., 2012; Pillai 

et al., 2002; Ribe et al., 2015; Robinson et al., 2006; Sachdev and Brodaty, 1999; Schmaal 

et al., 2020). Understanding the nature of these comorbidities is important to improve the 

quality and span of life in SMIs. However, whether these co-occurring impairments are 

intrinsic to SMI pathophysiology or consequences of having SMIs (e.g., medication use, 

lifestyle and socioeconomic changes, and inadequate healthcare) is unknown. Here, we 

posited that comorbidities and reduced functionalities commonly reported in SMIs may be 

observed in individuals without SMIs but whose brains share similarity with established 

SMI brain deficit patterns. We tested this hypothesis in a large epidemiological sample (N = 

22,883) of non-psychiatric participants.

SMIs have complex genetic and environmental underpinnings and their pathophysiological 

processes likely act throughout the human body, leading to cerebral, physical, and 

cognitive impairments in addition to psychiatric symptoms. Researchers have examined 

the intrinsicality of SMI co-occurring health impairments by studying non-SMI individuals 

with SMI genetic liability. For example, individuals in the general population with elevated 

polygenic risk score (PRS) for schizophrenia show increased rates of respiratory and 

digestive disorders, and deficits in attention, learning, and executive functioning (Liebers 

et al., 2016; Zhang et al., 2021) suggesting pleiotropic effects of schizophrenia risk 

genes. However, this approach does not account for co-occurring impairments that are 

inherent to SMIs through non-genetic pathways, such as epigenetic, environment, gene-by-
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environment and more complex interactions that dysregulate vital cellular pathways leading 

to impairments across the body. To this end, examining the association between SMI co-

occurring impairments and phenotypic patterns for SMIs may offer additional insight by 

capturing these complex effects in SMI etiopathology.

We developed a regional vulnerability index (RVI) to quantify the brain phenotypic liability 

for three major SMIs (Kochunov et al., 2020b). The RVI capitalizes on outcomes of the 

large and inclusive meta-analyses by the Enhancing Neuro Imaging Genetics through Meta-

Analysis (ENIGMA) consortium, which demonstrated that regional brain deficit patterns 

are distinct and replicable neurobiological signatures of SSD, BD, and MDD (Favre et al., 

2019; Hibar et al., 2018, 2016; Kelly et al., 2018; Schmaal et al., 2017, 2016; van Erp et 

al., 2018, 2016; van Velzen et al., 2020). The RVI acts as a phenotypic counterpart of the 

PRS and translates these patterns in large-scale datasets to the individual level by correlating 

normalized individual regional brain measures with the illness-specific regional brain effect 

sizes from the ENIGMA consortium. Like the PRS, the RVI for SSD, BD and MDD can 

be calculated for any individual and shows specificity for separating patients with SSD, BD 

and MDD from controls and from each other (Kochunov et al., 2019, 2020a, 2021c). The 

RVI outperformed any single regional brain measure in explaining symptom severity, illness 

duration, and cognitive deficits in patients with SMIs (Kochunov et al., 2019, 2020a, 2021c). 

Sensitivity, specificity, and association with cognition were on par with or exceeded that of 

PRS in patients (Kochunov et al., 2021b). Moreover, the RVI for SSD explained variance in 

cognitive performance among healthy controls, suggesting that the RVI may be applicable 

to the general population and capture the continuum of subclinical and clinical variation 

(Kochunov et al., 2019).

In this study, we examined the association between SMI-RVI and brain health, physical 

health, and cognitive performance in 22,883 non-psychiatric participants from the UK 

Biobank (UKBB). Participants without a history of diagnoses of psychiatric, neurological, 

and medical disorders with neurological complications were randomly split into discovery 

and replication samples equivalent in sex, age, and other demographic characteristics. 

Cluster analysis was used to group participants based on their RVI for SSD, BD, and 

MDD in cortical gray matter thickness (GMT), subcortical gray matter volume (SV) and 

white matter (WM) fractional anisotropy. Based on common co-occurring impairments in 

SMIs (Firth et al., 2019; Gold and Harvey, 1993; Herrmann et al., 2008; Lee et al., 2012; 

Pillai et al., 2002; Robinson et al., 2006; Sachdev and Brodaty, 1999), we hypothesized that 

clusters characterized with elevated RVI would show significantly higher volume of white 

matter hyperintensities, poorer cardiometabolic health, and worse cognitive performance 

than clusters with no RVI elevation.

Methods

Participants

22,883 participants (age = 63.4 ± 7.5 years, range = 45–82 years, 50.9% female, 84.6% 

white) in the UKBB’s neuroimaging data release version 1.7, Application Number 34077 

(Jan 2020) were included. We chose participants who were free of common neuropsychiatric 

conditions, including: 1) psychiatric disorders, 2) neurological conditions (traumatic brain 
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injury, stroke, meningitis, etc.), and 3) medical disorders often associated with neurological 

complications (human immunodeficiency virus infection, diabetes, etc.). We also excluded 

participants who were diagnosed with any type of cancer. Medical history was based on 

available hospital records, self-report at site visits, online follow-up, and death registries. See 

Supplementary Table 1 for a complete list of excluded conditions.

The UKBB was approved by the North West Multi-centre Research Ethics Committee. All 

participants provided written informed consent. We received approval from the UKBB to 

access and analyze the data.

Imaging and Behavioral Assessment

Participants underwent the standard UKBB behavioral and neuroimaging protocol (Miller 

et al., 2016; Sudlow et al., 2015) during the UKBB’s imaging visit that started in 2014. 

Participants were randomly split into discovery (N = 11,442) and replication (N = 11,441) 

samples. No significant differences were found between the two groups on age, sex, 

race/ethnicity, college education, household income, and scanning site (all p’s >.05). We 

conducted all the following analyses independently in the discovery and replication samples.

Subclinical depressive symptoms

To characterize subclinical depressive symptoms in this non-psychiatric sample, participants 

rated the following over the past two weeks from “not at all” to “nearly every day” (0–3): 

“felt down, depressed, or hopeless”; “had little interest or pleasure in doing things”; “felt 

tense, fidgety, or restless”; and “felt tired or had little energy.” Depressive symptoms were 

the sum of the answers, transformed to a 4-point scale to correct for right skewness (0 = 0, 1 

= 1–2; 2 = 3–5, 3 = 6 or more).

Regional vulnerability index (RVI)

Steps for deriving RVI were described in a previous paper (Kochunov et al., 2020a) and 

implemented in the ‘RVIpkg’ package (version 0.3.0) (Kochunov et al., 2021a) in R (R Core 

Team, 2019). Briefly, we used imaging-derived phenotypes generated by the UKBB (Alfaro-

Almagro et al., 2018; Miller et al., 2016) (see Supplementary Table 2 for a complete list). 

Quality control was described in (Alfaro-Almagro et al., 2018) and we did not implement 

additional quality control steps. The cortical gray matter thickness (GMT) and subcortical 

gray matter volume (SV) measures were derived from the UKBB’s T1 pipeline (Alfaro-

Almagro et al., 2018) and generated with the Desikan-Killiany parcellation in FreeSurfer 

(Desikan et al., 2006; Fischl et al., 2004) and FSL’s FIRST tool (Patenaude et al., 2011), 

respectively. The white matter (WM) fractional anisotropy (FA) measures were derived from 

the UKBB’s dMRI pipeline (Alfaro-Almagro et al., 2018) and generated with FSL’s TBSS 

tool (Smith et al., 2006). We derived 33 GMT, 8 SV, and 24 WM FA measures whose effect 

sizes for SSD, BD, and MDD were reported by the ENIGMA consortium (Favre et al., 2019; 

Hibar et al., 2018, 2016; Kelly et al., 2018; Schmaal et al., 2017, 2016; van Erp et al., 

2018, 2016; van Velzen et al., 2020). We regressed out the effects of age, sex, intracranial 

volume, and scanning site from all measures. To quantify an individual’s similarity to SSD 

in the WM (i.e., RVIWM,SSD), we correlated the individual’s standardized FA scores across 

WM tracts with the corresponding ENIGMA effect sizes (Cohen’s ds). Other RVI values 
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were derived similarly, resulting in 9 RVIs for 3 SMIs (SSD, BD, MDD) × 3 tissue types 

(GMT, SV, WM). All RVIs were transformed to Fisher’s z values to enhance normality. The 

ENIGMA effect sizes used in this study are included in Supplementary Tables 3–5.

Brain health

We used the total volume of white matter hyperintensities as an index of overall brain 

health. Hyperintense white matter regions observed on T2 weighted FLAIR images reflect 

accumulation of interstitial fluid and are associated with areas of localized demyelination 

and white matter damage. Total volume of white matter hyperintensities is a sensitive but 

non-specific index of brain health that has strong associations with cardiovascular risks, 

trauma, neurodegeneration, and aging (Debette and Markus, 2010; van Dijk et al., 2004). 

We used the total volume of white matter hyperintensities data from the UKBB (Field ID 

25781), which were automatically estimated with T1 and T2_FLAIR data using the Brain 

Intensity Abnormality Classification Algorithm in FSL (Griffanti et al., 2016).

Physical health

We evaluated cardiovascular and metabolic health as diseases in these two systems are 

the most reported physical comorbidities in SMIs (Firth et al., 2019). We measured 

cardiovascular and metabolic health continuously with the biological health scores 

(Chadeau-Hyam et al., 2020; Karimi et al., 2019). Biomarkers used in the cardiovascular 

health score included systolic and diastolic blood pressure (averaged across two consecutive 

readings, either manual or automated) and pulse rate. Biomarkers used in the metabolic 

health score included blood glycated haemoglobin, high-density lipoprotein, low-density 

lipoprotein, and triglycerides (Supplementary Table 6). Computation was previously 

described in full detail (Chadeau-Hyam et al., 2020; Karimi et al., 2019). Briefly, we 

binarized each biomarker by assigning 1 to individuals within the extreme quartile of 

their age and sex group. We then adjusted for medication management by assigning 1 to 

relevant biomarkers for individuals taking blood pressure, cholesterol lowering, and insulin 

medication (Supplementary Table 6). We averaged the binarized biomarker values within 

the respective systems to derive cardiovascular and metabolic health scores. The biological 

health scores were computed in the entire UKBB sample, rather than the relatively healthy 

22,883 participants included in the cluster analysis. Higher scores indicate poorer health. A 

recent study shows that cardiovascular and metabolic health scores in the UKBB predicted 

all-cause, cancer, and cardiovascular mortality as well as cancer and cardiovascular disease 

incidence (Chadeau-Hyam et al., 2020).

Because the UKBB blood assay data at the imaging visit were not available at the time of 

this study, the metabolic health score was based on the UKBB initial assessment that took 

place between 2006 and 2010. Interval between the initial assessment and the imaging visit 

was 8.9 ± 1.7 years, range = 4.3 – 8.9 years.

Cognitive performance

Participants completed the automated UKBB cognitive test battery on a touchscreen 

computer (Fawns-Ritchie and Deary, 2020). We included 9 tests in the current study, 

covering cognitive domains of processing speed, cognitive flexibility, working memory, 
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visuospatial learning/memory, perceptual reasoning, executive functioning/planning and 

fluid intelligence. As the UKBB cognitive tests were brief and unsupervised, we performed 

quality control to enhance validity. Details of the cognitive tests, quality control, and data 

transformation may be found in Supplementary Table 7.

Potential risk factors

We additionally measured potential risk factors that might be the sources of differences in 

non-SMI individuals across RVI clusters (see Supplementary Table 8).

SMI polygenic risk

To compute participants’ polygenic risk scores (PRS) for SMIs, we used 

the UKBB genetic data gathered using Affymetrix UK BiLEVE Axiom array 

which genotyped approximately 850,000 variants. Details on quality control and 

imputation are listed elsewhere (https://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/

UKBiobank_genotyping_QC_documentation-web-1.pdf, https://www.ukbiobank.ac.uk/wp-

content/uploads/2014/04/imputation_documentation_May2015-1.pdf). Post-imputation 

quality control involved filtering single nucleotide polymorphisms (SNPs) based on minor 

allele frequency (< 0.01), Hardy-Weinberg Equilibrium (< 1·10−6), R-squared (< 0.03), and 

call rate (< 0.95).

PRS for SSD, BD, and MDD were calculated using PRSice software and the most recent 

genome-wide association studies (GWAS) summary statistics available from the Psychiatric 

Genomics Consortium (PGC) (https://www.med.unc.edu/pgc/download-results/). The SSD 

PRS summary statistics were from a sample of N = 152,805 (38,131 SSD/114,674 controls) 

including data from 52 PGC-SSD studies of European and East Asian samples (Pantelis et 

al., 2014). The BD PRS meta-analytical summary statistics (Stahl et al., 2019) were based 

on a total sample of N = 51,710 (20,352 BD/ 31,358 controls) of European ancestry from 

32 cohorts in Europe, North America and Australia, including PGC-BD working groups, the 

Integrative Psychiatric Research group (iPSYCH) and deCODE genetics. The MDD PRS 

summary statistics (Howard et al., 2019) were based on N = 143,265 (45,591 MDD / 97,674 

controls) participants of European descent from 29 PGC-MDD USA and European sample 

sites, deCODE genetics, Generation Scotland, Genetic Epidemiology Research on Adult 

Health and Aging, and iPSYCH datasets. SNPs were clumped according to PRSice (Choi 

and O’Reilly, 2019), and thresholds for significantly associated SNPs were set at p = 0.05. 

We limited PRS analyses to white European participants (based on UKBB Field 22006, 

which combines self-identification and a principal component analysis of the genotypes) in 

the discovery (N = 9,714) and replication (N =9,652) samples. Regression models controlled 

for the first 15 genetic principal components and genotyping batch in addition to age, age 

squared, sex, and scanning site.

Substance use

Because we have excluded substance use problems per self-report, inpatient record, and 

death registries (see Supplementary Table 1), cases of significant substance use are likely 

rare in the current sample. Thus, we focused on continuous measures of use for more 

common substances, i.e., nicotine, alcohol, and cannabis. We measured nicotine use with the 
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average number of pack-years smoked by an individual each year over adulthood (UKBB 

Field 20162), based on participants’ answers to the touchscreen questionnaire at the imaging 

visit. We measured alcohol intake with participants’ responses to the UKBB online follow-

up (Davis et al., 2020), by multiplying frequency of drinking alcohol (UKBB Field 20414) 

and amount of alcohol drunk on a typical drinking day (UKBB Field 20403). We measured 

cannabis use based on the same online follow-up, where participants reported the total times 

of cannabis use in their lifetime on an ordinal scale (UKBB Field 20453). Details of these 

variables are listed in Supplementary Table 8.

Adverse childhood experiences

We considered adverse childhood experiences reported during the UKBB online follow-

up. Adverse childhood experiences were measured by items adapted from the Childhood 

Trauma Screener (Glaesmer et al., 2013). Participants rated the following for when they 

were growing up: 1) “felt hated by family member”; 2) “physically abused by family”; 

3) “felt loved”; 4) “sexually molested”, and 5) “someone to take to doctor when needed”. 

Options included “never true”, “rarely true”, “sometimes true”, “often”, and “very often 

true”, coded as 0–4. Items 3) and 5) were reverse coded. The five items were then summed, 

resulting in a total score ranging from 0 to 20. Participants who answered “prefer not to 

answer” were coded as NAs.

Physical Activity

We measured participants’ level of physical activity based on their answers to the 

International Physical Activity Questionnaire – Short Form (IPAQ-SF) (Craig et al., 2003). 

The summed metabolic equivalent task minutes per week for all activity (UKBB Field 

22040) is a sum of minutes spent on walking, moderate, and vigorous activity multiplied 

by their metabolic equivalent task values. Per IPAQ-SF recommendations, analyses were 

only performed in participants 69 years old and under in the discovery (N = 8,606) and 

replication (N = 8,710) samples.

Cluster analysis: Discovery

We performed unsupervised k-mean clustering in the discovery sample to derive RVI-based 

clusters. All RVIs were standardized before entering the clustering. We used the Hartigan-

Wong algorithm (Hartigan and Wong, 1979) with 100 initial random sets and 50,000 

maximum iterations. The optimal number of clusters was determined by examining the 

within cluster sum of squares as a function of the number of clusters (i.e., k) with the elbow 

method. Each participant was assigned to the cluster with the closest centroid.

Cluster differences in brain health, physical health, and cognitive functioning: Discovery

We compared the outcomes of the cluster analysis, which we hereinafter refer to as the “RVI 

clusters”, on demographics, subclinical depressive symptoms, total volume of white matter 

hyperintensities, cardiovascular and metabolic health scores, and cognitive performance. For 

continuous variables, we performed linear regression with RVI cluster membership as the 

predictor, and (except when age was the outcome variable) controlled for age, age squared, 

and sex due to their effects on the outcome variables and in case of age and sex differences 
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across RVI clusters. We additionally controlled for scanning site. For binary variables, we 

performed logistic regression controlling for age, age squared, sex (except when sex was the 

outcome variable), and scanning site. Statistical inference on the differences between one 

and the other RVI clusters was based on significance of the beta coefficients, setting the 

cluster in question as the reference group. We corrected for m × Ck
2 multiple comparisons 

with false discovery rate (FDR) correction, q < 0.05, where m = 18 is the total number 

of measures and Ck
2 is the number of pairwise group-comparisons between k clusters. All 

analyses were conducted in R-4.0.3.

Cluster differences in potential risk factors: Discovery

To further explore the sources of differences in non-SMI individuals across RVI clusters, 

we also compared the RVI clusters on potential risk factors, including polygenic risk for 

SSD, BD, and MDD, C-reactive protein at the initial assessment, tobacco, alcohol, and 

cannabis use, adverse childhood experiences, and physical activity. FDR correction was used 

to correct for n × Ck
2 multiple comparisons, where n = 9 is the total number of potential risk 

factors.

Replication

To evaluate the replicability of the findings in the discovery sample, we first used the same 

procedure to cluster participants in the replication sample and examined if similar clusters 

were extracted. We then clustered the replication sample again by applying the clustering 

model in the discovery sample, using the ‘flexclust’ package (Leisch, 2006) in R. High 

agreement in clustering between these two approaches would indicate replicability of the 

clusters. Provided that the clustering results were replicable, we repeated all between-cluster 

comparisons in the replication sample using clustering according to the discovery sample.

Results

Discovery sample

Cluster Analysis Results—The distributions of the 9 SMI-RVI are shown in 

Supplementary Fig. 1 and their correlation matrix is shown in Supplementary Table 9. 

Correlation between RVIs tended to be higher across SMI within the same tissue type, than 

across tissue types for the same SMI. For example, correlation between RVI for SSD and 

MDD was 0.23, 0.91, and 0.60 (all p < 0.001) in GMT, SV, and WM respectively. On the 

other hand, correlations between RVI for MDD across GMT, SV, and WM were no larger 

than 0.03.

We used visual inspection of the scree plot to choose k=5 and identified five groups 

of individuals (Clusters A-E) with cluster analysis in the discovery sample (Fig. 1, 

Supplementary Fig. 2a). Cluster A consisted of N = 2,133 (1,052M/1,081F) participants 

with elevated RVI for all three SMIs and all three tissue types; Cluster B consisted of N = 

2,301 (1,067M/1,234F) participants with elevated RVI in GMT for all three SMIs; Cluster 

C consisted of N = 2,437 (1,177M/1,260F) participants with elevated RVI in SV for all 

three SMIs; Cluster D consisted of N = 2,275 (1,077M/1,198F) participants with elevated 
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RVI in WM for all three SMIs; and Cluster E consisted of N = 2,296 (1,205M/1,091F) 

participants with low RVI across all SMIs and tissue types. The five clusters were robust to 

outliers (see Supplementary results). Supplementary Table 10 summarizes the demographic 

characteristics of Clusters A-E in the discovery sample.

Below we first describe cluster differences using Cluster E (no RVI elevation) as the 

reference cluster, comparing it to the cluster with the most RVI elevation (Cluster A) and 

then clusters with tissue-specific RVI elevation (Clusters B, C and D). Results of these 

pairwise comparisons are listed in Supplementary Tables 11 (for brain health, physical 

health, and cognitive functioning) and 12 (for potential risk factors). We then describe 

pairwise comparisons among Clusters A-D, listed in Supplementary Tables 13 and 14. Table 

1 provides a summary of cluster differences.

Clusters A versus E

Participants in Clusters A (overall RVI elevation) were modestly and significantly younger 

than participants in Cluster E (no RVI elevation) (Cohen’s d = −0.09, pFDR = 2.8 × 10−3, 

Fig. 2, Supplementary Table 11). Compared with Cluster E, participants in Cluster A were 

significantly less likely to be male (49.3% versus 52.5%, pFDR = 3.3 × 10−2) and lived 

in more materially deprived areas based on the Townsend deprivation index (Cohen’s d = 

0.09, pFDR = 2.8 × 10−3). They did not differ significantly in college education, household 

income, and subclinical depressive symptoms (all pFDR > 0.05).

Consistent with our hypothesis, participants in Cluster A had significantly higher volume of 

white matter hyperintensities (Cohen’s d = 0.59, pFDR < 10−16) and significantly elevated 

cardiovascular and metabolic health scores (Cardiovascular: Cohen’s d = 0.30, pFDR < 

10−16; Metabolic: Cohen’s d = 0.12, pFDR = 9.4 × 10−4) than participants in Cluster E. 

Participants in Cluster A also performed significantly worse than participants in Cluster E 

on all three tests of information processing speed: Reaction Time (Cohen’s d = 0.17, pFDR 

= 4.6 × 10−8), Trail 1 (Cohen’s d = 0.14, pFDR = 1.6 × 10−3) and Symbol Digit substitution 

(Cohen’s d = −0.11, pFDR = 1.8 × 10−3). No significant differences were found in other 

cognitive domains.

Among the potential risk factors (Fig. 3, Supplementary Table 12), Cluster A had 

significantly higher level of C-reactive protein at the initial assessment (Cohen’s d = 0.11, 

pFDR = 4.1 × 10−3) than Cluster E, as well as significantly higher alcohol intake (Cohen’s d 
= 0.28, pFDR = 1.1 × 10−11) and total times of cannabis use in life (Cohen’s d = 0.12, pFDR = 

1.3 × 10−2). No significant differences were found in PRS for SSD, BD, and MDD, average 

packyears, adverse childhood experiences, or physical activity.

Clusters B, C, and D versus E

Compared with Cluster E (no RVI elevation), participants in Clusters B (elevation in GMT), 

C (elevation in SV), and D (elevation in WM) were significantly younger (Cohen’s d = 

−0.20, −0.21, and −0.14, pFDR = 9.5 × 10−11, 4.5 × 10−12, and 2.0 × 10−5) and significantly 

less likely to be male (46.4%, 48.3%, and 47.3% versus 52.5%, pFDR = 2.7 × 10−4, 1.9 × 

10−2, and 3.2 × 10−3, Supplementary Table 11). No significant differences were found in 
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college education, household income, Townsend deprivation index, or subclinical depressive 

symptoms (all pFDR > 0.05).

Like Cluster A, participants in Clusters B, C, and D also had significantly higher volume of 

white matter hyperintensities (Cohen’s d = 0.15, 0.29, and 0.41, pFDR = 4.2 × 10−6, 4.1 × 

10−21, and 2.7 × 10−42) and significantly elevated Cardiovascular health score (Cohen’s d 
= 0.16, 0.12, and 0.24, pFDR = 6.4 × 10−7, 4.2 × 10−4, and 1.9 × 10−14) than participants 

in Cluster E. Participants in Clusters B and D also had significantly elevated Metabolic 

health score (Cohen’s d = 0.09 and 0.09, pFDR = 1.2 × 10−2 and 8.6 × 10−3) compared with 

participants in Cluster E. In terms of cognitive performance, participants in Clusters B and 

C performed significantly worse than Cluster E in Reaction Time (Cohen’s d = 0.12 and 

0.09, pFDR = 5.3 × 10−4 and 8.8 × 10−3). Somewhat unexpectedly, participants in Cluster 

D performed significantly better in fluid intelligence than those in Cluster E (Cohen’s d = 

0.08, pFDR = 3.3 × 10−2). In terms of potential risk factors, participants in Clusters B-D had 

significantly higher alcohol intake than Cluster E (Cohen’s d = 0.14, 0.13, and 0.15, pFDR = 

3.3 × 10−3, 4.3 × 10−3, and 2.6 × 10−3, Supplementary Table 12).

Clusters A-D

Among the four clusters with RVI elevation, Cluster A tended to be the most impaired, 

in measures including total volume of white matter hyperintensities, cardiovascular and 

metabolic health scores, and processing speed tests (|Cohen’s d| = 0.08–0.44, pFDR < 0.05, 

Supplementary Table 13). Moreover, participants in Cluster A had significantly more alcohol 

intake than participants in Clusters B-D (Cohen’s d = 0.14, 0.15, and 0.14, pFDR = 3.3 

× 10−3, 2.0 × 10−3, and 4.1 × 10−3), and significantly higher average packyears than 

participants in Cluster C (Cohen’s d = 0.21, pFDR = 9.3 × 10−3, Supplementary Table 14). In 

no measures did Cluster A show significantly less impairment or risk than Clusters B-D.

Clusters B-D were comparable on most health measures and risk factors. Unsurprisingly, 

Cluster D, characterized by RVI elevation in WM, showed significantly higher volume of 

white matter hyperintensities than Clusters B and C (Cohen’s d = 0.26 and 0.13, pFDR = 1.7 

× 10−17 and 9.5 × 10−5).

Replication sample

Clusters extracted from the replication sample resembled those in the discovery sample 

(Supplementary Fig.s 2b and 3). For 94.2% of participants in the replication sample, this 

clustering agreed with clustering based on the discovery sample. No clustering involved 

misassignment between the two most extreme clusters (i.e., being assigned to Cluster A with 

one approach and Cluster E with the other).

Cluster differences in demographics, subclinical depressive symptoms, health, cognition, 

and potential risk factors largely replicated findings in the discovery sample (see Table 

1 and Supplementary Results). The pattern of worse health in Cluster A than Cluster E, 

intermediated by Clusters B through D, were replicated for total volume of white matter 

hyperintensities, cardiovascular and metabolic health scores, and processing speed tests.
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Discussion

We used an unbiased, data-driven, discovery-replication design to examine the association 

between similarity to severe mental illness (SMI) brain patterns and commonly observed 

cerebral, physical, and cognitive impairments in SMIs in a large sample of non-psychiatric 

individuals. A novel measure, the regional vulnerability index (RVI), was used to quantify 

the similarity of individual brain patterns in cortical gray matter thickness (GMT), 

subcortical gray matter volume (SV) and white matter (WM) fractional anisotropy to 

the patterns reported in these illnesses by meta-analyses. Cluster analysis identified five 

groups of individuals distinct by RVI patterns. Individuals in Cluster A, with uniformly 

elevated RVI, had significantly higher volume of white matter hyperintensities, poorer 

cardiometabolic health, and lower processing speed than individuals in Cluster E with no 

RVI elevation. Exploratory analysis on potential risk factors showed that participants in 

Cluster A had significantly higher level of C-reactive protein and alcohol and cannabis 

use than participants in Cluster E. Participants in Clusters B, C, and D, characterized by 

respective RVI elevation in GMT, SV, and WM, were intermediate between Clusters A 

and E in total volume of white matter hyperintensities, cardiometabolic health, and alcohol 

use. A replication sample confirmed the replicability of most findings. Our findings suggest 

that commonly observed co-occurring impairments in SMIs may partly arise from shared 

pathophysiological pathways.

Large-scale neuroimaging studies in SMIs performed by the ENIGMA consortium have 

led to the discovery that regional brain deficit patterns associated with SMIs are persistent, 

stable, replicable across ethnically diverse populations, and associated with clinical and 

cognitive features in SMI patients (Kochunov et al., 2020a). The RVI was developed as 

an analog of PRS to translate these patterns to the individual level and has demonstrated 

sensitivity and specificity for illnesses, association with cognitive deficits in patients, and 

ability to predict treatment resistance (Kochunov et al., 2021c, 2020b, 2019). Higher SMI 

PRS is associated with poorer cognition and mental health in non-psychiatric populations 

(Liebers et al., 2016; Shen et al., 2020). Likewise, higher SSD-RVI was associated 

with poorer processing speed and working memory in controls (Kochunov et al., 2019), 

suggesting that the RVI may be applicable in individuals without psychiatric symptoms. 

Here, we used an unbiased data-driven approach to derive five clusters of individuals in 

a sample of non-psychiatric individuals based on their RVI for three major SMIs. The 

five clusters showed few replicable differences in socioeconomic status and subclinical 

depressive symptoms. After controlling for age, age squared, sex, and scanning site, 

differences in cerebral, physical, and cognitive impairments as well as inflammation and 

substance use were significant and in the same directions as observed in SMIs. Our findings 

support health and functional implications as well as links to risk factors of SMI-RVI in 

the general population, possibly through shared pathophysiological pathways that affect the 

brain in similar ways.

We found that Cluster A, characterized by brain similarity to SMIs in all three tissue 

types, had significantly poorer brain health as indicated by increased volume of white 

matter hyperintensities. Volume of white matter hyperintensities is predictive of cognitive 

decline, dementia, stroke, and death (Brickman et al., 2008; Debette and Markus, 2010). 
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Increased volume of white matter hyperintensities is well-documented in SMIs (Herrmann 

et al., 2008; Lyoo et al., 2002; Pillai et al., 2002; Sachdev and Brodaty, 1999) and has 

been found to predict the development of depression (Godin et al., 2008). Mechanisms that 

are hypothesized to underlie increased volume of white matter hyperintensities in SMIs 

include cerebrovascular pathology, in utero insult, and mitochondrial dysfunction (Hulshoff 

Pol et al., 2000; Kato and Kato, 2000; Moore et al., 2001; Thomas et al., 2002). Similar 

mechanisms may underlie elevated SMI-RVI in individuals free of SMIs.

The findings of poorer brain health in Cluster A were corroborated by evidence of poorer 

cardiovascular and metabolic health. Cardiometabolic conditions, such as heart diseases and 

diabetes, are among the most common comorbidities and leading causes of years of potential 

life lost in SMIs (Colton and Manderscheid, 2006). These comorbidities have been linked 

to known side effects of psychiatric medication (Alvares et al., 2016; Kahn et al., 2008; 

Mitchell et al., 2013) as well as limited healthcare and SMI-related changes in health habits 

(De Hert et al., 2009; Pratt et al., 1996). On the other hand, findings on shared genetic 

etiology between SMIs and cardiometabolic risks have been mixed, ranging from positive, 

null, to negative relationships (Bahrami et al., 2020; Fürtjes et al., 2021; Rødevand et al., 

2021; So et al., 2019; Wassertheil-Smoller et al., 2018; Zhang et al., 2021; Zheutlin et al., 

2019). Particularly, several studies suggest an inverse relationship between the PRS for SSD 

and body mass index, high-density lipoprotein, and diabetes mellitus (Bahrami et al., 2020; 

So et al., 2019; Zhang et al., 2021; Zheutlin et al., 2019), which may be taken as indication 

that their positive relationship on the phenotypic level is consequent to having SSD. Our 

findings suggest another possibility, that metabolic abnormalities may be related to SSD 

through alternative (e.g., epigenetic, environmental) mechanisms, which may have similarly 

affected non-SSD individuals with similarity to SSD in brain structural patterns.

Poorer cognitive performance in Cluster A further supports poorer brain health in people 

with SMI-like brain patterns. Specifically, participants in Cluster A performed significantly 

worse than those in Cluster E on tests probing information processing speed. Impaired 

processing speed is among the most robust cognitive deficits in all three SMIs irrespective 

of medication status, symptom severity, and illness chronicity (Dickinson et al., 2007; 

Dixon et al., 2004; Lee et al., 2012; Robinson et al., 2006). It is also among the cognitive 

measurements most sensitive to normal and neurodegenerative brain aging and associated 

with changes in cerebral white matter such as increases in hyperintense white matter volume 

(Kochunov et al., 2017; Twamley et al., 2006). Our findings suggest that cognitive slowing 

may be intrinsic to the brain anatomical changes associated with SMI development. On 

the other hand, other cognitive domains (e.g., working memory and executive functioning) 

did not show reproducible patterns of impairment in participants with RVI elevation in this 

sample, potentially suggesting that these functions were impaired in SMIs due to more direct 

SMI related etiologies or changes.

Clusters B, C, and D, with respective similarity to SMIs in GMT, SV, and WM, were 

intermediate between Clusters A and E in brain and cardiovascular health, suggesting a 

graded effect of RVI elevation. Additionally, exposure to alcohol in these clusters was also 

intermediate. On the other hand, cognitive abilities appeared largely comparable to Cluster 

E, suggesting that cognitive abilities may be spared when RVI elevation is restricted to 

Ma et al. Page 12

Neuroimage. Author manuscript; available in PMC 2023 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specific tissues. Lastly, we failed to find reproducible differences among Clusters B-D in 

measures other than total volume of white matter hyperintensities and cardiovascular health 

score. Future studies with more comprehensive characterization of health and functioning 

may reveal differential implications of brain similarity to SMIs in specific brain tissues.

Perhaps counterintuitively, participants in Cluster E, characterized by no RVI elevation, 

were significantly older than participants in Clusters A-D. A median split (at 64 years old) 

revealed that Cluster E were overrepresented in older as opposed to younger participants 

(Supplementary Table 20). One explanation is that individuals with RVI elevation may 

be more likely to develop physical, neurological, and psychiatric conditions as they age 

and thus less included in our non-neuropsychiatric sample. This also partly explained why 

participants in Cluster E consisted of significantly more males than Clusters B-D, as the 

older half of the sample contained more males than the younger half (51.5% vs. 45.7%). 

Future studies that include the full, rather than non-neuropsychiatric UKBB sample may 

help confirm this explanation. Nonetheless, the effects of age, age squared, and sex were 

removed from all cluster comparisons to account for age and sex differences across clusters.

The origin of SMI-like brain patterns in people not afflicted with these illnesses is open 

for speculation. Participants across the clusters did not show replicable differences in 

subclinical depressive symptoms, suggesting similar level of subclinical or undiagnosed/

unreported psychopathology. Moreover, their age range was three-to-four decades older than 

the typical age of onset for SSD and BD, suggesting that impending onset is unlikely 

(Leboyer et al., 2005; Loranger, 1984). More plausibly, we postulate that elevated RVI 

in non-psychiatric individuals may reflect the accumulation of deleterious factors that 

are shared between SMI and co-occurring impairments including accelerated brain aging, 

cardiometabolic impairments, and cognitive decline. In other words, our results suggest 

that the brain deficit patterns in SMI reported by the ENIGMA consortium may be partly 

driven by co-occurring conditions or poorer general health in people with mental illnesses. 

Moreover, our explorative analysis suggests that higher inflammation and substance use may 

be among mechanisms for RVI elevation. Longitudinal data spanning a long period of time 

are needed to elucidate whether these conditions lead to elevated RVI.

This study has several limitations. First, the UKBB sample consisted predominantly of 

healthy white European volunteers in mid-to-late life (Fry et al., 2017), and it is unclear 

if our findings will generalize to groups with different demographic profiles. Second, the 

RVI only characterizes the similarity of an individual brain to SMIs in relative patterns 

(i.e., correlation) and ignores information in absolute regional brain deviations. Third, 

interpretations of our findings are limited by the cross-sectional design, and little can be 

inferred about the complex causal relationship between RVI and the health indices. Fourth, 

the cluster differences we report are on a group average level and most effect sizes fell 

within the “small” range (Cohen’s d < 0.2). Our results should not be taken to mean that an 

individual with elevated SMI-RVI will have impaired brain health, cardiometabolic health, 

or cognitive functioning. Last, we used the metabolic health score to maintain consistency 

with previous research, but it may not reflect other important indices such as anthropometric 

measures for metabolic health.
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To conclude, we showed that brain similarity to SMIs is associated with poorer brain 

health, cardiometabolic health, and processing speed in a large sample of non-psychiatric 

individuals, suggesting that comorbid abnormalities in these domains are intrinsic to the 

brain structural changes associated with SMIs rather than secondary to having SMIs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Centroids of the RVI clusters in the discovery sample. Each radar plot shows the centroid 

(i.e., mean) and the 2.5th and 97.5th percentile of all individuals within a RVI cluster. Axes 

of the radar plots are standardized RVI values. RVI: regional vulnerability index. GMT: 

cortical gray matter thickness. SV: subcortical gray matter volume. WM: white matter. SSD: 

schizophrenia spectrum disorder. BD: bipolar disorder. MDD: major depressive disorder.
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Fig. 2. 
Differences between Clusters A and E in the discovery sample. Cluster A: RVI elevation 

across GMT, SV, and WM. Cluster E: no RVI elevation (reference cluster). X axis shows z 

scores after adjusting for age, age squared, sex, and scanning site (except for the variable 

Age which was not adjusted). d: Cohen’s d. (+): higher score corresponds to better health/

performance. (−): lower score corresponds to better health/performance. †: measured at 

initial assessment. Statistical inferences and effect size estimates were based on linear 

models comparing the five RVI clusters. *p < .05, **p < .01, ***p < .001. All p values were 

FDR corrected. FDR: false discovery rate. Clusters B-D are not plotted for simplicity.
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Fig. 3. 
Differences in common risk factors between Clusters A and E in the discovery sample. 

X axis shows z scores after adjusting for age, age squared, sex, and scanning site. Z 

scores for PRS additionally adjusted for the first 15 genetic principal components and 

genotyping batch. PRS: polygenic risk score. SSD: schizophrenia spectrum disorder. BD: 

bipolar disorder. MDD: major depressive disorder. ACEs: adverse childhood experiences. 

d: Cohen’s d. Statistical inferences and effect size estimates were based on linear models 

comparing the five RVI clusters. †: measured at initial assessment. *p < .05, **p < .01, ***p 

< .001. All p values were FDR corrected. Clusters B-D are not plotted for simplicity.
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