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Abstract
Ultrafiltration (UF) has become one of the dominant treatment processes for wastewater

reclamation in China. Modeling is an effective instrument to understand and optimize UF

systems. To this end, a previously developed UF model for organics removal was applied to

the UF process in a typical, full-scale wastewater reclamation plant (WRP) in China. How-

ever, the sparse and incomplete field monitoring data from the studied WRPmade the

traditional model analysis approaches hardly work in this case. Therefore, two strategies,

namely Strategy 1 and Strategy 2, were proposed, following a regional sensitivity analysis

approach, for model parameter identification. Strategy 1 aimed to identify the model param-

eters and the missing model input, i.e. sampling times, simultaneously, while Strategy 2

tried to separate these two processes to reduce the dimension of the identification problem

through an iteration procedure. With these two strategies, the model performed well in the

Qinghe WRP with the absolute relative errors between the simulated and observed total

organic carbon (TOC) generally below 10%. The four model parameters were all sensitive

and identifiable, and even the sampling times could be roughly identified. Given the incom-

plete model input, these results were encouraging and added to the trustworthiness of

model when it was applied to the QingheWRP.

Introduction
Ultrafiltration (UF) is a membrane filtration technology used for the separation of macromo-
lecular solids from liquid. UF has been widely used in food, chemical and pharmaceutical
industries since its development in the 1960s, and its application to water and wastewater treat-
ment has been accelerated in the recent 30 years [1,2]. The advantages of UF technology lie in
its ease of operation, high quality of permeate, and small space requirement [3].

Modeling UF process is critical to understanding, operating and optimizing UF systems,
and various models have been developed to describe UF process. However, most of them have
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focused on the flux behavior of UF [4,5], and less attention has been paid to water quality.
Moreover, the existing water quality models for UF have been developed specifically for food,
chemical and pharmaceutical industries [6–8], including theoretical models based on concen-
tration polarization phenomenon [9,10], hindered transport theory [11,12], and pore blocking
effect [13,14], as well as empirical models based on multiple regression analysis [7,15] and arti-
ficial neutral network [6,16]. These models were mainly developed for and applied to single-
solute systems. Therefore, their applicability to UF in water and wastewater treatment pro-
cesses, where the components of the solution are complicated and usually not fully understood,
is subject to scrutiny.

With the rapid expansion of wastewater reuse in Beijing, China, UF has become a dominant
process in the wastewater treatment chain. Aiming at better understanding and optimizing the
UF performance in organics rejection in wastewater reclamation, a water quality model has
been developed and validated against data from pilot-scale experiments in a previous study
[17]. This paper will present a preliminary effort to test the applicability of this model to the
UF process in a full-scale wastewater reclamation plant (WRP) with historical monitoring
data. What makes this model test study complicated, however, is that the available monitoring
data from the WRP was sparse and incomplete, and more specifically, the sampling times for
the water quality data were not recorded. With such important input missing, two strategies
based on regional sensitivity analysis (RSA) were designed for model parameter identification,
and both the goodness-of-fit of the model and the sensitivity, identifiability, and uncertainty of
the model parameters were examined in this paper. In the next section, the previously devel-
oped model, the WRP and its monitoring data were briefly introduced, and then two strategies
for model parameter identification were presented. Following that, the model performance as
well as the identified model parameters and sampling times was analyzed. Finally, the differ-
ence between the two strategies was discussed before concluding the paper.

Methods

The UF Model for Organics Removal in Wastewater Reclamation
The model assumes that organics rejection by UF is controlled by the combined effects of con-
centration polarization and pore blocking processes. On the one hand, the rejected solute accu-
mulating on the membrane surface will increase the thickness and resistance of the boundary
layer and thus affect solute transport and permeate flux. On the other hand, the movement of
solute molecules across the membrane will be affected by the reduced effective area as a result
of pore blocking in the membrane. Assuming a constant flux, the permeate organics of the UF
process could be described by Eq (1).

A0

lQ
f � ðcb � cpÞ � ð1� atþbt2 � ct3Þ ¼ t

dcp
dt

þ cp ð1Þ

In Eq (1), A0 refers to the initial effective area of the membrane (m2), l denotes the thickness
of the membrane (m), Q indicates the flow rate (m3/s), cb and cp represent the feed and perme-
ate concentration respectively (kg/m3), t is time (s), and a, b, c and f are the model parameters.
Among the four model parameters, a, b and c characterize the pore blocking rate, while f is an
aggregated parameter incorporating the influences of solute characteristics, hydraulic status
and operating conditions. Details about model development can be found in [17].

Data from a series of pilot-scale experiments (PSEs), where organics were characterized by
ultraviolet absorbance at 254 nm (UV254), were used for model parameter identification and
structure validation following the model analysis methodology developed by [18], and details
were described elsewhere [17]. It was found that the model, on the one hand, could well predict
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the permeate UV254 with absolute relative errors less than 10% for most observed data, and on
the other hand, had a balanced structure with all the four parameters well identified and their
uncertainties significantly reduced [17]. Therefore, the developed model exhibited a robust and
reliable structure and would be assumedly applicable to other similar situation.

TheWRP and Data
In this study, the previously developed model was applied to a full-scale WRP, namely the
Qinghe WRP in Beijing, China (116°22’5” E, 40°2’53”N). The WRP employs a conventional
activated sludge process, coupled with subsequent UF and ozone oxidation processes, and its
effluent is used for multiple purposes, such as urban stream augmentation, industrial cooling
systems, toilet flushing in households, and landscape irrigation. The UF system consists of six
trains of ZeeWeed-1000 hollow-fiber membranes, and each train contains nine cassettes with
57 or 60 membrane modules per cassette. The membrane is made of polyvinylidene fluoride
and has a nominal pore size of 0.02 μm. The UF system is operated in an outside-in mode at a
constant flow up to 23 L (m2 h)-1, and the net production capacity reaches 80,000 m3 d-1. Each
cassette is hydraulically backwashed 29 times per day and chemically maintained once every
day.

From the water quality perspective, organics have the potential to increase the biological
instability, toxicity, and aesthetical unacceptability of the reclaimed wastewater, and thus their
concentration, usually characterized by an aggregated index, e.g. chemical oxygen demand
(COD), biological oxygen demand (BOD) and total organic carbon (TOC), has been regulated
by the water quality standards for both wastewater discharge into recipient water and
reclaimed wastewater for various uses in China. Furthermore, Beijing released a more stringent
water quality standard for the discharge from municipal wastewater treatment plants into
recipient water in 2012, which is relevant to wastewater reuse for stream and lake augmenta-
tion. According to this standard, the allowed concentration for TOC of the treated water from
the Qinghe WRP should not be higher than 12 mg L-1, while those for COD and BOD should
decrease from 60 mg L-1 to 30 mg L-1 and from 20 mg L-1 to 6 mg L-1, respectively, since 31
December 2015. To this end, the studied WRP needs to evaluate the efficiency of its treatment
processes in removing organics, understand its influencing factors and thus explore its poten-
tial to enhance removal.

This study specifically focuses on the UF system of the Qinghe WRP, and historical moni-
toring data was obtained to examine the organics rejection performance of the UF system. As
part of a joint research project, the monitoring program was approved by the Beijing Drainage
Group Co., LTD and conducted between from June 2012 and March 2013 on a monthly basis.
Water samples were collected from both feed and permeate of the UF system, and their TOC
concentrations were tested. The feed TOC concentrations varied between 5.25 mg L-1 and
18.65 mg L-1, while those of the permeate ranged from 5.03 mg L-1 and 17.31 mg L-1. TOC
removal rate was found to vary between -20.6% and 33.2%, with an average of 9.5%.

Application of the UF Model to the QingheWRP
As already mentioned, this study aimed to examine the applicability of the previously devel-
oped UF model, which had been validated against data from the PSEs, to the full-scale Qinghe
WRP. However, since the existing monitoring program was not specifically designed for
modeling the UF system, the available historical data as described previously brings about two
major challenges to this model test study. Firstly, the water quality indicator used to represent
organics in the UF system of the WRP was TOC, which was different from UV254 used in the
PSEs. So the model parameters needed to be recalibrated when the model structure remained
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unchanged, assuming that TOC and UV254 were equivalent indicators of organics and behaved
similarly during the UF process. The second and more critical challenge was that the monitor-
ing data available was sparse and incomplete for model development and validation. On the
one hand, water samples from the UF system of the WRP were collected on a monthly basis
from separate operation cycles with different feed TOC concentrations, which was too sparse
as compared with the PSEs in which water samples were collected consecutively in a whole
operation cycle under well-controlled conditions. On the other hand, the sampling times of the
water samples in the WRP were not recorded, which had defeated the authors’ effort to derive
the corresponding sampling moments in their operation cycles based on the data, e.g. trans-
membrane pressure, from the online monitoring system.

Data sparsity is not uncommon in environmental modeling studies. This could result from
lack of appropriate monitoring instruments or capacity as well as inadequate temporal/spatial
resolution, poor representativeness or low accuracy of the monitoring instruments [19–22].
There are also cases where model parameters or input are difficult to monitor, e.g. diffuse pol-
lution loads [23], or even unknown, e.g. sources of groundwater pollution [24–26]. Different
methods have been developed and applied to deal with data sparsity issues in modeling studies.
A straightforward method is to use other theoretical or empirical methods to estimate the miss-
ing model parameters or input. For example, Nyeko [22] estimated the missing records of solar
radiation for hydrological modeling with an empirical equation. Inverse modeling is another
widely applied method to determine missing model input. For example, Hörmann et al. [27]
estimated the fraction of wetland in a catchment in inverse modeling runs of a hydrological
model, while Herrnegger et al. [21] used inverse rainfall-runoff modeling to obtain additional
information on mean areal rainfall of the studied area. Inverse modeling, however, generally
requires the model be calibrated. If model parameters and input are both unknown or partially
known yet with uncertainty, simultaneous identification of parameters and input is normally
applied. For example, due to the difficulty in detecting groundwater pollution sources, many
researchers such as [24–26] developed methods to identify source characteristics (e.g. location,
magnitude, duration) and at the same time estimate unknown aquifer parameters. Similarly,
Jun et al. [23] used an optimal algorithm in river water quality modeling for simultaneous esti-
mation of kinetic constants and diffuse loads of total nitrogen and phosphorus. In order to
reduce uncertainty resulting from precipitation observations and parameter estimation in
hydrological modeling, Pluntke et al. [20] used an ensemble approach by establishing a series
of models, among which a model allowed the precipitation input to be calibrated together with
other model parameters.

Since UF systems operate in cycles in the QingheWRP, sampling times are obviously critical
model input. In light of the aforementioned existing approaches to dealing with data sparsity,
simultaneous identification of model parameters and sampling times could be the only feasible
choice in this case. Before proceeding to detailed algorithm design, another assumption has to
be made that the UF process in the WRP operated in a cyclic yet steady state, which could be
justified given that no abnormality was reported during the monitoring period. With this
assumption, two strategies for model identification were proposed as shown in Fig 1 and details
are given below. A common feature of these two strategies is that they are both based on the
RSA approach to consider the gross uncertainty associated with model parameters and sam-
pling times. Furthermore, RSA was both performed with the Hornberger-Spear-Young (HSY)
algorithm, the procedure of which has been detailed in [18] and [28], based on a Latin Hyper-
cube Sampling (LHS) approach.

Similar to the current practice of simultaneous identification of model parameters and
input, e.g. [20] and [23], Strategy 1 regarded the missing model input, i.e. the sampling times of
the observed data (ti, i = 1,2,. . .,8), as “parameters” that needed to be identified together with
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the four model parameters, i.e. a, b, c and f. Following the procedure of the HSY algorithm, as
shown in Fig 1(a), the initial ranges of the model parameters and sampling times were first
determined, as shown in Table 1, according to the reported values in literature (see [17]) and
the operating conditions in the Qinghe WRP respectively. For simplicity, uniform distributions

Fig 1. Two strategies for parameter identification of the UFmodel applied to the QingheWRP.

doi:10.1371/journal.pone.0161300.g001
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were assumed for all model parameters and sampling times. Then system behavior was defined
to set a criterion for a model simulation to be accepted as a behavior-giving one. Herein a
behavior-giving simulation was defined as one with at least 60% of the data points that had
absolute relative errors less than 20% between the observed and simulated cp. In the third step,
both the model parameters and the sampling times were randomly and independently sampled
with a LHS approach according to their designated ranges and probability distributions, and
then these values were substituted into Eq (1) for model simulation. The simulation results,
together with the parameters and sampling times, were later classified into a behavior-giving
set and a non-behavior-giving set according to the definition of system behavior. The simula-
tion continued, i.e. Step 3 and Step 4 in Fig 1(a), until enough behavior-giving simulations
were obtained, and finally posterior probability distributions (PPDs) of the parameters and
sampling times could be derived for further analysis.

Strategy 1 calibrated the four model parameters and eight sampling times simultaneously,
which actually increased the dimension of the identification problem, and therefore great
uncertainty were expected to remain with these parameters and input. Given that the four
model parameters had global impact on all the eight observations while the sample times only
had local impact on each specific observation, it is possible to reduce the dimension of the iden-
tification problem temporarily by separating the identification of model parameters from that
of sampling times at different stages. Based on this idea, Strategy 2 was designed as shown in
Fig 1(b). In the first step, the same initial ranges and probability distributions as those in Strat-
egy 1 were assigned to the four model parameters and eight sampling times. Then the defini-
tion of system behavior in Strategy 1 was also adopted at the stage of model parameter
identification. At the stage of model input identification, however, a little stricter definition of
system behavior was applied and a behavior-giving simulation was one with at least 60% of the
data points that had absolute relative errors less than 15% between the observed and simulated
cp. The first round of model parameter identification followed and started with randomly and
independently sampling the eight sampling times, only once, according to their designated
ranges and probability distributions shown in Table 1. These values were later fixed in this
round of simulation as if they were known model input, while the four model parameters were
calibrated following the same HSY algorithm as that of Strategy 1. At the end of this round of
simulation, the PPDs of the four model parameters could be derived. This step was followed by
the first round of model input identification where the four model parameters were assumed to
have known probability distributions, i.e. their first round PPDs, while the eight sampling
times were calibrated also following same HSY algorithm. Since the eight observations were
independently obtained from different operation cycles of the UF system, the calibration of
eight sampling times could be done individually. That is to say there is only one unknown sam-
pling time to be calibrated for each observation. Similarly, this round of simulation would end
up with the PPDs of eight sampling times, which were later used for the second round of
model parameter identification as shown in Fig 1(b). When the second round PPDs of both
model parameters and sampling times were obtained, they were compared with their first

Table 1. Initial ranges and probability distributions of model parameters and input.

Parameter/input Unit Initial range Prior probability distribution

a - (0, 1.0×10−3) Uniform

b - (0, 5.0×10−6) Uniform

c - (0, 1.0×10−9) Uniform

f - (0, 7.0×10−8) Uniform

ti (i = 1,2,. . .,8) min (0, 50) Uniform

doi:10.1371/journal.pone.0161300.t001
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round PPDs through the Kolmogorov-Smirnov (K-S) test, at a 0.05 significance level, to exam-
ine whether the PPD for each parameter and sampling time was significantly different between
these two rounds of simulation. If any parameter or sampling time showed a significant differ-
ence, another round of model parameter identification and input identification would be con-
ducted, i.e. Step 5 and Step 6 in Fig 1(b), and the latest derived PPDs could then be compared
with the previous ones to examine convergence for all these model parameters and input. The
iterations terminated when no statistically significant differences were detected in the PPDs for
all the model parameters and sampling times between two recent iterations.

The two strategies were then compared with respect to their model performance, and the
sensitivity, identifiability, and uncertainty of the model parameters as well as the missing
model input, i.e. sampling times of the observed data. Model performance was evaluated by the
absolute relative errors between the observed and simulated data. Sensitivity, identifiability,
and uncertainty of model parameters could be used to judge a model’s reliability [18]. A model
with a large proportion of sensitive parameters will have a balanced model structure, and the
model will be more trustworthy when the sensitive parameters could be well identified with
low uncertainty. In this study, regional sensitivity for each model parameter was characterized
by the statistical difference in the two PPDs between the behavior-giving set and the non-
behavior-giving set through the K-S test at a 0.05 significance level. The greater the difference
between the two distributions, the more sensitive and identifiable the parameter is. Further-
more, the standard deviation of the behavior-giving set was used as an indicator of uncertainty
for each model parameter. A smaller standard deviation of a parameter usually indicates better
identifiability and lower uncertainty. Since the sampling times were also identified in this
study, the sensitivity, identifiability, and uncertainty could be evaluated similarly.

Results and Discussion

Model Performance
Fig 2 shows the relative errors between the simulated and observed permeate TOC of the UF
process in the Qinghe WRP from the 100 best behavior-giving simulations for both Strategy 1
and Strategy 2 in box-and-whisker plots. In the figure, the lower and upper boundaries of the
box represented the first and the third quartiles of the relative errors respectively, while the
line inside the box marked the median. Outside the box, two vertical whiskers extended down-
wards to the 5th percentile and upwards to the 95th percentile respectively. As shown in Fig 2,
the absolute relative errors between the simulated and observed TOC were generally below
10% for Sample 1~7 with both Strategy 1 and Strategy 2, while those for sample 8 were the
greatest. A possible reason could be that Sample 8 was the only one that had a negative TOC
rejection rate of -20.6%, which would be regarded as a rare event for the UF model to simulate
based on the hypothetical mechanisms. Overall speaking, the previously developed UF model
could provide good simulation performance for the Qinghe WRP, even though TOC was
herein used instead of UV254 in the PSEs dataset and the sampling times of water samples
were missing.

It could also be observed from Fig 2 that the absolute relative errors for Sample 1, 2, and 8
were greater than other samples. In these three cases, Strategy 2 performed a little better than
Strategy 1 possibly due to a stricter definition of system behavior at the stage of model input
identification in Strategy 2. In addition, separate identification of the sampling time for each
water sample at this stage in Strategy 2 may also be part of the reason for its good performance
in these cases. So Strategy 2 was a more robust option for model parameter identification in the
case of the Qinghe WRP especially when the model input was incomplete.
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Identified Model Parameters
RSA results indicated that the four model parameters, i.e. a, b, c and f, were all sensitive param-
eters and therefore identifiable with both Strategy 1 and Strategy 2 when the UF model was
applied to the Qinghe WRP. Fig 3 shows the PPDs of the four parameters from the behavior-
giving set for these two strategies, and their curves generally matched each other quite well
with only slightly difference. Among the four parameters, b and f were the most sensitive and
identifiable parameters, which was revealed by the remarkable peaks in their PPDs in Fig 3.
Indicated by the standard deviation, the uncertainties of b and f were significantly reduced by
27% and 18% respectively with Strategy 1 and 22% and 22% respectively with Strategy 2. These
results were similar to the previous study [17], although the reduction of model parameter
uncertainties was not as significant, possibly because of the complicated field conditions and
the incomplete monitoring data in the Qinghe WRP as compared with the PSEs. Given that all
the four model parameters were sensitive and the most sensitive parameters were well identi-
fied with uncertainties significantly reduced, the model could provide robust and reliable pre-
dictions for the UF process in the Qinghe WRP.

Identified Sampling Times
The missing sampling times of the observed data in the QingheWRP were identified as
unknown “parameters”, together with the four model parameters, with both Strategy 1 and

Fig 2. Relative errors between the simulated and observed permeate TOCwith Strategy 1 and 2.

doi:10.1371/journal.pone.0161300.g002
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Strategy 2. RSA results indicated that the eight sampling times, i.e. t1~t8, were all sensitive
parameters and therefore identifiable with both strategies. This was reasonable because sam-
pling times were critical model input for the UF model. Fig 4 illustrates the PPDs of the behav-
ior-giving t1~t8 with Strategy 1 and Strategy 2. As shown in the figure, the curves for the two
strategies separated clearly, and Strategy 2 usually produced more prominent peaks than Strat-
egy 1 in the PPDs of the sampling times. However, except t1 and t8, the peaks in the PPDs of the
sampling times identified by the two strategies generally coincided with each other, which might
suggest the reliability of the identified sampling times by both strategies. For t1 and t8, when the
model performance was relatively poor as shown in Fig 2, Strategy 2 provided better identifica-
tion results than Strategy 1. In Fig 4, Strategy 1 gave a “plateau” in the PPD between 10 min and
45 min for both t1 and t8, whereas Strategy 2 identified a peak toward the start of the operation
cycle for t1 and a peak toward the end for t8. Furthermore, judged by the standard deviation, the
uncertainties of the identified sampling times were generally lower with Strategy 2. For example,
the uncertainty of t8 with Strategy 2 was reduced by 31% as compared with Strategy 1.

Comparison of the Two Strategies
Through the results above, it can be found that the two strategies herein proposed for model
identification did not make much difference to the identification of four model parameters (see

Fig 3. Posterior probability distributions of the behavior-giving parameters with Strategy 1 and 2.

doi:10.1371/journal.pone.0161300.g003
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Fig 3). However, Strategy 2 could help better identify the missing model input, i.e. the sampling
times (see Fig 4), than Strategy 1 and therefore could give slightly better model performance
(see Fig 2). The fundamental difference between these two strategies is the stricter definition of
system behavior at the stage of model input identification in Strategy 2. It could be argued that,

Fig 4. Posterior probability distributions of the behavior-giving t1~t8 with Strategy 1 and 2.

doi:10.1371/journal.pone.0161300.g004
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regardless of computation efficiency, Strategy 1 would produce approximately the same identi-
fied model parameters and input as Strategy 2 if it also adopts the stricter definition during
Step 2 shown in Fig 1(a). Nevertheless, computation does count in this case. The reason why
Strategy 1, as well as the stage of model parameter identification in Strategy 2, used a less strin-
gent definition is that only with such a definition could a reasonable success rate (around
10~15%) of behavior-giving simulations be achieved. To this end, the advantage of Strategy 2 is
that, through separating the identification of model parameters from that of sampling times at
different stages, it reduced the dimension of the identification problem, increased computation
efficiency, and thus facilitated the adoption of stringent model performance requirements. In a
more general sense, this study would suggest a dimension-reducing strategy for model identifi-
cation to separate parameters or input of global impact from those only with local impact, espe-
cially under the circumstances of poor data availability.

Conclusions
A previously developed UF model for the prediction of organics rejection was applied to the UF
process in a full-scale WRP. Despite the sparse and incomplete field monitoring data from the
QingheWRP, encouraging results were still obtained through two specific strategies for this
model test study. The two strategies were designed both following a RSA approach, and the
missing model input, i.e. sampling times, were identified as unknown “parameters”, together
with the four model parameters, with the HSY algorithm based on a LHS approach. The differ-
ence between the two strategies was that Strategy 1 aimed to identify the model parameters and
sampling times simultaneously, while Strategy 2 tried to separate these two processes to reduce
the dimension of the identification problem through an iteration procedure.

The two strategies provided similar results of model performance, and the absolute relative
errors between the simulated and observed TOC were generally below 10%. However, Strategy
2 outperformed Strategy 1 for water samples that the model could not simulate well. The four
model parameters were all sensitive and identifiable, and the two most sensitive parameters
were well identified with uncertainties significantly reduced. Regarding the sampling times,
Strategy 2 provided better results than Strategy 1, but they generally agreed with each other
on their identified probability distributions. Therefore, at this preliminary stage, it could be
inferred that the previously developed UF model could provide robust and reliable predictions
for the UF process in the Qinghe WRP. Nevertheless, a well-designed filed monitoring pro-
gram, including consecutive water sampling within several complete operation cycles of the UF
system and full record of sampling times and TOC concentrations in both the feed and perme-
ate, is needed to further test the model.

Supporting Information
S1 Table. Monitoring data of total organic carbon (TOC) of the ultrafiltration process in
the Qinghe Wastewater Reclamation Plant.
(DOCX)
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