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Abstract: Wounding is a constant threat to plant survival throughout their lifespan; therefore,
understanding the biological responses to wounds at the cellular level is important. The protoplast
system is versatile for molecular biology, however, no wounding studies on this system have been
reported. We established a new approach for wounding research using mechanically damaged
Arabidopsis mesophyll protoplasts. Wounded protoplasts showed typical wounding responses, such
as increased MPK6 kinase activity and upregulated JAZ1 expression. We also assessed expression
profiles and protein stability of the basic helix-loop-helix transcription factor MYC2 in wounded
protoplasts. Promoter activity, gene expression, and protein stability of MYC2 were compromised,
but recovered in the early stage of wounding. In the late stage, the promoter activity and expression
of MYC2 were increased, but the protein stability was not changed. According to the results of
the present study, this new cell-based approach will be of use in various molecular studies on
plant wounding.

Keywords: Arabidopsis; LOX2; mesophyll protoplast; MYC2; wounding

1. Introduction

Wounding is defined as mechanical damage that occurs frequently in plants due to
biotic and abiotic stresses [1]. Plant cells are protected by mechanical barriers, such as cell
walls, cuticles, and trichomes; however, such barriers are compromised during wounding,
and plant cells show activation of several intracellular signaling mechanisms to heal and
protect against wounding [2]. Wounding generates damage-associated molecular patterns
and activates MPK6 [3–5]. In addition, the expression of numerous genes associated with
phytohormones, oxidative stress, dehydration stress, and heat-shock proteins is rapidly
upregulated during wounding [6–8], and protein turnover, transport processes, metabolism
modulation, and gene expression reprogramming occur [9].

Jasmonate (JA) is a major immune phytohormone that accumulates after wound-
ing [10]. In Arabidopsis, the basic helix-loop-helix leu zipper transcription factor MYC2 is a
major regulator of the JA signaling pathway and response [11]. Further, MYC2 is involved
in various phytohormone crosstalk and several signaling pathways [12–14].

Continuous JA signaling is harmful and adversely affects plant growth and develop-
ment [15]. The JA master regulator MYC2 is a short-lived protein, and its transcriptional
activity is regulated by numerous mechanisms [16–18]. MYC2 transcriptional activity and
protein stability require tight regulation to optimize plant fitness [19]. In the absence of JA
signaling, MYC2 is repressed by a complex consisting of the JASMONATE-ZIM domain
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(JAZ), TOPLESS, and NOVEL INTERACTOR OF JAZ proteins [20–22]. In the presence
of JA signaling, MYC2 is derepressed through SCFCOI1-dependent degradation of JAZ
repressors, and forms a transcriptional activation complex with MEDIATOR25 [23–25].
Thus, JA-triggered activation of MYC2 regulates the transcription of JA-responsive genes,
including JAZs and LOX2 [26].

The plant protoplast system has been used as a versatile and powerful complex for
cell-based experiments in many plant species [27–29]. The highly efficient protoplast
transient expression systems have greatly contributed to the development of various
fields of botany, including subcellular localization, protein-protein interaction, transport,
signal transduction, and metabolic pathways [30–35]. In particular, transient expression
in Arabidopsis mesophyll protoplasts has facilitated advancements in plant research. A
recent study reconstituted JA signaling in Arabidopsis protoplasts and confirmed that the
protoplast is an invaluable system for functional analysis of signaling components involved
in the JA signaling pathway [36].

The protoplast system was previously used to study the effects of various environmen-
tal stresses [37]; however, cell-based wounding response methods have not been explored.
Here, we analyzed wounding responses in mechanically damaged Arabidopsis mesophyll
protoplasts. We further determined MYC2 transcriptional activity and protein stability in
these protoplasts. This cell-based study shows wounding response in protoplast cells.

2. Results
2.1. Mechanical Wounding of Arabidopsis Mesophyll Protoplasts

We first isolated Arabidopsis mesophyll protoplasts (AMPs) and transfected DNA using
a previously described method [28,38]. Subsequently, the cells were placed in 1.5 mL tubes
at a volume of approximately 1 mL. To induce mechanical damage in AMPs, the transfected
cells were vigorously vortexed for 10 s and were allowed to stand for 10 min to precipitate
at the bottom of the tube. Thereafter, 800 µL supernatant was removed from the tube to
reduce hypoxia, and the cells were then incubated. After incubation, the supernatant was
completely removed, and the cells were harvested (Figure 1).
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Figure 1. Schematic representation of vortex-induced wounding in Arabidopsis mesophyll protoplasts.
Arabidopsis mesophyll protoplast (AMPs) were isolated and transfected with transiently expressing
DNA, followed by incubation for desired time. Wounding was induced by vigorous vortexing for
10 s, followed by incubation for 10 min. The supernatant was removed to reduce hypoxia, followed
by further incubation. Protoplasts were harvested after the complete removal of the supernatant.
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2.2. Vortex-Induced Damage Generated Typical Wounding Responses in Protoplasts

To analyze whether vortex-induced damage would generate wounding responses in
AMPs, we distinguished three types of protoplasts based on their shapes: normal shaped
cells (NSC), weakly wounded cells (WWC), and severely wounded cells (SWC). NSC had a
round shape, and chloroplasts were evenly separated in all cell areas. WWC had a rough
cell surface and, even though the cell surfaces were round, chloroplasts were not equally
distributed. SWC showed the complete loss of the round shape, and chloroplasts were
localized on one side (Figure S1).

We compared the proportions of cell types under normal conditions and after wound-
ing. After transfection of 200 µL of AMPs (4–5× 104 protoplasts in 200µL) with 40 µg
of empty vector, the cells were harvested and wounded through vigorous vortexing at
3200 rpm for 5, 10, 15, and 20 s. In the controls, NSCs accounted for 86.01% ± 3.52%,
WWCs accounted for 7.86% ± 0.98%, and SWCs accounted for 6.12% ± 1.38% of the cells
(Figure S2A). However, the composition was significantly altered following wounding. In
cells vortexed for 10 s, approximately 70% of the cells showed altered shapes, and cells
vortexed for 15 s were markedly disrupted (Figure S2A,B).

To verify whether vortex-induced damage would induce a wounding response in
the cells, we analyzed MPK6 kinase activity because MPK6 is activated by wounding [39].
After MPK6 was expressed with 35S promoter in AMPs, the cells were vortexed, and MPK6
activity was measured for 60 min. MPK6 activity peaked 20 min after wounding and
decreased thereafter (Figure 2A and Figure S3).

We also analyzed the promoter activity and gene expression of JAZ1 for 60 min after
vortexing because JAZ1 expression is rapidly increased under wounding stress [40]. Pro-
moter activity was not changed in the non-wounded protoplasts, but the promoter activity
and expression of JAZ1 were significantly increased following wounding (Figure 2B and
Figure S4A); however, the hypoxia marker gene, DIN6, did not change between normal
condition and wounding treatment (Figure 2C and Figure S4B). The data suggest that
vortex-induced mechanical damage to protoplasts exhibits typical responses of wound-
ing stress.

2.3. Gene Expression and Protein Stability of MYC2 Are Compromised and Recovered in Early
Stage of Wounding

JA is a major hormone of the wounding response, and MYC2 is a master regulator of
JA signaling [12]. Therefore, we determined the MYC2 promoter activity, gene expression,
and protein stability during the early stage of wounding. To analyze the MYC2 promoter
activity, we transfected the fLUC conjugated MYC2 promoter to the AMPs and incubated
them for 6 h, then wounded the AMPs by vortexing and incubated the cells for 60 min.
MYC2 promoter activity decreased 10 min after wounding, but recovered quickly and
increased for 60 min after the treatment (Figure 3A). This pattern was correlated with
MYC2 gene expression (Figure 3B).

To analyze the transcriptional activity of MYC2 in the wounded protoplasts, we
measured LOX2 promoter activity and gene expression caused by direct targeting of
MYC2 [41]. The LOX2 promoter activity and gene expression patterns were similar to those
of MYC2, but recovery took longer (Figure 3C,D). Therefore, we investigated MYC2 protein
stability in wounded protoplasts. C-terminal GFP-conjugated 35S promoter-driven MYC2
DNA was transfected into AMPs and then the protoplasts were wounded for 10 s. The
MYC2 protein stability was determined for 60 min. Protein stability was compromised until
20 min after wounding, but increased subsequently (Figure 3E and Figure S5A). MYC2
protein stability was correlated with MYC2-induced LOX2 promoter activity (Figure 3F).
The data indicated that MYC2 expression and protein stability were compromised in
wounded protoplasts, and then recovered in the early stage.
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Figure 2. Response of vortex-induced wounding. (A) in vitro kinase activity of MPK6. After MPK6
was expressed in protoplast, vortex-induced wounding was carried out and time-dependent MPK6
activity was determined. Myelin basic protein was used as kinase substrate. The (B) promoter
activities of JAZ1 and DIN6 after 60 min of wounding in AMPs. The promoter of JAZ1 and DIN6 was
transfected to AMPs and incubated for 6 h. The AMPs were wounded and additionally incubated for
60 min and promoter activities were analyzed. Values are means ± SE of three repeats: * p < 0.01.
The (C) gene expression of JAZ1 and DIN6 in wounded protoplasts. After isolation of AMPs, the
protoplasts were incubated for 4 h without transfection for stabilization and wounded by vortex and
incubated for 60 min. Total RNA was isolated from the AMPs and RT-qPCR was carried out. Values
are means ± SE of three repeats: ** p < 0.001.
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Figure 3. Analysis of promoter activity, gene expression, and protein stability of MYC2 during the
early stage of wounding in protoplasts. Promoter activity of MYC2 (A) and LOX2 (C) in the early stage
of wounded protoplast. fLUC-conjugated MYC2 and LOX2 promoters were respectively transfected
to AMPs and incubated for 6 h. Vortex-induced wounding was performed, and the promoter activity
was determined in a time-dependent manner. UBQ-rLUC was used as an expression control. Values
are means ± SE of three repeats: * p < 0.01 and ** p < 0.001. AMPs were incubated for 4 h without
transfection, wounded by vortex, and incubated for the designated time points. Total RNA was
isolated from the AMPs and RT-qPCR was carried out with gene-specific primers of MYC2 (B) and
LOX2 (D). Actin2 was used as an expression control. Values are means ± SE of three repeats: * p < 0.01
and ** p < 0.001. (E) Analysis of MYC2 protein stability in wounded protoplasts. 35S promoter-driven
C-terminal GFP-conjugated MYC2 was transfected and incubated for 10 h. The protoplasts were
wounded and incubated for designated time points and harvested. MYC2 proteins were detected
using an anti-GFP antibody. Actin was used as a loading control. (F) Transient promoter activity of
LOX2 with MYC2 effector in wounded protoplast. fLUC-conjugated LOX2 was expressed with or
without MYC2 effector and incubated for 60 min. The LOX2 promoter activity was determined in a
time-dependent manner. UBQ-rLUC was used as an expression control. Values are means ± SE of
three repeats: ** p < 0.001.
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2.4. Gene Expression of MYC2 Is Increased with Stable Protein Expression at Late Stage
of Wounding

We further analyzed MYC2 expression and protein stability over a longer period in
wounded protoplasts. The promoter activity and gene expression of MYC2 fluctuated, but
showed increasing trends until 6 h after wounding (Figure 4A,B). The LOX2 promoter activ-
ity and gene expression patterns were similar to those of MYC2 (Figure 4C,D), suggesting
that MYC2 protein stability is not altered in the late stage of wounding.
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Figure 4. Analysis of promoter activity, gene expression, and protein stability of MYC2 in wounded
protoplast at the late stage of wounding. Promoter activities of MYC2 (A) and LOX2 (C) in the late
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stage of wounded protoplast. fLUC-conjugated MYC2 and LOX2 promoters were respectively
transfected to AMPs and incubated for 6 h. Vortex-induced wounding was generated in AMPS and
incubated for 6 h. The promoter activities were determined in a time-dependent manner. UBQ-rLUC
was used as an expression control. Values are means ± SE of three repeats: * p < 0.01. AMPs were
incubated for 4 h without transfection and wounded by vortex and incubated for the designated
time points. Total RNA was isolated from the AMPs and RT-qPCR was carried out with gene-specific
primers of MYC2 (B) and LOX2 (D). Actin2 was used as an expression control. Values are means ± SE
of three repeats: * p < 0.01 and ** p < 0.001. (E) Analysis of MYC2 protein stability in wounded
protoplasts. 35S promoter-driven C-terminal GFP-conjugated MYC2 was transfected and incubated
for 10 h. The protoplasts were wounded and incubated for designated time points and harvested.
MYC2 proteins were detected using an anti-GFP antibody. Actin was used as a loading control.
(F) Transient promoter activity of LOX2 with MYC2 effector in wounded protoplast. fLUC-conjugated
LOX2 was expressed with or without MYC2 effector and incubated for 6 h. The LOX2 promoter
activity was determined in a time-dependent manner. UBQ-rLUC was used as an expression control.
Values are means ± SE of three repeats: ** p < 0.001.

To verify the above possibility, we expressed C-terminal GFP-conjugated 35S promoter-
driven MYC2, performed wounding treatments, and then measured MYC2 protein stability
for 6 h in AMPs. As shown in Figure 4E and Figure S5B, the MYC2 protein stability
did not change during the 6 h after wounding. To further verify the stability of MYC2
protein, LOX2 promoter activity was measured. The LOX2 promoter activity increased
under MYC2 co-expression, but did not change until after 6 h of wounding. The results
indicated that MYC2 expression increased in the late stage of wounded protoplasts without
post-translational modification.

3. Discussion

The protoplast system is versatile and has been used for various abiotic stresses
but not applied for wounding study [40,42,43]. Here, we established a novel method
based on Arabidopsis mesophyll protoplasts (AMPs) for analysis of wounding response.
We induced mechanical damage to AMPs through vigorous vortexing, which caused
damage to all protoplasts and altered the shapes of approximately 66% of the AMPs.
Furthermore, wounding increased MPK6 activity and JAZ1 expression (Figure 2). These
effects were typical wounding-induced responses. Consequently, the vortex-induced
mechanical damage generates a wounding response in AMPs.

JA is an important hormone of the wounding response, and MYC2 is a key regulator
of JA signaling. Therefore, we analyzed MYC2 expression profiles and protein stability
in wounded protoplasts. During the early wounding response, MYC2 expression in
Arabidopsis leaves was significantly increased at 30 min and 1 h, and it was decreased 3 h
after wounding [44]. However, earlier responses were not reported. The MYC2 promoter
activity and expression were reduced 10 min after wounding and exhibited rapid recovery
(Figure 3A,B). This was a so-far unknown response in wounded cells.

We further analyzed MYC2 gene expression and promoter activity in wounded proto-
plasts with LOX2. LOX2 promoter activity and gene expression decreased and recovered;
however, recovery occurred later than that of MYC2 (Figure 3C,D), indicating that the
MYC2 protein is not stable in wounded protoplasts. To verify this possibility, we deter-
mined the stability of the MYC2 protein in wounded protoplasts. MYC2 protein was
degraded at 20 min and then recovered (Figure 3E,F). This post-translational modification
may be regulated by kinases as numerous kinases are activated during wounding [45–47].
This means that MYC2 may be negatively regulated by one of the activated kinases during
early wounding.

Subsequently, we analyzed MYC2 expression and protein stability during the late
stage of protoplast wounding. We limited the analysis time to 6 h after wounding because
AMPs turned unstable 24 h after isolation (Figure S4). MYC2 promoter activity and gene
expression increased, and LOX2 exhibited a similar pattern (Figure 4A–D), suggesting
that MYC2 is stable in the late stage of wounding, as verified using protein blotting



Plants 2021, 10, 1518 8 of 11

of MYC2 (Figure 4E) and by assessing LOX2 promoter activity with MYC2 effector co-
expression (Figure 4F). The results indicated that MYC2 expression increased without
post-translational modification in the late stage of the wounding.

Wounding treatment of leaves may be associated with a time gap between the first
and last treatment, which can be reduced using this protoplast system with vortex-induced
wounding. This is an advantage of using vortex-induced wounding.

The novel experimental model outlined in the present study displays the responses
of wounded cells, which could be improved by the adoption of a single-cell-based multi-
omics platform.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Arabidopsis thaliana Col-0 plants were used. For protoplast generation, plants were
grown in Professional Growth Mix soil (Sun Gro, Agawam, MA, USA) for 23–25 days with
programmable light (12 h, 50–70 µE) and dark (12 h) conditions at 23 ◦C. Humidity was
adjusted to 40–60%.

4.2. Protoplast Isolation and Polyethylene Glycol (PEG) Transfection

Protoplast isolation and polyethylene glycol (PEG)-mediated transfection was per-
formed as described previously [28,38], with slight modifications. Briefly, 24-day-old plants
that were grown in soil were cut into small pieces using a razor blade and incubated for 4 h
in an enzyme solution (20 mM MES-KOH [pH 5.7], 1.5% cellulase R10, 0.4% macerozyme
R10, 0.4 M mannitol, 20 mM KCl, and 10 mM CaCl2). After centrifugation, 4–6 × 104 pro-
toplasts were resuspended in a 200 µL MMG solution (4 mM MES-KOH [pH 5.7], 0.4 M
mannitol, and 15 mM MgCl2). A total of 20 µg of constructs were mixed well with 200 µL
of protoplasts and a PEG solution (40% PEG4000, 0.2 M mannitol, and 100 mM CaCl2).
After 4 min of incubation, a WI solution (4 mM MES-KOH [pH 5.7], 0.5M mannitol, and
20 mM KCl) was added to the sample. The protoplasts were incubated and harvested.

4.3. In Vitro Kinase Assay

For the kinase assay, MPK6 was inserted into the HBT promoter and the NOS ter-
minator in the transient expression vector pHBT-HA. The construct was transfected into
mesophyll protoplasts and incubated for the indicated times. The cells were lysed, and
the protein extracts were incubated with an anti-HA antibody and the additional adding
of A-agarose beads. After bead washing, the immune complex kinase assay of MPK6
was performed as described previously [48]. Briefly, purified MPK6-HA was mixed with
3 µg of myelin basic protein in a kinase reaction buffer (50 mM Tris-HCl [pH 7.5], 10 mM
MgCl2, 1 mM DTT, and 50 µM [γ-32P] ATP) for 30 min at room temperature. The reaction
was stopped by a SDS loading buffer, and an equal volume of each sample was loaded
into a 10% SDS-PAGE gel. After the separating, phosphorylation was detected with a
phosphor-image analyzer (FLA-7000, Fujifilm, Japan). The experiment was independently
conducted at least three times, and representative data are shown.

4.4. Transient Promoter Assay

The protoplast transient promoter assay was performed as described previously [27].
To generate an effector construct for transient expression in protoplasts, MYC2 was cloned
into the pHBT-GFP vector. To generate the reporter plasmids, 1 kb upstream promoter
regions of DIN6, LOX2, JAZ1, and MYC2 were cloned into the firefly luciferase vector. For
luciferase assays, 8 µg of reporter plasmid and 1 µg of pUBQ-rLUC [49] were transfected
into protoplasts and incubated at 23 ◦C. After incubation, reporter activities were measured
using a dual luciferase assay system (Promega, Madison USA).
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4.5. RNA Extraction and RT-qPCR

The isolated protoplasts were incubated at room temperature for stabilization, fol-
lowed by vortex-induced wounding, and then incubated for the designated period. The
total RNA was extracted from the protoplasts using a TRIzol reagent (Invitrogen, Waltham
USA), and 200 ng of total RNA was used for the first-strand cDNA synthesis using Su-
perscript III reverse transcriptase (Invitrogen, Waltham USA). A quantitative real-time
polymerase chain reaction (RT-qPCR) was performed using specific primers (Table S1)
and conducted on the MyiQ Real-Time PCR System (Bio-Rad, Hercules USA) using the
SYBR Green Master Mix (Bio-Rad, Hercules USA) under the following conditions: 40 cycles
of denaturation at 95 ◦C for 10 s, annealing at 58 ◦C for 15 s, and extension at 72 ◦C for
30 s. The gene expression was quantified using the comparative Ct method. Actin was
used as a calibration control to determine the expression of genes. The experiment was
independently conducted at least three times.

4.6. Protein Blot Analysis

The total protein was extracted from the protoplasts using an extraction buffer (50 mM
Tris-Base, 150 mM NaCl, 10 mM NaF, 10 mM Na3Vo4, 1x Complete, and 0.2% Triton X-
100). The proteins were separated in 10% SDS-PAGE and transferred to polyvinylidene
difluoride membranes. For immunoblotting, the primary antibodies anti-HA (Roche),
anti-GFP (Abcam), and anti-ACT (Agrisera) were used (1:1000). Next, an HRP-conjugated
secondary antibody (Abcam) was added (1:10,000). The signal was detected using an
IR-image detector Odyssey (LI-COR, Lincoln USA).

4.7. Statistical Analyses

Luciferase assays and RT-qPCRs were independently conducted at least three times,
and differences were tested using a t-test in GraphPad Prism 8.0 (GraphPad Software, San
Diego, CA, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10081518/s1, Figure S1: Three different cell types in wounded protoplasts. Figure S2:
Proportion of protoplast types and rate of protoplast disruption following vortexing time. Figure S3:
Statistical analysis of MPK6 activity in wounded protoplasts. Figure S4: Promoter activities of JAZ1
and DIN6 in normal condition protoplast. Figure S5: Statistical analysis of MYC2 protein stability in
wounded protoplasts., Table S1: List of primers of this study.
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