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Abstract: Different strains of Newcastle disease viruses (NDV) or Sendai viruses (SV) are used to
induce the production of human leukocyte multi subtype interferon-alpha (HuIFN-αN3). Their
inducing capacity can be enhanced in different ways. One includes 10% PBS washout of Holocene
minerals (HM). The presented study aims to compare the HuIFN-αN3 inducing capacity of NDV
ZG1999HDS or SV (Cantell strain) strain in vitro, and to evaluate the enhancing effect of 10% PBS
washouts of HM on both viruses. The NDV strains’ ZG1999HDS interferon inducing capacity
(483.23 ± 4.5 pg/mL) was similar to that of the SV (Cantell strain) (584.16 ± 5.9 pg/mL). It was
shown that the HuIFN-αN3 inducing capacity of the strain of NDV ZG1999HDS can be strongly
enhanced with 10% PBS washout of HM to 3818.21 ± 41.9 pg/mL and 4790.34 ± 33.5 pg/mL with
SV (Cantell strain), u. The RP-HPLC analyses of such HuIFN-αN3 induced with the strain of NDV
ZG1999HDS show the difference to SV (Cantell strain) induced HuIFN-αN3 in the absence of subtype
α14 and the lower level of the subtype α1. The possible ways of such enhancement were also studied
and it was postulated that the Fe2+ ions from 10% PBS washouts of HM, while stimulating the reactive
oxygen species (ROS) and nitric oxide (NO) formation, activate the transcription factor NF- κB and
consequently the production of HuIFN-αN3.

Keywords: virus NDV ZG1999HDS; Sendai virus (Cantell strain); interferon induction; 10% PBS
washout; Holocene minerals; enhancement

1. Introduction

Interferons (IFNs) are multifunctional glycoproteins/proteins that are produced and
released by host cells as a response to the presence of different pathogens, such as viruses,
bacteria, parasites, or tumor cells [1]. They are also able to trigger the protective defenses of
the immune system that decisively contribute to the elimination of pathogens or tumors [2].
There are three major classes of IFNs, designated as Type I, II, and III. Type I includes: IFNs-
α, β, ω, ε and κ, Type II includes IFN-γ [3,4], while Type III includes IFN λ [5]. Human
IFN-α (HuIFN-αN3) consists of a family of approximately 22 structurally related proteins,
which are the products of 14 different genes. They are located on chromosome 9. Three of
them are glycosylated, with an approximate molecular weight of 17,500–27,000. Each of
them is composed of 165–166 amino acids. The HuIFN-αN3 induction in the peripheral
blood mononuclear cells (PBMC) from human Buffy coats was performed with the strain
of NDV ZG1999HDS [6] or SV (Cantell strain) [7]. For the HuIFN-αN3 induction in human
PBMC cells, the hem agglutinin-neuraminidase (HN) membrane glycoprotein of the NDV
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virus is needed [8,9]. Among various NDV strains that can induce the HuIFN-αN3, the
new strain of NDV, ZG1999HDS was recently isolated, patented and characterized [10,11].
In 2013, it was deposited in the [12] Collection National de Cultures de Microorganisms
(CNCM) and in the year 2014 in the Gene Bank [13]. The virus was isolated from the lung
tissue of broiler chickens sufferings a respiratory disease, as it was described by Bid̄in and
Mazija [14]. The virus was fully sequenced and genetically characterized [15], while its
phylogenetic and genome sequence analyses showed that the strain of NDV ZG1999HDS
belongs to the genotype II of class II of NDVs, that are closely related to the NDV strains La
Sota and Hitcher B1.

The Holocene era denotes a period from 9.560 to 9.300 B.C. starting with the with-
drawal of the Pleistocene glaciations. During that time, the Holocene sands of the Drava
River near the city of Koprivnica (Croatia), containing the fairly uniform, mostly silicate-
bearing HM, were formed. When grained, they show unusual biological/microbiological
activity, such as antifungal activity against Peronospora sp. and Phytoftora sp. that was
previously found by Filipič et al. [16]. The same authors found that the 10% PBS washout of
grained HM enhances the HuIFN-αN3 antiproliferative and pro-apoptotic activity against
Colon cancer carcinoma (CaCo-2) cells in vitro [17].

The present experiments were performed to determine the HuIFN-αN3 inductive
capacity of the strain of NDV ZG1999HSD in comparison to SV (Cantell strain) and the
possibility of their enhancement with the 10% phosphate buffer saline (PBS) washouts
of HM.

2. Material and Methods
2.1. Viruses

The strain of NDV ZG1999HDS was obtained from Prof. emeritus Hrvoje Maz-
ija, CEO of the CIETO (Croatian Institute for Experimental and Translational Oncology)
Koledinečka 03, 10040 Zagreb, Croatia. The SV (Cantell strain) was kindly provided by Dr
Eugen Šooš, PhD. Both viruses were multiplied in Specific Pathogen Free (SPF) chicken em-
bryos and concentrated by lyophilization. The EID50 determined in SPF chicken embryos
was 2.0 × 107 for the strain of NDV ZG1999HDS and 1.0 × 107 for SV (Cantell strain).

2.2. 10% PBS Washout of HM and Analysis of 10% PBS Washout of HM Crystals

10% PBS washout was prepared from grained HM. The PBS was added, and the 10%
PBS washout was shaken extensively and then centrifuged at 1700 RPM for 20 min. The
supernatant was filtered through the 0.2 µm syringe filters and filled into 10.0 mL sterile
plastic tubes that were stored at −20.0 ◦C. Such supernatant was used as a “10% PBS
washout of HM” in all experiments. The grained HM were chemically analyzed in the
Croatian Geological Survey, Department of Mineral Resources in Zagreb (Croatia) using
the method described by Smith et al. [18]. The analyses’ results are shown in Table 1.

For analytic purposes, the 10% PBS washout of HM solution was crystallized, and these
crystals were analyzed by scanning electron microscopy (SEM) by the method ESM/EDX
(Automated analysis for GSR-Gun Shot Residua, Nanoscience Instruments, Phoenix, AZ,
USA). The Scanning microscopes Tescan-Mira3Feg (Tescan, Brno, Czech Republic) with
EDX detector using Program QuantaxEDS (Bruckner, Karlsruhe, Germany) were used.
Samples for analysis were taken on aluminum stubs (carrier of the sample), (Micro to Nano,
Ethaarlem, Netherlands) with adhesive trace strip, and GSR software (Global Software
Resources, Pleasanton, CA, USA) was applied for analysis. The results of these analyses
are shown in Table 2.
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Table 1. The chemical composition of the grained HM from the sands near the Drava River in
Koprivnica (Croatia).

Analyte: UNIT: MDL: Sample: Analyte: UNIT: MDL: Sample:

SiO2 % 0.01 88.71 La PPM 0.1 12.7

Al2O3 % 0.01 5.37 Pr PPM 0.02 2.95

Fe2O3 % 0.04 1.08 Nd PPM 0.3 11.0

MgO % 0.01 0.44 Sm PPM 0.05 2.22

CaO % 0.01 0.66 Eu PPM 0.02 0.47

Na2O % 0.01 1.41 Gd PPM 0.05 2.19

K2O % 0.01 0.92 Tb PPM 0.01 0.33

TiO2 % 0.01 0.18 Dy PPM 0.05 1.89

P2O5 % 0.01 0.12 Ho PPM 0.02 0.42

MnO % 0.01 0.02 Er PPM 0.03 1.08

Cr2O3 % 0.002 0.004 Tm PPM 0.01 0.18

Ni % 20.0 <20.0 Yb PPM 0.05 1.27

Sc % 1.0 3.0 Lu PPM 0.01 0.19

Ba PPM 1.0 154.0 Mo PPM 0.1 0.4

Be PPM 1.0 <1.0 Cu PPM 0.1 5.0

Co PPM 0.2 2.8 Pb PPM 0.1 5.8

Cs PPM 0.1 1.1 Zn PPM 1.0 17.0

Ga PPM 0.5 5.4 Ni PPM 0.1 11.4

Hf PPM 0.1 3.6 As PPM 0.5 1.9

Nb PPM 0.1 5.0 Cd PPM 0.1 <0.1

Rb PPM 0.1 36.1 Sb PPM 0.1 0.1

Sn PPM 1.0 <1.0 Bi PPM 0.1 0.3

Sr PPM 0.5 75.4 Ag PPM 0.1 <0.1

Ta PPM 0.1 0.6 Au PPM 0.5 12.1

Th PPM 0.2 4.6 Hg PPM 0.01 0.01

U PPM 0.1 1.2 Ti PPM 0.1 <0.1

V PPM 8.0 11.0 Se PPM 0.5 <0.5

W PPM 0.5 1.3 LOI % 5.1 1.1

Zr PPM 0.1 131.0 TOT/C % 0.02 0.12

Y PPM 0.1 12.2 TOT/S % 0.2 <0.02

Ce PPM 0.1 25.2 Summa % 0.01 99.7
PPM, parts per million; MDL, minimal decimal level; LOI, loss of ignition in sediment; TOT/C, total C analysis;
TOT/S, total S analysis.
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Table 2. The mineral analysis of the 10% PBS washout of HM crystals.

10% HM–PBS Crystals

Analytes Absolute Values Relative Values

LaCe 3.0 0.336
Fe2+ 129.0 14.478
Sb 0 0
Ba 0 0
Pb 1.0 0.112

BaAl 21.0 0.112
BaCaSi 3.0 0.337

SiKCa++ 67 7.512
K 68.7 77.104

Au 1.0 0.168
Summa 891 100

Summa absolute 909

2.3. The Isolation of Peripheral Blood Mononuclear Cells (PBMC) from Human Buffy Coats

Human Buffy coats of different blood donors obtained from the Blood Transfusion
Centre in Ljubljana (Slovenia) were combined and centrifuged at 1.700 RPM for 20 min at
4 ◦C. To the erythrocytes, lymphocytes, macrophages and granulocytes, nine parts of 0.83%
ammonium chloride were added. The erythrocyte lyses was performed at 4 ◦C and took
15 to 20 min. Then, the cell suspension was centrifuged at 2.500 RPM for 20 min at 4 ◦C and
the supernatant was removed, while white cell sediments were resuspended in the PBS
containing 1% of glucose. The percentage of living or dead cells was determined by Trypan
blue staining. The isolated PBMC cells were resuspended in the HuIFN-αN3 induction
medium prepared according to the method of Jerker’s and Olovson [19] in a concentration
of 2.0 × 107 cells/mL + 5% of Human Serum Albumin (HSA).

2.4. The Determination of the Haemmaglutination (HA) Activity of the Strain of NDV
ZG1999HDS and SV (Cantell Strain)

The HA activity of the virus was determined by the use of 1% solution of chicken
erythrocytes as described by Atabekov [20].

2.5. The Induction of HuIFN-αN3 with the Strain of NDV ZG1999HDS or SV (Cantell Strain)

To the 5 cm Petri dishes containing 3 mL of PBMCs (2× 107 cells/mL) cells suspension
in the HuIFN-αN3 induction medium, 3.2, 6.4, 9.6 and 100 HA/mL of the strain of the
NDV ZG1999HDS were added. In the case of SV (Cantell strain), the same amount of virus
was added. The Petri dishes were incubated for 18 h at 37 ◦C at 5% CO2. All experiments
were performed in triplicate in the three to four separated experiments. In the separate
experiments, before the viral induction of the strain of NDV ZG1999HDS or SV (Cantell
strain), the priming with 100 IU/mL of HuIFN-αN3 was performed for two hours at 36 ◦C.

2.6. HuIFN-αN3 Induction Enhancement Experiments

To the 100 HA/mL of the NDV ZG1999HDS or SV, 10% PBS washout of HM was
added, and induction was performed. In the combined experiment 100 IU/mL of HuIFN-
αN3 priming and 10% PBS washout of HM was added to the 100 HA/mL of the NDV
ZG1999HDS or SV (Cantell strain), respectively. All experiments were performed in
triplicate in the three to four separated experiments.

2.7. HuIFN-αN3 Monoclonal ELISA, (“Platinum ELISA”)

The amount of induced HuIFN-αN3 (pg/mL) was determined by the Human IFN
ELISA kit [21] (Platinum ELISA from eBioscience, Vienna, Austria). In the assay, the interna-
tional HuIFN-αN3 standard was used (Human IFN-α “Platinum ELISA“ BMS216/BMS 216
TEN, Affymetrix, eBioscience, 3420 Central Expressway, Santa Clara, CA, USA). The assay
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was performed in accordance with the manufacturer’s instructions, with the final reading
on the ELISA reader at 620 nm and calculating the pgs (picograms) of HuIFN-αN3/mL.

2.8. HuIFN-αN3 RP-HPLC Analysis

The HuIFN-αN3 subtype composition was analyzed by reverse-phase high-perform-
ance liquid chromatography (RP-HPLC). The HPLC column was provided by Phenomenex,
Aeris PEPTIDE, column 3.6 µm XB-C18, 250 mm × 4.6 mm. Different HuIFN-α samples
(natural and recombinant) with approximately one million antiviral (AV) units/mL in a
volume of 20 to 40 µL were applied to the column and eluted with a linear gradient of
Solvent A = water + 0.1% of TFA and Solvent C = Acetonitrile + 0.1% TFA for 20 min
with a flow rate of 0.8 mL/min. and pressure of 139 to 140 bar. The course of RP-HPLC
chromatography of different IFN samples is shown in the Table 3. The temperature of the
column was 40 ◦C. The absorbance was monitored at 214 and 280 nm. HuIFN-αN3 species
in different IFNs compositions were separated according to their relative hydrophobicity
using RP-HPLC as was described by Alm et al. [22] and Wang et al. [23].

Table 3. The course of RP-HPLC chromatography of different IFN samples.

Step Time (Minutes) Solvent A Solvent C

0 0 91 9
1 3 80 20
2 6 50 50
3 12 50 50
4 15 91 9
5 20 91 9

2.9. NO Assay

The concentration of stable NO, which is the end product of nitric oxide, is present in
the supernatant of treated or untreated human PMBCs cells (2.0 × 107 cells/mL). It was
measured by the method based on the Griess reaction described by More and Pai [24]. The
absorbance at 550 nm was measured in a microtiter plate reader and the standard curve for
NO was prepared by the use of 10–100 µM sodium nitrites in distilled water.

2.10. Lysozyme Determination

The amount of lysozyme was determined in accordance with the method developed
by Nash et al. [25]. One thousand Colony Forming Units (CFU) of Streptococcus pyogenes in
200 µL of 10 mM of Potassium phosphate buffer (pH 7.4) and 200 µL of sample or 1.0, 10.0
and 100.0 µg/mL of Lysozyme were separately added to the 1.6 mL of Mueller–Hinton
(MH)–Broth (pH 6.5) and incubated overnight at 37 ◦C. On the next day, the OD was
measured at 595 nm. The amount of Lysozyme (µM/mL) was calculated in comparison to
the bacterial OD after 24 h.

2.11. Statistics

All of the treatments were performed in triplicate and repeated three to four times. The
average values of standard deviation (SD) were recorded. The obtained data were analyzed
with the t-test. The Stat graphics Stratus online statistics software (www.statgraphicsstratus.
com, accessed on 13 January 2022) from Stat point Technologies Inc., Warrenton, VA, USA
was used. Statistically significant were differences with the p values: * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.0001.

www.statgraphicsstratus.com
www.statgraphicsstratus.com
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2.12. The Plan of the Experiments

During the experiments shown in Figure 1, HuIFN-αN3 was induced by 100 HA/mL
of NDV ZG1999HDS or SV (Cantell strain) with or without 10% PBS washout of HM and
with or without priming with 100 IU/mL of HuIFN-αN3. The HuIFN-αN3 induction was
performed as follows: To the PBMCs cells + adsorbed macrophages, the 100 IU/mL of
HuIFN-αN3 primed for 120 min at 37 ◦C was added. This was followed by the addition
of 100 HA/mL of ZG1999HDS or SV (Cantell strain) for 60 min at 35 ◦C. Then, the 10%
PBS washout of HM was added to enhance the HuIFN-αN3 induction. The samples were
incubated at 35 ◦C for 24 h. The incubation, cells (PBMCs + adsorbed macrophages) was
then centrifuged at 1.700 RPM for 15 min. The decanted supernatants, which were filtered
through the 0.2 µm syringe filters, were analyzed as follows: (1) RP-HPLC profile of treated
and untreated cells. (2) The ELISA assay of the HuIFN-αN3 content. (3) Assay of NO.
(4) Assay of the Lysozyme content.
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3. Results
3.1. HuIFN-αN3′s Induction Capacity of NDV ZG1999HDS or SV (Cantell Strain)

The results of the HuIFN-αN3 induction experiments in the human PBMCs with
the strain of NDV ZG1999HDS or SV (Cantell strain) are shown in the Figure 2. In the
case of NDV strain, ZG1999HDS induction of the HuIFN-αN3, a relatively high amount
(429.11 ± 5.3 pg/mL) was obtained with the use of only 3.2 HA units/mL of the strain of
NDV ZG1999HDS. The comparison between 3.2 HA units/mL and 6.4 HA units/mL show
the relatively strong decrease of HuIFN-αN3 induction to the 283.49± 7.6 pg/mL at 6.4 HA
units/mL. In the case of SV (Cantell strain) at 3.2 HA units/mL the 275.22 ± 6.8 pg/mL of
HuIFN-αN3 was obtained. At 6.4 HA units/mL the decrease to the 258.11 ± 6.2 pg/mL of
HuIFN-αN3 was found. The decrease is much higher in the case of NDV ZG1999HDS than
on SV (Cantell strain). The mechanism of such decrease is recently unknown. The highest
amounts of HuIFN–αN3 (pg/mL) were obtained with 100 HA/mL of the strain of NDV
ZG1999HDS 483.23 ± 4.5 pg/mL or 100 HA/mL of SV (Cantell strain) 584.16 ± 5.9 pg/mL.

3.2. HuIFN-αN3 Enhancement Induction Experiments with 10% PBS Washout of HM
3.2.1. HuIFN-αN3 Enhancement Induction Experiments with 10% PBS Washout of HM
without Priming with 100 IU/mL of HuIFN-αN3

The results of HuIFN-αN3 enhancement induction experiments with 10% PBS washout
of HM without priming with 100 IU/mL of HuIFN-αN3 are presented in the Table 4. The
results without priming with 100 IU/mL of HuIFN-αN3 show the relatively high enhance-
ment in the amount of HuIFN-αN3. The most interesting are the data of the enhancement
with 10% PBS washout of HM of 3.6 IU/mL of NDV ZG1999HDS (3045.32 ± 30.2 pg/mL
of huIFN-αN3), which are higher than that obtained after enhancement of 3.6 IU/mL of SV
(Cantell strain). This is exactly the opposite situation of the enhancement of the 100 IU/mL
of NDV ZG1999HDS or SV (Cantell strain), where the higher value (4790.34 ± 33.5 pg/mL
of HuIFN-αN3) was found after enhancement of induction with the SV (Cantell strain).
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The possible mechanisms of such differential enhancement are unknown, even the role of
low–doses (3.6 HA/mL) of NDV ZG1999HDS should not be neglected.
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Figure 2. HuIFN-αN3 induction in PBMC by the NDV strain ZG1999HDS or SV (Cantell strain). The
experiments were performed in triplicate in three to four separate measurements. Data are presented
as means ± standard deviation (SD). Statistically significant were differences with the p values:
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. One-way ANOVA followed by posttest for NDV ZG1999HDS:
The f -ratio value is 103.56535. The p-value is < 0.00001. The result is significant at p < 0.05. One-way
ANOVA followed by posttest for SV (Cantell strain): The f -ratio value is 165.02672. The p-value
is < 0.00001. The result is significant at p < 0.05.

Table 4. HuIFN-αN3 enhancement induction experiments with 10% PBS washout of HM without the
priming with 100 IU/mL of HuIFN-αN3.

Induction with (1)

NDV ZG1999HDS
The Amount of

HuIFN-αN3 (pg/mL)
The Amount of

HuIFN-αN3 (pg/mL)
Induction with SV (2)

(Cantell Strain)

3.6 HA/mL (3) 435.12 ± 3.9 275.22 ± 6.8 3.6 HA/mL (3)

+10%PBS washout
of HM 3045.32 ± 30.2 1925.34 ± 22.6 +10% PBS washout

of HM

6.4 HA/mL (3) 283.49 ± 7.6 258.11 ± 6.2 6.4 HA/mL (3)

+10%PBS washout
of HM 1698.22 ± 11.3 1806.43 ± 12.9 +10% PBS washout

of HM

9.6 HA/mL (3) 295.32 ± 8.6 325.43 ± 3.4 9.6 HA/mL (3)

+10%PBS washout
of HM 2065.46 ± 58.2 2275.43 ± 65.3 +10% PBS washout

of HM

100 HA/mL (3) 483.23 ± 4.5 584.16 ± 5.9 100 HA/mL (3)

+10%PBS washout
of HM 3818.21 ± 41.9 4790.34 ± 33.5 +10% PBS washout

of HM
(1) NDV, Newcastle disease virus; (2) SV, Sendai virus; (3) HA/mL, hem agglutination units/mL.
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Similarly, in the enhancement experiments with the 10% PBS washout of HM the level
of the 4790.34 ± 33.5 pg/mL of the HuIFN-αN3 was obtained. It is interesting to note, that
the priming with the 100 units of HuIFN-αN3/107 of PMBC did not increase the level of
produced HuIFN-αN3 after the addition of 10% PBS washout of HM or SV (Cantell strain).
The same effect was obtained using 100 IU/mL priming with HuIFN-αN3/107 of PMBCs
and induction with the strain of NDV ZG1999HDS + 10% PBS washout of HM.

3.2.2. HuIFN-αN3 Enhancement Induction Experiments with 10% with PBS Washout of
HM and Priming with 100 IU/mL of HuIFN-αN3

The results of the HuIFN-αN3 induction enhancement are shown in Table 5. The most
fascinating is the data of the priming experiments by the 100 IU/mL of HuIFN-αN3 for
two hours at 37 ◦C and then adding the 100 HA/mL of the NDV strain ZG1999HDS or SV
(Cantell strain) and separately 10% PBS washout of HM.

Table 5. HuIFN-αN3 enhancement induction experiments with 10% PBS washout of HM with the
priming with 100 IU/mL of HuIFN-αN3.

Induction with (1) NDV
ZG1999HDS

The Amount of
HuIFN-αN3 (pg/mL)

The Amount of
HuIFN-αN3 (pg/mL) Induction with SV (2) (Cantell Strain)

NDV ZG1999HDS 100 HA/mL (3) 483.23 ± 4.5 584.16 ± 5.9 SV(Cantell strain) 100 HA/mL

NDV ZG1999HDS 100 HA/mL + 10%
PBS washout of HM(4) 3818.21 ± 41.9 4790.34 ± 33.5 SV(Cantell strain) 100 HA/mL + 10%

PBS washout of HM

HuIFN-αN3 100 IU/107

PBMCs (5) + NDV ZG1999HDS
100 HA/mL

2695.10 ± 22.4 3447.29 ± 47.3
HuIFN-αN3 100 IU/107

PBMCs + SV(Cantell strain)
100 HA/mL

HuIFN-αN3 100 IU/107 PBMCs +
NDVZG1999HDS 100 HA/mL + 10%

PBS washout of HM
772.12 ± 9.2 442.24 ± 1.3

HuIFN-αN3 100 IU/107

PBMCs + SV(Cantell strain)
100 HA/mL + 10% PBS washout of HM

(1) NDV, Newcastle disease virus; (2) SV, Sendai virus; (3) HA/mL, hem agglutination units/mL; (4) PBS–HM, 10%
PBS washout of the HM; (5) (HuIFN-αN3 100IU/107 PBMCs), priming with 100 IU/107 PBMCs of HuIFN-αN3.

The priming destroys the induction enhancement of the 10% PBS Washouts of HM
alone with the 100 HA/mL either the strain of NDV ZG1999HDS or SV (Cantell strain),
which deserves further analysis. Similarly, in the enhancement experiments with the 10%
PBS washout of HM the level of the 4790.34± 33.5 pg/mL of the HuIFN-αN3 was obtained.
It is interesting to note that the priming with the 100 units of HuIFN-αN3/107 of PMBCs
did not increase the level of produced HuIFN-αN3 after the addition of 10% PBS washout
of HM or SV (Cantell strain). The same effect was obtained using 100 IU/mL priming with
HuIFN-αN3/107 of PMBCs and induction with the strain of NDV ZG1999HDS + 10% PBS
washout of HM.

3.3. Macrophage’s Activation: NO Assay and Lysozyme Determination

The results regarding the amount of NO are shown in Table 6. In both cases 100 HA/mL
of NDV ZG1999HDS (Figure 3) or SV (Cantell strain) (Figure 4) 50 mM of FeCl2 caused
a decrease in NO level. The data regarding the amount of Lysozyme are shown in the
same table. The differences can be seen between NDV ZG1999HDS, in which 50 mM FeCl2
increases the amount of Lysozyme while in the case of SV (Cantell strain) 50 mM of FeCl2
decreases the amount of Lysozyme.
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Table 6. HuIFN-αN3, NO level and Lysozyme amount obtained after the addition of 50 mM FeCl2,
50 mM FeCl3 or 50 mM KCl to the NDV ZG1999HDS or to SV (Cantell strain).

Samples: The Amount of
HuIFN-αN3 (pg/mL)

The Amount of
Nitrite (NO) (µM/mL)

The Amount of
Lysozyme (µM/mL)

NDV(1) ZG1999HDS 100HA (3) 483.23 ± 4.5 7.2 ± 1.8 15.0 ± 1.4

NDV ZG1999HDS 100HA (3) + 50 mM FeCl2 25.05 ± 0.4 6.4 ± 0.9 15.4 ± 2.8

NDV ZG1999HDS 100HA (3) + 50 mM FeCl3 320.27 ± 4.9 11.6 ± 3.5 9.4 ± 2.5

NDV ZG1999HDS 100HA (3) + 50 mM KCl 232.12 ± 8.1 10.16 ± 2.7 7.6 ± 1.8

SV(2) (Cantell strain) 100HA (3) 584.16 ± 5.9 8.6 ± 1.7 11.7 ± 2.4

SV (Cantell strain) 100HA (3) + 50 mM FeCl2 23.0 ± 0.8 6.9 ± 0.35 9.2 ± 0.72

SV (Cantell strain) 100HA (3) + 50 mM FeCl3 250.46 ± 1.6 10.4 ± 2.1 9.6 ± 0.11

SV (Cantell strain) 100HA (3) + 50 mM KCl 272.33 ± 2.4 8.6 ± 1.4 9.7 ± 1.7

Untreated PBMCs (4) 18.7 ± 3.3 11.6 ± 2.4 10.2 ± 1.4
(1) NDV, Newcastle disease virus; (2) SV, Sendai virus; (3) HA/mL, hemagglutination units/mL; (4) PBMCs,
peripheral blood mononuclear cells.
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Figure 3. Induction of HuIFN–αN3 (pg/mL), NO (µM/mL) and Lysozyme (µM/mL) by the: NDV
ZG1999HDS, NDV ZG1999HDS + 50 mM FeCl2, NDV ZG1999HDS + 50 mM FeCl3, NDV ZG1999HDS
+ 50 mM KCl and PBMCs–control cells. Statistically significant were differences with the p values:
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.

3.4. The RP-HPLC Analyses of the Strain of NDV ZG1999HDS versus SV (Cantell Strain)
Induced Interferon (HuIFN-αN3)

The separation of different HuIFN-αN3 subtypes in the samples was achieved by
the Acetonitrile concentration. The least hydrophobic interferon subtypes were eluted
as early peaks, and the most hydrophobic interferon subtypes were eluted as later. As
the standards, the following human recombinants interferon’s were used: HuIFN-αA,
HuIFN-α2a and HuIF-α2b. The chromatograms of these at 280 nm and the chromatograms
at 280 nm of the Russian HuIFN-αN3 (NDV induced) are shown. The position of different
HuIFN-αN3 subtypes was determined in accordance with the 214 nm chromatogram at
WO 99/64440 [26] and US 6,309,862 [27] and are shown in Figures 5 and 6. The protein
profile (280 nm) was compared to the HuIFN-αN3 profile of different subtypes at 214 nm.
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Figure 4. Induction of HuIFN–αN3 (pg/mL), NO (µM/mL) and Lysozyme (µM/mL) by the: SV
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ences with the p values: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.
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Components of the strain of the NDV ZG1999HDS induced HuIFN-αN3 shown in
Figure 5 are the subtypes: α1, α2, αA, and α2b. The most important are the subtypes: α1
and α2 as the main biologically active components of the virus-induced HuIF-αN3, or more
precisely its relative ratio in the HuIFN-αN3 preparation. To quantify different HuIFN-αN3
subtypes: α2, and α1 increase (values of mAU relative units), αA remain unchanged, while
α2b decrease (value of mAU relative units) (Figure 5B,C).

The main components of the SV HuIFN-αN3, shown in Figure 6, are natural IFN
subtypes: α1, α2, αA, αb and α14. Similarly, as in the case of the strain of NDV ZG1999HDS
induced HuIFN-αN3 preparation, the most important are the subtypes α1 and α2 as the
most active components of the preparation of HuIFN-αN3. The relative ratio between α1
and α2 (values of mAU relative units) is most important for IFN’s biological activity.

HuIFN-αN3 interferon subtypes in different samples (natural and recombinant) are
separated according to their relative hydrophobicity by the RP-HPLC [28]. The separation
of different HuIFN-αN3 subtypes in the samples was achieved by increasing acetonitrile
concentration. The least hydrophobic interferon subtypes were eluted as early peaks and
the most hydrophobic interferon subtypes, which were eluted as later.

4. Discussion

The results of the HuIFN-αN3 single induction experiments in the human PBMCs
with the strain of NDV ZG1999HDS or SV (Cantell strain) are shown in Figure 2. In the
case of the strain of NDV ZG1999HDS induction of the HuIFN-αN3, high amounts of
429.11 ± 5.3 pg/mL were obtained with the use of only 3.2 HA units/mL of the strain
of NDV ZG1999HDS. Thus, obtained IFNs amounts were comparable with the HuIFN-
α3 inducing capacity of the SV (Cantell strain), in which the highest amount in a single
experiment was obtained with the 100 HA/mL when 584.16 ± 5.9 pg/mL of HuIFN-αN3
were found. NDV ZG1999HDS HuIFN-αN3 inducing capacity is comparable to the HuIFN-
αN3 inducing capacity of the SV (Cantell strain) [28]. The similar data were obtained with
the different strains of NDVs. So, the NDV strain Ulster on human PMBCs from Human
Buffy coats, induced about 450.34 ± 3.2 pg/mL of HuIFN-αN3 that was obtained with
25 HA units/mL of the virus, as described by Židovec and Mažuran [29].
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The RP-HPLC Analyses of the Strain of NDV ZG1999HDS versus SV (Cantell strain) in-
duced Interferon (HuIFN-αN3) show that the HuIFN-αN3 interferon subtypes in different
samples (natural and recombinant) are separated according to their relative hydropho-
bicity by the RP-HPLC [30,31]. The components of the strain of the NDV ZG1999HDS
induced HuIFN-αN3 shown in Figure 5 are the subtypes: α1, α2, αA, and α2b. The most
important are the subtypes: α1 and α2 as the main biologically active components of
virus-induced HuIF-αN3, or more precisely its relative ratio in the HuIFN-αN3 prepara-
tion [32–34]. To quantify different HuIFN-αN3 subtypes: α2, and α1 increase (values of
mAU relative units), αA remain unchanged, while α2b decrease (value of mAU relative
units) (Figure 5B,C). Different types of HuIFN-αN3 inductors differ in induction capacity
of the amount sof the IFN natural subtype’s α1, α2, αA and α2b. The highest amount of
HuIFN-αN3 (3818.21 ± 41.9 pg/mL) itself was obtained with 10% PBS washout of HM
addition to 100 HA/mL of the NDV ZG1999HDS.

The NDV ZG1999HDS belongs to avian Paramyxoviruses. As a lentogenic, it belongs to
the genotype II of class II of NDV. In the same group are the strains: LaSota, Ulster, and
Queensland. All of them show low-to-medium cytotoxicity for chicken embryo fibroblasts
(CEF). Most of them are inherently oncolytic and tumor selective, sparing the normal cells.
The cytolytic characteristics of the strain of NDV ZG1999HDS were investigated in vitro on
tumor cell cultures and in vivo on mice. They were compared with the impact of the strain
La Sota. The tumor selectivity of lentogenic NDVs is considered to be due to a defective
IFN’s response in tumor cells. Moreover, the NDV ZG1999HDS is a relatively strong inducer
of human type I IFNs, more precisely of the HuIFN-αN3, in the PBMCs from human Buffy
coats. The 100 HA/mL of the NDV ZG1999HDS mixed with 10% PBS washout of HM
can induce the 3818.21 ± 41.9 pg/mL of the HuIFN-αN3. The RP-HPLC profile of the
HuIFN-αN3 show subtypes α1, α2, αA and α2b. The predominant components of the
Sendai virus-induced HuIFN-αN3, shown in Figure 6, are the natural IFN subtypes α1,
α2, αA, αb and α14. Similarly, as in the case of the strain of NDV ZG1999HDS induced
HuIFN-αN3 preparation, the most important are the subtypes α1, α2 and α14, as the most
active components of the preparation of HuIFN-αN3. The most important is the relative
ratio between α1 and α2 (values of mAU relative units). The quantification of different
subtypes shows a α2 and α1 increase (values of mAU relative units), while αA, α2b and
α14 remain unchanged (Figure 6B,C). Various types of HuIFN-αN3 inductors differ in
induction capacity of HuIFN-αN3 subtype’s α1, α2, αA, α2b and α14. The highest amount
of HuIFN-αN3 (4790.34 ± 33.5 pg/mL) itself was obtained with 10%PBS washouts of HM
addition to 100 HA/mL of SV (Cantell strain).

The SV (Cantell strain) virus is a negative-stranded RNA virus with the ability to
induce very large quantities of Type I IFNs, more precisely HuIFN-αN3 in the PBMCs
from human Buffy coats. The SV (Cantell strain) induced HuIFN-αN3 is composed of the
14 different natural subtypes and exhibits different antiviral, antiproliferative and imimuno
modulatory activity in vitro. With the 100 HA units/mL of SV (Cantell strain) in the PBMCs
from human Buffy coats 584.16 ± 5.9 pg/mL of the HuIFN-αN3 can be obtained, which is
1
4 more than by 100 HA of the strain of NDV ZG1999HDS. Thus, the HuIFN-αN3 inductive
capacity of the NDV ZG1999HDS is comparable to the SV (Cantell strain).

The possible mechanisms of the 10% PBS washouts of HM enhancement of HuIFN-
αN3 Induction with NDV ZG1999HDS or SV (Cantell Strain) show that the HuIFN-αN3
inducing capacity of the strain of NDV ZG1999HDS can be enhanced with the 10% PBS
washout of HM to the level of 3818.21 ± 41.9 pg/mL. A higher amount of HuIFN-αN3
(4790.34± 33.5 pg/mL) was obtained with 10% PBS washout of HM addition to 100 HA/mL
of SV (Cantell strain). The mechanism of such enhancement is not clear. The analysis of
the 10% PBS washout of HM crystals (Table 2) shows the high amount of Fe2+ ions. In this
respect, it is possible that the HuIFN-αN3 induction enhancement role was investigated
by the addition of 50 mM of FeCl2, FeCl3 and KCl salts as a control (Table 5). The amount
of HuIFN-αN3 (pg/mL) the produced NO (µM/mL) and the Lysozyme (µM/mL) were
measured. In the case of FeCl2, the lowest amount of HuIFN-αN3 (pg/mL) 25.05 ± 0.4, in



Life 2022, 12, 414 13 of 15

the case of NDV ZG1999HDS and 23.0 ± 0.8 in case of SV (Cantell strain) were obtained.
When the level of NO (µM/mL) was analyzed, there was a decrease in the case of NDV
ZG1999HDS to 6.0 ± 0.47 and in the case of SV (Cantell strain) to 6.9 ± 0.35. This differs
from the Lysozyme (µM/mL) determination, specifically in the case of strain of NDV
ZG1999HDS, with the increase to 15.1 ± 1.4 and in the case of SV (Cantell strain) in which
a decrease of 9.2 ± 0.72 was found.

A possible explanation could be that HuIFN-αN3 induces the deregulation of intra-
cellular Fe2+ ions and promotes the deregulations of Iron homeostasis in a macrophage
during the systemic infection with the intracellular pathogen Candida galbrata, leading to
its survival. By engaging JAK1, IFNs-I disturbs the balance of the transcriptional activator
NRF2 and repressor BACH1 to induce down regulation of the key iron exporter Fpn1 in
macrophages. This leads to enhanced iron accumulation in the phagolysosome and failure
to restrict fungal access to iron pools. As a result, Candida galbrata acquires iron via the
Sit1/Ftr1 iron transporters system, which is facilitating the fungal intracellular replica-
tion and immune evasion. Thus, HuIFN-αN3 is a central regulator of iron homeostasis,
which can affect infection, and restrict the iron bioavailability, which may offer therapeutic
strategies to combat invasive microbe infections [35].

The reports suggest that ROS act as a mediator in signal transduction pathways, in
which cells react to the surplus of intracellular ROS with the induction of gene expression of
proteins involved in the regulation of the cellular redox state. The transcription factor NF-kB
plays an important role in a stress responses. Based on the finding that antioxidant proteins
inhibit NF-kB activation, it was suggested that NF-kB activity is regulated by intracellular
ROS levels. An important component that participates in the ROS formation via the Fenton
reaction is free intracellular iron. Since intracellular iron homeostasis is regulated by
ferritin, it was suggested that ferritin might serve as a cytoprotective protein, minimizing
oxygen free radical formation by sequestering intracellular iron. This idea is supported
by the finding that exposure of cells to inducers of ROS such as hydrogen peroxide and
tumor necrosis factor α results in the induction of ferritin synthesis. The observation
that the Mengovirus leader protein interferes with both the cellular iron homeostasis and
the activation of NF-kB provides an explanation for the mechanism by which the leader
protein down regulates the antiviral host cell response. Induction of ferritin expression
in Mengovirus-infected cells will limit the availability of iron for the production of free
hydroxyl radicals. As a consequence, NF-kB activation and thereby alpha/beta Interferon
expression are suppressed in Mengovirus-infected cells. An essential step in this antiviral
response is the activation of the double-stranded-RNA-dependent protein kinase (PKR)
and subsequent activation of NF-kB-mediated expression of genes such as that for Beta
Interferon. The data described show that the Mengovirus leader protein interrupts the
antiviral host cell response by suppression of NF-kB activation, possibly via interaction
with the cellular iron metabolism. Another possibility is that Fe2+ ions from 10% PBS
washout of HM stimulate the ROS and NO formation, and through this, the activation of
NF-κB with the induction of HuIFN-αN3. This would explain the NO decrease, specifically
in the case of Mengovirus leader proteins, which suppressed the Fe2+ activation of NF-kB
through the ROS (NO) [36].

In the case of the strain of NDV ZG1999HDS, responsible for interferon induction
is the complex hem agglutinin-neuraminidase, and in the case of SV (Cantell strain) the
defective-interfering genome [37], they do not inhibit the Fe2+ mediated activation of NF-κB
through the ROS and NO. It is also possible that Fe2+ ions bind to the plasma γ-Globulin
fraction and induces interferon [38]. Even the possible role of the Au or different Au-salts,
due to their presence in the 10% PBS washout of HM (Table 1) should not be neglected due
to their strong immunogenic role.
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5. Conclusions

In summation, it can be concluded that strain of NDV ZG1999HDS showed the HuIFN-
αN3 inducing capacity, similar to that of the 10% PBS washout of HM to the SV (Cantell
strain). Its HuIFN-αN3 inducing capacity can be enhanced with the 10% PBS washout of
HM to the 3818.21 ± 41.9 pg/mL in comparison to the 100 HA/mL of NDV ZG1999HDS
alone, in which 483.23 ± 4.5 pg/mL was obtained, despite its induced HuIFN-αN3 is
lacking the natural subtype α14, and have a lower amount of the IFN’s natural subtype α1.
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