
lable at ScienceDirect

Environmental Science and Ecotechnology 20 (2024) 100412
Contents lists avai
Environmental Science and Ecotechnology
journal homepage: www.journals .elsevier .com/environmental -science-and-

ecotechnology/
Original Research
Spatiotemporal drivers of urban water pollution: Assessment of 102
cities across the Yangtze River Basin

Yi-Lin Zhao a, Han-Jun Sun a, Xiao-Dan Wang b, Jie Ding a, **, Mei-Yun Lu a, Ji-Wei Pang b, c,
Da-Peng Zhou d, Ming Liang d, Nan-Qi Ren a, Shan-Shan Yang a, *

a State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
b China Energy Conservation and Environmental Protection Group, Beijing 100082, China
c China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100089, China
d China Railway Engineering Design and Consulting Group Co., Ltd., Beijing 100055, China
a r t i c l e i n f o

Article history:
Received 25 June 2023
Received in revised form
6 March 2024
Accepted 8 March 2024

Keywords:
Basin management
Primary indices
Urban risk factors
Yangtze river basin
Local conditions
* Corresponding author.
** Corresponding author.

E-mail addresses: dingjie123@hit.edu.cn (J. Din
(S.-S. Yang).

https://doi.org/10.1016/j.ese.2024.100412
2666-4984/© 2024 The Authors. Published by Elsev
Academy of Environmental Sciences. This is an open
a b s t r a c t

Effective management of large basins necessitates pinpointing the spatial and temporal drivers of pri-
mary index exceedances and urban risk factors, offering crucial insights for basin administrators. Yet,
comprehensive examinations of multiple pollutants within the Yangtze River Basin remain scarce. Here
we introduce a pollution inventory for urban clusters surrounding the Yangtze River Basin, analyzing
water quality data from 102 cities during 2018e2019. We assessed the exceedance rates for six pivotal
indicators: dissolved oxygen (DO), ammonia nitrogen (NH3eN), chemical oxygen demand (COD),
biochemical oxygen demand (BOD), total phosphorus (TP), and the permanganate index (CODMn) for
each city. Employing random forest regression and SHapley Additive exPlanations (SHAP) analyses, we
identified the spatiotemporal factors influencing these key indicators. Our results highlight agricultural
activities as the primary contributors to the exceedance of all six indicators, thus pinpointing them as the
leading pollution source in the basin. Additionally, forest coverage, livestock farming, chemical and
pharmaceutical sectors, along with meteorological elements like precipitation and temperature, signif-
icantly impacted various indicators' exceedances. Furthermore, we delineate five core urban risk com-
ponents through principal component analysis, which are (1) anthropogenic and industrial activities, (2)
agricultural practices and forest extent, (3) climatic variables, (4) livestock rearing, and (5) principal
polluting sectors. The cities were subsequently evaluated and categorized based on these risk compo-
nents, incorporating policy interventions and administrative performance within each region. The
comprehensive analysis advocates for a customized strategy in addressing the discerned risk factors,
especially for cities presenting elevated risk levels.
© 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the imperative to manage aquatic environments
effectively has gained prominence, underscored by its inclusion as
“Clean Water and Sanitation" within the United Nations' 2030
Sustainable Development Goals (SDGs). This goal is dedicated to
ensuring universal access to clean drinking water and adequate
sanitation facilities, and promoting water resources' sustainable
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management. China also attaches great importance to managing
aquatic environments and water safety. In 2015, the Central Polit-
ical Bureau's Standing Committee approved the “Water Pollution
Prevention and Control Action Plan” (WPPCAP) to effectively
expand efforts to prevent and control water pollution, protect na-
tional water security, and promote sustainable development. Ac-
cording to the plan's stipulations, by 2020, over 70% of section
water in the seven major river basins in China, including the
Yangtze and Yellow Rivers, is expected to be rated class III or better.
Furthermore, the plan requires the Yangtze River Delta and Pearl
River Delta regions to remove inferior class V cross-sections.

Spanning three major economic zones in eastern, central, and
western China, the Yangtze River Basin is the largest in China,
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Index of notations and abbreviations

BOD Biochemical Oxygen Demand
COD Chemical Oxygen Demand
CODMn Permanganate Index
DO Dissolved Oxygen
IECM Improved Export Coefficient Model
KMO KaisereMeyereOlkin
MAE Mean Absolute Error
max_depth The Maximum Depth
N Nitrogen
NH3eN Ammonia Nitrogen
NANI Net Anthropogenic Nitrogen Input (Howarth et al.,

1996)

NAPI Net Anthropogenic Phosphorus Input (Russell et al.,
2008)

n_estimators Number of Decision Trees
P Phosphorus
PCA Principal Component Analysis
PTA Partial Triadic Analysis
R2 Coefficient of Determination
RMSE Root Mean Square Error
SDGs The United Nations 2030 Sustainable Development

Goals
SHAP SHapley Additive exPlanations
TP Total Phosphorus
WPPCAP Water Pollution Prevention and Control Action Plan

Y.-L. Zhao, H.-J. Sun, X.-D. Wang et al. Environmental Science and Ecotechnology 20 (2024) 100412
containing 19 provinces and 102 cities (including municipalities
and autonomous regions) (Fig. 1), covering a total area of 1.8 million
km2. This region is highly valuable and has great development
potential, playing an important role in China's economic and social
development. The Yangtze River Basin was well managed during
the implementation of the WPPCAP. By the end of 2020, the basin
had no inferior class V sections. Before the evaluation, the per-
centage of exceedance events across the basin decreased from
14.33% in 2018 to 11.41% in 2019. Among the 24 nationally regulated
water quality indicators, there are six major indices in the Yangtze
River Basin: dissolved oxygen (DO), ammonia nitrogen (NH3eN),
chemical oxygen demand (COD), biochemical oxygen demand
(BOD), total phosphorus (TP), and permanganate index (CODMn).
Despite the progress, an analysis of water quality in 102 cities
across 15 provinces/municipalities within the basin during 2018
Fig. 1. Location of the 512
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and 2019 revealed that 12.87% of monitoring results surpassed the
established standards, with exceedances recorded in 67 cities
(Fig. 1). Regarding basin management, it is important that the
drivers of the spatiotemporal variations of the exceedance rates of
indices are promptly identified to provide corresponding control
policies.

Numerous studies have analyzed the drivers of spatiotemporal
changes in aquatic indices worldwide. For example, Slimani et al.
[1] used partial triadic analysis (PTA) to evaluate the drivers of
water quality change in the Medjerda River Basin (northern
Tunisia) and found that the concentrations of NH4

þ, PO4
3�, COD, and

BOD in river water were strongly correlated with polluted urban
sites, and confirmed that there was a strong relationship between
land use and water quality. Kuriqi et al. [2,3] analyzed ecological
impact data from 33 countries in five regions to assess the impacts
monitoring sections.
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of small run-of-river hydropower plants on biota, water quality,
hydrologic changes, and geomorphology, including altered flow
regimes, reductions in bypassed stream reaches, and loss of lon-
gitudinal connectivity. They also estimated the impacts of nine
hydrology-based environmental flow methods on hydropower
production, altered flow regimes, and fish habitat conditions using
hydropower, hydrological, and ecohydrological models. Cheng et al.
[4] conducted a study on the Luanhe River Basin in northern China
using an improved export coefficient model (IECM). They
confirmed that the rural population, pigs, and arable land were the
main contributors to TP concentrations. Using NANI (net anthro-
pogenic nitrogen input), NAPI (net anthropogenic phosphorus
input), and statistical models, Deng et al. [5] identified economic
and land use factors as the main drivers of changes in anthropo-
genic N and P concentrations in the Yangtze River economic belt in
China. However, previous studies have generally focused on small-
scale watersheds or specific indices in large-scale watersheds.
Furthermore, these methods mostly calculated pollutant loads
based on the parameters provided by previous studies without
comprehensively integrating the actual situation of each city or
considering the environmental, industrial, and socioeconomic as-
pects holistically. Therefore, there is still room for further identifi-
cation and analysis of primary indices in the Yangtze River Basin,
and it is necessary to evaluate and analyze the drivers of spatio-
temporal changes of primary indices based on the conditions of
each city. Most existing research in China has focused on pollutant
concentration changes, whereas relatively little attention has been
paid to assessing water quality and adopting management
methods. Therefore, further research is needed to alignwith China's
water quality assessment and management system and provide
references for managers.

Machine learning methods have been widely applied in envi-
ronmental research in recent years. Random forest, a machine
learning method that performs multivariate predictions well [6],
has been extensively applied in recent research on water quality.
Previous studies on water quality and pollution drivers in water-
sheds have used methods such as IECM (improved export coeffi-
cient model) and NANI [4,5], which calculate pollution loads based
on known coefficients rather than analyzing pollution drivers
based on water quality and urban attribute data from cities in the
basin. Studies on machine learning have shown that random forest
has strong advantages in terms of robustness and adaptive feature
selection for this type of research [7,8] and can analyze the major
pollution drivers based on the water quality and urban attribute
data used as input. Few innovative studies have used the random
forest model to analyze the comprehensive pollution drivers of
multiple pollutants in large watersheds, such as the Yangtze River
Basin. The random forest model can be divided into classification
and regression. Random forest classification is mostly used for bi-
nary classification problems, such as identifying violations and risk
warnings. For example, Scanlon et al. [8] determined the drivers of
the spatiotemporal variability of drinking water quality in the USA
using random forest classification. They found that arsenic and
radionuclide violations were primarily related to semi-arid cli-
mates, whereas disinfection byproduct rule violations were pri-
marily related to system operations. Kumar et al. [9] used random
forest classification to assess the relationships between arsenic
contamination of groundwater and parameters such as digital
elevation model (DEM), land cover, and subsoil organic matter
content in Jharkhand, India. Conversely, binary classification con-
siders only two situations: exceeding or not exceeding the stan-
dard. This may group cases where contamination occurs only once
a year with frequent contamination in the same category, thereby
reducing the effective utilization of data. Random forest regression
models are commonly used for predicting pollutant concentrations.
3

For example, Li et al. [10] used random forest regression to predict
the concentration of Escherichia coli on beaches in Lake Erie, USA;
they identified water turbidity as the most important predictive
factor, while accurate local wave height and rainfall data played a
key role in model development. Khiavi et al. [11] used methods
including random forest regression to create groundwater quality
maps. However, owing to the multistage rating system used for
water quality assessment in China, a concentration increase does
not necessarily mean the standard is exceeded. Therefore,
modeling based solely on concentration lacks intuitive interpret-
ability for managers while requiring considerable computation.
Considering the limitations of the existing methods, in this study,
we conducted a random forest regression analysis on the exceed-
ance rates of indices in urban sections. We used the advanced tree
model interpretation tool SHapley Additive exPlanations (SHAP) to
explain the model. This allowed us to analyze the spatiotemporal
drivers of the occurrence probability of each index's exceedance
events. This method retains information on the number of ex-
ceedance events and conforms towatershedmanagement practices
in the study area, thereby providing greater interpretability and
accuracy.

Multivariate statistical analyses are also widely used in envi-
ronmental research. For watershed studies, principal component
analysis (PCA) is one of the most commonly used and developed
multivariate statistical methods [12]. Daou et al. [13] used PCA to
evaluate the spatiotemporal water quality patterns in four major
rivers in southern, central, and northern Lebanon and the Bekaa
Valley. They found that each river had different levels of eutro-
phication and pollution sources. Yang et al. [14] also used PCA to
evaluate the drivers of spatiotemporal changes in surface water
quality in the Xin'anjiang watershed, China and found that agri-
cultural activities, erosion, and household and industrial emissions
were the sources of water pollution in the region. However, most
existing studies stop at data dimensionality reduction and risk
factor identification and conduct little in-depth exploration of the
scores of each case on each principal component. In this way, they
fail to fully utilize the advantages of PCA. Therefore, in this study,
we used PCA to identify urban risk factors and assess the risk levels
of 102 cities in the Yangtze River Basin based on their scores for
various risk factors, thereby fully leveraging the benefits of PCA and
providing more intuitive guidance for watershed managers.

The main objectives of this study were to (1) construct a
pollution inventory database for the urban agglomeration in the
Yangtze River Basin and calculate the water quality exceedance rate
for each of the 102 cities in the Yangtze River Basin from 2018 to
2019; (2) use random forest regression and SHAP to evaluate the
main driving factors of the exceedances of each index; (3) use PCA
to assess the risk factors for each city, and score and classify the
cities in the basin based on the risk factors for the appropriate
management; (4) propose management recommendations ac-
cording to the characteristics of different cities based on the results.
The novelty of this study is the comprehensive assessment of
multiple major water quality indices in the Yangtze River Basin
during 2018e2019 rather than just an analysis of individual con-
taminants. The study also considered various factors (26 in total),
including environmental, socioeconomical, and industrial structure
factors. Using advanced machine learning and statistical analysis, a
method was proposed to analyze the drivers of water quality index
exceedances in the Yangtze River Basin, identify urban risk factors,
and present the results intuitively and clearly. Appropriate plan-
ning and management suggestions are provided, and the feasibility
of the conclusions is validated by examining management mea-
sures and their effectiveness in the region over the past two years,
thereby providing a reference for watershed managers (Fig. 2). The
WPPCAP completed its round of acceptance in 2020, and the



Fig. 2. Flowchart describing primary data and methods applied.
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Ministry of Ecology and Environment and five other departments
jointly issued the “Water Ecological Environment Protection Plan
for Key Basins” in April 2023; this put forward the control objec-
tives of the Yangtze River Basin for 2025. Hence, this study is sig-
nificant as it provides decision-making references for managers in
the Yangtze River Basin. This study reviews and reflects on the ef-
fect of water quality improvement in the Yangtze River Basin during
the WPPCAP period and provides ideas and references for the
future governance of the Yangtze River Basin.
2. Materials and Methods

2.1. Data sources

2.1.1. Water quality data
In China, river basin management is usually based on provinces
4

and municipalities, whereas environmental, socioeconomic, and
other data, such as urban attributes, usually come from annual
statistical yearbooks. To give managers a clearer view and greater
control of water quality pollution in the Yangtze River Basin, this
study used annual water quality exceedance rate data for various
indices in 102 cities within the basin for 2018 and 2019. Data in this
study comprised monthly monitoring data from 512 sections (see
Fig. 1 for section locations), including longitude, latitude, province,
and city of the section, and concentrations of 24 indicators,
including pH, DO, NH3eN, COD, BOD, TP, permanganate index,
fluoride, and arsenic. In total, 12,180 valid data entries were ob-
tained. Following the current Surface Water Environmental Quality
Standards in China, the water quality assessment uses a single-
factor evaluation method, where each indicator is rated from
class I to inferior class V based on its concentration. The water
quality rating for each section is determined based on the lowest
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rating of the indicators.Water quality is considered according to the
standard when rated as class I, II, or III and exceeds the standard
when rated as class IV, V, or inferior class V. A total of 1568 entries
(12.87%) exceeded water quality standards. For any given index i in
city k, the annual exceedance rate is calculated as follows:

Pki ¼
Aki

Nk � 12� Ak�null

where Pki represents the annual exceedance rate of index i in city k,
Aki represents the total number of exceedances of index i detected
in all monitoring sections in city k for that year, Nk represents the
total number of monitored sections in the river basin of city k. Ak-null
represents the total number of invalid monitoring data entries for
all monitoring sections in city k for that year.
2.1.2. City attribute data
Through data review and literature research, we identified the

factors that may cause the exceedances of the six major indices in
the Yangtze River Basin from various dimensions, such as envi-
ronment, population/socioeconomic, municipal/energy, agricul-
ture, and industry. After data cleaning and preliminary modeling
analysis, we selected 26 indicators as input for the random forest
model (see Supplementary Material). Meteorological data,
including temperature, atmospheric pressure, relative humidity,
and precipitation, were obtained from monthly statistics provided
by the National Basic Meteorological Station. Land use data were
derived from the third national land survey results of provincial and
municipal governments in 2019, China's latest land use data. Other
city attribute-related data were obtained from provincial and
municipal statistical yearbooks: the China Urban Statistical Year-
book, China Urban Construction Statistical Yearbook, and agricul-
tural and industrial-related statistical yearbooks of various cities.
All data were converted according to the land area of the city and
were normalized using Z scores. Information on each indicator is
presented in Table 1.
Table 1
Comparison of the names and contents of indicators.

Code Potential sources of pollution

PS01 Annual average air pressure
PS02 Average annual temperature
PS03 Annual average relative humidity
PS04 Annual precipitation
PS05 Forest coverage rate
PS06 Proportion of cultivated land area
PS07 Proportion of urban, village and industrial and mining land area
PS08 Proportion of land area for transportation
PS09 Proportion of land area for wetland, water and water conservanc
PS10 Population density
PS11 Sewage Discharge
PS12 Amount of harmless treatment of domestic waste
PS13 Amount of chemical fertilizer application
PS14 Amount of pesticide use
PS15 Irrigated area
PS16 Stockpile of pigs at the end of the year
PS17 Stockpile of sheep at the end of the year
PS18 Annual poultry slaughter
PS19 Annual aquatic products production
PS20 Total industrial assets
PS21 Petroleum processing, coking and nuclear fuel processing indust
PS22 Chemical raw materials and chemical products manufacturing as
PS23 Non-ferrous metal assets
PS24 Textile assets
PS25 Pharmaceutical manufacturing assets
PS26 Leather, fur, feather and feather products and footwear industry

5

2.2. Methods

2.2.1. Random forest regression
The random forest regression model is an ensemble model

based on decision trees; it is widely used in environmental risk
assessment [15], pollutant concentration prediction [16], and other
areas. The model combines multiple decision trees, each created
using a randomly selected subset of the input variables. The final
result is the average of all tree results [17].

In this study, 26 urban attribute data points from 102 cities in
the Yangtze River Basinwere used as the input feature vector x, and
the annual exceedance rate of primary indices in the cities was used
as the output variable. The original dataset was divided into
training and validation sets (80% and 20% of the original dataset,
respectively) to train the random forest regression model.
Modeling was performed separately for the six primary indices DO,
NH3eN, COD, BOD, TP, and CODMn. Ten-fold cross-validation was
used to ensure the accuracy of the results. Model performance was
evaluated using three parameters: mean absolute error (MAE), root
mean square error (RMSE), and coefficient of determination (R2)
[16]. The parameters of each model, such as the number of decision
trees (n_estimators) and maximum depth (max_depth), were
adjusted to achieve optimal performance. All operations were
performed using the scikit-learn package in Python 3.7.

2.2.2. SHapley Additive exPlanations (SHAP)
Although the random forest regression model exhibits good

regression performance, it cannot explain the contribution of each
feature to the prediction. Because this study aimed to identify the
driving factors of primary index exceedances in cities to further
evaluate urban risks and propose control measures, a reliable
method was needed to explain the contribution of each feature and
select those with the highest contributions as the main driving
factors of primary index exceedances.

One of the most advanced analytical tools for tree models in
recent years, namely SHAP, is based on the Shapley value. By
calculating the average marginal contribution of one player in all
possible combinations of other players in cooperative game theory
Unit Abbreviation

100 Pa CLIM_AirPressure
�C CLIM_Temperature
% CLIM_Humidity
Mm CLIM_Precipitation
% Forest_cover
% LU_Plough
% LU_Urban&Miners
% LU_Traffic

y facilities % LU_Water&Wetland
# km�2 DESO_PopulDensity
10000m3 km�2 MUEN_Sewage
t km�2 MUEN_GarbageTreat
t ha�2 AGRI_Fertilizer
t ha�2 AGRI_Pesticides
% AGRI_Irrigation
# km�2 AGRI_PigStock
# km�2 AGRI_SheepStock
# km�2 AGRI_PoultrySold
t km�2 AGRI_Aquatic
¥10000 km�2 INDU_IndustrialAsset

ry assets % INDU_Petroleum
sets % INDU_Chemical

% INDU_Nonferrous
% INDU_Textile
% INDU_Pharmaceutical

assets % INDU_Leather
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and allocating the absolute change in probability attributed to each
explanatory variable, SHAP comprehensively considers the inter-
action between features and provides a more reliable estimate of
feature importance [18]. The importance of each feature is given in
the form of SHAP values. Therefore, the SHAP value calculation in
this study was performed for the random forest regression models
of the six primary indices, and the feature importance ranking for
the 26 city attribute variables used as model input was provided.
The top-ranked features in each model were selected as the driving
factors of each primary index exceeding the standard, therebymore
accurately evaluating the contribution of each driving factor to the
index exceedance rate. All operations were performed using the
SHAP package in Python 3.7.

2.2.3. Principal component analysis (PCA)
PCA is a data-dimensionality reduction technique. The main aim

of PCA is to identify the underlying patterns and relationships be-
tween a set of observed variables and represent this information
using a smaller number of uncorrelated principal component var-
iables [19]. These components are linear combinations of the
original variables, and each component captures a certain amount
of data variation. The first principal component captures the
maximumvariation, and each subsequent component captures less
variation. The KaisereMeyereOlkin (KMO) measure and Bartlett's
test are commonly used to evaluate whether an original dataset
suits PCA. The KMO measures the degree of common variance
among the observed variables: a high KMO value (>0.5) indicates
that the data are relatively compact and suitable for PCA. Bartlett's
test checks whether there is a significant correlation among the
observed variables: if the p-value is below a certain significance
level (usually 0.05), then the null hypothesis (i.e., the assumption
that the variables are uncorrelated) is rejected, and PCA can be
applied. In this study, the KMO value was 0.735, and the signifi-
cance level was less than 0.05 (Table 2), indicating that the dataset
was suitable for PCA. The main factors identified by the random
forest model for each index were used as input variables for the
PCA, and the resulting principal components were used to identify
the potential risk factors for each city. By analyzing the scores of
each city for each principal component, this study provides guid-
ance to watershed managers for identifying and controlling po-
tential risks.

2.3. Limitations

The socioeconomic, agricultural, and industrial data used in this
study were obtained from various statistical yearbooks published
annually. To match the temporal scale of these data, we converted
the water quality data into annual exceedance rates for each city.
This may have reduced the precision of our study at the temporal
scale. However, the richness of the study at the spatial scale com-
pensates for the shortcomings at the temporal scale. As the Yangtze
River Basin is more than 6000 km long and contains more than 100
cities, it is characterized by a large spatial span and high spatial
variability among different cities. Considering that the main pur-
pose of this study was to propose control recommendations based
on the characteristics of different cities and provide a reference for
Table 2
KMO (Kaiser-Meyer-Olkin) and Bartlett's test.

KMO and Bartlett's test

Kaiser-Meyer-Olkin measure of sampling adequacy 0.756
Bartlett's test of sphericity Approx. Chi-Square 1904.972

df 105
Sig. 0.000
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city managers in the watershed, the importance of variability at the
spatial scale is higher than that at the temporal scale; thus, the
credibility of the study is not affected.

In addition, to match China's water quality monitoring and
management model, we categorized only the cross-sectional water
quality data into exceeding and not exceeding, which may have led
to certain cities with high pollutant concentrations and others with
relatively low pollutant concentrations being grouped. However,
considering that the overall water quality of the Yangtze River Basin
is good, with only 2% of inferior class V cross-sections, there are
very few cities with extremely high pollutant concentrations;
hence, the overall credibility of the study is not affected.

3. Results and discussion

3.1. Water quality profile of the Yangtze River Basin urban
agglomeration and classification of cities based on exceedance of the
standard

The exceedances of the six primary indices in each city of the
Yangtze River Basin urban agglomeration were counted, and a heat
map of the exceedance rates of the primary indices in cities was
created (Fig. 3). Overall, areas with severe pollution include
Shanghai and some cities in Anhui (such as Chuzhou, Xuancheng,
etc.) and Hubei (such as Qianjiang, Tianmen, Wuhan, etc.) prov-
inces. Shanghai exceeded the standards for all six indices, with the
DO exceedance rate reaching 22.73% in 2018, whereas Chuzhou
(Anhui Province) had a serious COD exceedance rate of 55.56% in
2019. Regions with relatively good water quality include the water
source areas of Xizang Zizhiqu, Qinghai Province, and certain cities
in Shaanxi Province. Notably, Changdu (Xizang Zizhiqu) and Yushu
(Qinghai Province), located in the upper reaches, did not show any
exceedances, reflecting good water quality at the source of the
Yangtze River. Based on the pollution levels in cities within the
Yangtze River Basin urban agglomeration, the cities can be classi-
fied into three categories for management purposes.

(1) Non-polluted: Cities that did not exceed the standard for any
of the six indices, such as Changdu (Xizang Zizhiqu) and
Yushu (Qinghai Province) (Fig. 3c). During 2018 and 2019,
non-polluted cities accounted for 20.6% of all cities in the
basin. This type of city accounted for 30.4% of all cities in
2018 and 25.5% in 2019, indicating that water quality con-
ditions in the basin improved over the study period.

(2) Singly polluted: Cities with only one index exceeding the
standard, such as Leshan in Sichuan Province (TP exceedance
rate of 4.202%) and Xiantao in Hubei Province (COD ex-
ceedance rate of 4.165%) (Fig. 3c). Singly polluted cities
accounted for 13.7% of all cities in the basin between 2018
and 2019. This type of city accounted for 7.8% and 22.5% of all
cities in 2018 and 2019, respectively. In 2018, the singly
polluted cities had the highest NH3eN exceedance rates
(62.5%); in 2019, TP exceedance rates were the highest
(39.1%). This suggests that the problems associated with TP
and NH3eN should be emphasized.

(3) Compositely polluted: Cities with two or more indices
exceeding the standard, such as Shanghai (with all six indices
exceeding the standard) and Nanjing in Jiangsu Province
(with all six indices exceeding the standard) (Fig. 3c). From
2018 to 2019, compositely polluted cities accounted for 65.7%
of all cities in the basin. This type of city accounted for 61.8%
of all cities in 2018 and 52% in 2019. A total of 40.3% of
compositely polluted cities had all six indices exceeding the
standard during 2018e2019. Overall, the data show that the
pollution situation of cities in the Yangtze River Basin is



Fig. 3. Heat map depicting the exceedance of primary indices in cities within the Yangtze River Basin urban agglomeration. The intensity of the red squares in the figure represents
the degree of exceedance rate, while the dark gray blocks indicate the provinces where the cities are located. The different background colors of city names indicate different city
types, with blue representing non-polluted cities, yellow representing single-polluted cities, and orange representing composite-polluted cities. a, Exceedance situation in 2018. b,
Exceedance situation in 2019. c, Exceedance situation for the two years of 2018 and 2019.
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complex, and it is necessary to propose targeted control
recommendations according to the pollution situation of
different cities.

Cities that do not exceed the pollution standard shouldmaintain
strict pollution control measures, implement existing policies, and
propose appropriate new environmental governance measures.
Furthermore, it is important to encourage other provinces and
cities to use these successful practices as examples. In singly and
compositely polluted cities, further analysis is required to identify
the drivers causing index exceedances and risk factors associated
with pollution in each city. Accordingly, tailored governance mea-
sures should be proposed based on local conditions. Compositely
polluted cities can improve their status by implementing appro-
priate measures to become singly polluted or non-polluted. Simi-
larly, singly polluted cities can eliminate pollution through effective
governance measures. For example, in 2018, Fuzhou (Jiangxi Prov-
ince) experienced exceedances in NH3eN (2.08%), BOD, and TP
7

(12.5%) (Fig. 3a) and was therefore compositely polluted; however,
after implementing appropriate governance measures, it transi-
tioned into a non-polluted city in 2019 (Fig. 3b).
3.2. Analysis of spatiotemporal drivers of primary indices in the
Yangtze River Basin urban agglomeration

To identify the spatiotemporal drivers of primary indices in the
Yangtze River Basin urban agglomeration and propose targeted
control recommendations, this study utilized a model that in-
corporates city attribute data normalized using Z scores with the
DO, NH3eN, COD, BOD, TP, and CODMn exceedance rate data. After
comparing the performances of the different models, we selected
random forest as the analysis tool for this study. Random forest
regressionmodels were constructed for the annual exceedance rate
of each model, and reliable models were obtained after parameter
adjustment (see Supplementary Material for model result



Fig. 4. Heatmap of the primary index spatiotemporal drivers in the Yangtze River Basin obtained through SHAP random forest regression model analysis. In the heatmap, darker
color blocks indicate higher SHAP values, indicating a greater contribution of the corresponding factor to index exceedances. Factors marked with a pentagram symbol represent the
top-ranking factors with high SHAP values among the driving factors for each primary index.
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parameters). The SHAP method was employed to interpret the
models and identify the importance of spatiotemporal drivers for
the extent of primary index exceedance in the Yangtze River Basin.

Among the identified spatiotemporal driving factors, cropland
coverage and irrigation area contributed significantly to the ex-
ceedance rates of all six indices, reflecting the impact of agricultural
activities on water quality (Fig. 4). Cropland coverage had particu-
larly high SHAP values of 1.03 and 1.11 for COD and TP, respectively.
Forest cover was the most important factor leading to insufficient
DO and significantly influenced the NH3eN, COD, and CODMn ex-
ceedance rates, with a SHAP value of 0.86 in the COD model. In-
dustrial factors also affected multiple indices. The proportion of
industries was an important factor in increased NH3eN and BOD
exceedance rates. Among the key industries mentioned in the
WPPCAP, pharmaceutical manufacturing was a significant
contributor to TP exceedance, while raw chemical materials and
chemical product manufacturing had a considerable influence on
the NH3eN and TP exceedances, with a SHAP value of 0.74 in the TP
model. In the livestock industry, sheep stocking was an important
cause of the NH3eN and TP exceedances, whereas pig stocking
strongly contributed to insufficient DO. Among human-related
factors, the amount of municipal solid waste disposal and popula-
tion density significantly impacted the NH3eN exceedance. The
urban, rural, and mining land areas had considerable impacts on
COD exceedance, whereas the transportation land area was an
important factor for the TP exceedance, with a SHAP value of 0.54.
Regarding climate-related factors, precipitation and atmospheric
pressure strongly influenced the COD and BOD exceedances, with
precipitation having a high SHAP value of 0.89 in the CODmodel. In
contrast, temperature had a greater impact on the TP exceedance,
with a SHAP value of 0.68 in the model.

To further determine the relationships between the high-
ranking SHAP values of the driving factors and the exceedance
rates of each index, we examined the correlations between the top-
ranked spatiotemporal driving factors and the exceedance rates of
various indices (Fig. 5). The driving factors are sorted based on their
importance, with the importance decreasing from top to bottom.
The horizontal (x) axis represents the SHAP values: SHAP values < 0
indicate a negative contribution; SHAP values ¼ 0 indicate no
contribution; and SHAP values > 0 indicate a positive contribution.
Positive contributions indicate that these features increase the in-
dex exceedance rate, whereas negative contributions indicate the
opposite effect. The colors indicate whether the driving factor has a
high (red) or low (blue) influence on the exceedance rate prediction
[18]. Cropland coverage and irrigation area were strongly positively
8

correlated with the exceedance rates of various indices. In partic-
ular, cropland coverage had the highest SHAP value (>8.0) for
predicting the NH3eN, COD, and CODMn exceedance rates. Studies
have shown that agricultural non-point source pollution contrib-
utes significantly to water pollution in China [20,21]. Xu et al. [22]
used a conceptual model for drainage basin water quality and non-
point pollution to study the effects of agricultural fertilization
practices on NH3eN concentrations in 18 cities in the Yangtze and
Yellow River Basins. The results showed that agricultural behavior
has a strong positive effect on NH3eN pollution. Duan et al. [23]
established a national non-point source pollution database and
estimated the N and P nutrient loads from county-level crop
cultivation in 2015; they found that nutrient surpluses were rela-
tively high in areas south of the Yangtze River. Cui et al. [24] studied
the input and distribution characteristics of anthropogenic P in the
Yangtze River Basin and sub-basins and analyzed the driving fac-
tors; they found that the major anthropogenic P inputs to the
middle and lower Yangtze River plains were from agricultural
sources. Previous studies on the impacts of agriculture on water
pollution have focused on nutrients such as N and P, with less
discussion on indices such as DO and COD, while the study areas
have mostly been parts of the Yangtze River Basin. By analyzing six
major water quality indices in 102 cities in the Yangtze River Basin,
our study shows that agricultural factors have a greater impact on
all water quality indicators in the Yangtze River Basin. The pro-
duction and use of fertilizers and pesticides generate a high volume
of reducing substances d mainly organic pollutants. Irrigation and
other activities cause the flow of these nutrients into water bodies,
increasing the levels of reducing organic substances and leading to
COD, BOD, and CODMn exceedances [25]. Sewage and feces from
agricultural activities and using fertilizers and pesticides can
contribute to NH3eN and P pollution in water bodies, potentially
causing eutrophication [26]. The decomposition of organic matter
in water consumes DO, which decreases the DO content in aquatic
environments [27]. As non-point source pollution in the basin is
receiving increasing attention, managers should pay more atten-
tion to agricultural surface pollution and introduce timely relevant
policies to control the flow of agricultural pollutants into water
bodies. Forest cover is negatively correlated with the exceedance
rates of various indices, with the minimum SHAP value
approaching �2.0 in the COD model. Forests are beneficial for
capturing nutrients, preventing soil erosion and loss, and reducing
eutrophication, which can help reduce the possibility of NH3eN,
COD, and CODMn exceedances [28]. Additionally, forests generate
large amounts of oxygen through photosynthesis, thereby



Fig. 5. Correlation between the top ten driving factors and exceedance rates of each primary index: a, DO; b, NH3eN; c, COD; d, BOD; e, TP; f, CODMn. The red color represents
higher values of the driving factors, while the blue color represents lower values. The x-axis origin indicates a positive impact on exceedance rates to the right and a negative impact
to the left. Taking panel a as an example, forest coverage is negatively correlated with exceedance rates, while cropland area is positively correlated with exceedance rates.
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promoting atmospheric reoxygenation processes and enhancing
DO concentrations in water [29]. This indirectly improves the sit-
uation regarding the NH3eN, COD, and CODMn exceedances.
Watershed managers should realize the importance of forests for
water quality improvement and increase afforestation activities.

The proportion of industries was positively correlated with the
NH3eN and BOD exceedance rates. Previous studies have discussed
the impacts of industries on the Yangtze River Basin. A study on the
water quality along the mainstem of the Yangtze River showed that
industry is an important source of pollution in the Yangtze River
Basin [30]. Peng et al. [31] analyzed the linkage between industrial
production and water pollution and its drivers in the Yangtze River
Basin provinces from 2012 to 2017. The results showed that the
chemical industry was the main source of COD, NH3eN, and TP
9

emissions in the Anhui, Jiangsu, Jiangxi, and Hunan Provinces. Most
previous studies have focused on the provincial scale or have
considered industrial pollution sources as one component. Our
study was conducted at a more precise (i.e., municipal) scale and
analyzed the impact of different industrial sectors onwater quality.
Industrial wastewater from coking plants and synthetic ammonia
fertilizer factories contains high concentrations of NH3eN [32,33].
Industrial pollutants are significant sources of BOD in water bodies
[34]. The chemical raw material and manufacturing industry
positively influences the NH3eN and TP exceedances. This industry
includes N- and P-containing fertilizer manufacturing, pesticide
manufacturing, and other industries prone to N and P pollution
[35]. However, the pharmaceutical manufacturing industry signif-
icantly impacts the TP exceedance rate, with a maximum SHAP
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value approaching 7.5, possibly due to the high P content of phar-
maceutical wastewater [36]. Industrial pollution remains a non-
negligible problem for aquatic environment management in the
Yangtze River Basin, and managers should pay attention to the
discharge of key industries, such as the chemical and pharmaceu-
tical industries, to avoid industrial pollution aggravation. Regarding
husbandry, pig stocking has a strong positive effect on the DO ex-
ceedance rate, whereas sheep stocking has a strong positive influ-
ence on the TP and NH3eN exceedance rates, with the maximum
SHAP value exceeding 5.0 in the TP model. This may be due to the
discharge of nutrients, such as N and P, from feed and livestock
manure into aquatic environments and their oxidation process
consuming DO in the water [37e39]. Simultaneously, sheep may
damage the soil during grazing, resulting in an easier influx of
nutrients into water bodies and eventually causing eutrophication
[40]. Previous studies have shown that the negative impacts of
livestock farming on water quality pollution may accumulate over
time [41]; hence, managers should optimize the regional layout of
livestock and poultry farming, introduce advanced feeding tech-
niques, and vigorously promote the resourceful use of waste from
livestock and poultry farming [42]. Regarding other human-related
factors, domestic waste disposal and population density were
positively correlated with the NH3eN exceedance. The trans-
portation land area was positively correlated with the COD and TP
exceedance rates, while the urban, rural, and mining land areas
were also positively correlated with the COD exceedance. During
landfilling and transporting domestic waste, leachate containing
NH3eN can enter the water and cause pollution [41]. Domestic
wastewater, feces, and garbage from daily human activities are
significant sources of NH3eN, and a higher population density is
more likely to result in NH3eN exceedance [43]. Greater urban,
rural, and mining land areas indicate increased human activity and
the associated wastewater discharge from production and daily life
may lead to COD exceedance [44]. Runoff from roads contains high
concentrations of TP and reducible substances, which can cause TP
and COD exceedances after entering aquatic environments [45];
therefore, a greater transportation land area undoubtedly increases
the risk of exceedance. Cities with severe pollution in the Yangtze
River Basin, such as Shanghai, Wuhan, and Chengdu (where all six
indicators have exceeded the standard), had higher population
densities, domestic waste disposal volumes, and transportation
land areas. For these areas with frequent human activities, man-
agers should closely monitor domestic pollution sources, introduce
measures to limit the discharge of pollutants from domestic sour-
ces, such as garbage classification and vehicle traffic restrictions,
and increase environmental protection publicity to raise the pub-
lic's awareness of aquatic environment protection.

Among the climate-related factors, precipitation was negatively
correlated with the COD exceedance, with a minimum SHAP value
close to �2.0. This suggests that decreased precipitation reduces
the river water volume, resulting in higher pollutant concentra-
tions [46]. Conversely, atmospheric pressure was negatively
correlated with the BOD exceedance. Many areas with BOD ex-
ceedance also experience DO exceedance, which may be because
decreased atmospheric pressure leads to a reduction in the oxygen
content of the water, thereby affecting the oxidation process of
reducible substances and causing BOD exceedance [47]. The rela-
tionship between temperature and TP exceedance is not linear. This
may be because certain P-removing microorganisms have a suit-
able range of temperatures for their survival and reaction, thereby
affecting the TP concentration in water [48]. We found positive
correlations between the wetland, water, and water conservancy
facility areas and the exceedance rates of multiple indices, such as
CODMn and DO. This finding contradicts our common understand-
ing; however, it may be attributed to larger water body areas
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implying a higher number of monitoring sections in the respective
cities. Consequently, the likelihood of exceedances increases,
posing greater pollution control challenges and higher exceedance
rates. These climate-related factors are attributes of the city itself
and are difficult to change in the short term. This study serves as a
reminder to managers that more attention is necessary regarding
preventing pollution caused by these factors, especially during
extreme weather (e.g., heavy rainfall and high temperatures), to
minimize the damage caused by water pollution.

3.3. Assessment of urban risk factors and discussion of control
recommendations

3.3.1. Urban risk factors analysis
After analyzing the primary index driving factors, it is necessary

to propose tailored control measures based on the specific condi-
tions of each city. However, the factors contributing towater quality
exceedances in a city can be multifaceted; therefore, it is important
to identify the risk factors specific to each city for effective control.
We conducted a dimensionality reduction analysis using PCA on
the top 15 spatiotemporal driving factors extracted from the SHAP
analysis of the index exceedance rates to identify urban risk factors.
When the number of principal components was set to five, 79.976%
of the variance was explained. Therefore, we identified the
following five principal components as urban risk factors (Table 3):
(1) human activity and industrial factor, (2) agriculture and forest
cover factor, (3) climate factor, (4) husbandry factor, and (5) key
polluting industry factor. We calculated the scores of each city in
the Yangtze River Basin for these five principal components. We
examined their correlations with the probability of exceeding the
pollution threshold (exceedance of at least one index). Except for
principal component 3 (climate factor), which had a negative cor-
relation with the exceedance probability, the scores of the
remaining principal components were positively correlated with
the exceedance rates of cities (Table 4). The specific characteristics
of each risk factor are as follows.

Human activities and industrial factors. The human activity and
industrial factor explains 28.60% of the overall variance and has
higher loads on several characteristics of urban, rural, and mining
land, transportation area, population density, domestic waste
disposal, and industrial assets. This indicates that it mainly results
from the impacts of human and industrial activities. Cities with
high scores for this risk factor typically have high values for one or
more related indicators. Representative cities include Shanghai,
Wuhan (Hubei Province), and Nanjing (Jiangsu Province), where
priority should be given to implementing policies and measures
related to municipal and industrial activities that can effectively
improve pollution indicators such as NH3eN and BOD. For example,
the “Implementation Plan for Urban and Rural Domestic Waste
Treatment in Jiangsu Province” introduced at the end of 2018 in
Jiangsu Province contains treatment measures such as leachate
treatment and safe disposal of fly ash, which have reduced the
overall NH3eN exceedance rate by 5.54%.

Agriculture and forest cover factor. The agricultural and forest
cover factor significantly influences arable land area, irrigated area,
and forest cover rate, explaining 19.54% of the overall variance.
Considering the significant negative correlations between the for-
est cover rate and each pollution exceedance rate, this risk factor
primarily reflects the impacts of agricultural activities and insuffi-
cient forest cover. Cities that score high on this risk factor, such as
Tianmen (Hubei Province) and certain cities in Jiangsu Province,
typically have high proportions of agricultural activities and low
forest cover. In these cities, priority should be given to



Table 3
Results of PCA.

Code Groupings
1 2 3 4 5

Grouping 1: Human activity and industrial
PS LU_City_Mine 0.826 - - - -

LU_Traffic 0.777 - - - -
DESO_PopuDens 0.962 - - - -
MUEN_GarbageTreat 0.954 - - - -
INDU_Asset 0.960 - - - -

Grouping 2: Agriculture and forest cover
Forest_cover - �0.830 - - -
LU_Plough - 0.909 - - -
AGRI_Irrigation - 0.863 - - -

Grouping 3: Climate
CLIM_PRS - - 0.708 - -
CLIM_TEM - - 0.853 - -
CLIM_PRE - - 0.690 - -

Grouping 4: Husbandry
AGRI_PigStock - - - 0.777 -
AGRI_SheepStock - - - 0.828 -

Grouping 5: Key polluting industries
INDU_Chemical - - - - 0.757
INDU_Medical - - - - 0.784

Eigenvalue 4.290 2.931 1.978 1.495 1.303
Variance (%) 28.601 19.539 13.186 9.965 8.686
Cumulative variance (%) 28.601 48.140 61.326 71.291 79.976

Table 4
Correlation between the scores of each principal component and the probability of exceedance events in Yangtze River Basin cities.

Variable Parameter Grouping 1: Human
activity and industrial

Grouping 2: Agriculture
and forest cover

Grouping 3:
Climate

Grouping 4:
Husbandry

Grouping 5: Key
polluting industries

Probability of
exceeding

Pearson correlation 0.179* 0.320** �0.276** 0.161 0.211*
Sig.(2-tailed) 0.030 0.000 0.001 0.051 0.010
number 147 147 147 147 147

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
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implementing green agriculture-related policies to control agri-
cultural non-point source pollution. Additionally, appropriate
afforestation activities can enhance the forest cover. Agricultural
factors and forest cover affect nearly all pollution indicators;
therefore, managing this risk factor can effectively reduce pollution
in the entire watershed. For example, in Hubei and Jiangsu prov-
inces, where arable land and irrigated areas account for a signifi-
cant proportion and where agricultural activities are frequent,
green agriculture-related policies and control measures have been
implemented. In October 2018, Hubei Province issued a notice to
promote arable land quality protection and fertilizer reduction to
improve efficiency. The same year, Jiangsu Province introduced an
implementation judgment to accelerate green agricultural devel-
opment. These measures reduced the index exceedance rates in
most areas of these two provinces. Sichuan Province has consis-
tently emphasized afforestation; in 2019, it completed afforestation
of an area of 400,370 ha, significantly alleviating exceeding levels of
indicators such as DO, COD, and CODMn in most parts of the
Table 5
Correlation between the scores of principal component 3 (climate factor) and the exceed

Variable Parameter TP DO

Grouping 3:
Climate

Pearson Correlation �0.470b �0.019
Sig.(2-tailed) 0.000 0.836
Number 116 116

a Correlation is significant at the 0.05 level (2-tailed).
b Correlation is significant at the 0.01 level (2-tailed).
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province.

Climate factor. The climate factor explains 13.19% of the overall
variance, with a strong emphasis on atmospheric pressure, annual
precipitation, and annual average temperature, indicating its in-
fluence on pollution concerning climate and geographical charac-
teristics. The climate factor scores are negatively correlated with
the exceedance rates of all indices (Table 5), suggesting that cities
with lower climate factor scores are more prone to exceedances.
This may be because the geographical and climate factors are
complex and comprehensive. Yunnan Province serves as a typical
example of a region with a lower climate factor score: the
exceedances in Yunnan Province indicate that it might be influ-
enced by its unique climate and geographical factors. As natural
attributes of a city, climate factors remind managers to pay more
attention to the geographic characteristics of the city itself and
prevent natural disasters (e.g., droughts, floods, and high temper-
atures) that may cause the prompt exceedance of water quality
ance rate of each pollutant.

NH3eN COD BOD CODMn

�0.214a �0.181 �0.294b �0.132
0.021 0.052 0.001 0.157
116 116 116 116



Fig. 6. Risk assessment results for representative cities in the Yangtze River Basin. a,
Nantong; b, Chuxiong; c, Anqing; d, Nanchang; e, Shanghai; f, Chongqing. H: human
activity and industrial; A: agriculture and forest cover; C: climate; HU: husbandry; K:
key polluting industries.
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indices. Simultaneously, after controlling other risk factors, an
emphasis on climate factors can further improve the management
effect. Therefore, planning and management strategies should be
developed to consider regional climate characteristics when pro-
posing targeted measures for improvement.

Husbandry factor. The husbandry factor explains 9.97% of the
overall variance, with a higher load on pig and sheep farming,
indicating its influence on pollution concerning the livestock in-
dustry factors. Cities with higher scores for this factor typically have
more pig and/or sheep farming. For such cities, the implementation
of husband-related policies should be prioritized. Based on the
actual conditions of the region, optimization and regulation of the
pig or sheep farming industries can effectively improve the ex-
ceedance of pollutants such as DO and TP. For example, in 2018,
Jiangsu and Hubei provinces were affected by African swine fever,
significantly impacting the pig farming industry. Jiangsu Province
issued a response plan that included measures such as culling, the
prohibition of farming, and restrictions. The reduced pig population
decreased the excess DO in Jiangsu Province by 2.41%.

Key polluting industry factors. The key polluting industry factor
explains 8.69% of the overall variance, with a strong load on phar-
maceutical manufacturing and chemical raw materials and chem-
icals manufacturing, indicating their primary association with
certain key polluting industries. Cities with higher scores for this
factor, such as Guiyang, Qiannan Prefecture (Guizhou Province),
and Kunming (Yunnan Province), have typically high proportions of
these industries. For these cities, priority should be given to regu-
lating these industries and implementing relevant policies to con-
trol water pollution. Effective control measures can significantly
improve the pollution situation regarding NH3eN and TP.

3.3.2. City risk factor ratings and control recommendations
After completing the PCA of the urban risk factors, the scores of

each city for each risk factor were arranged in ascending order and
divided equally into 10. Each risk factor for each city was then rated
on a scale of 1e10; for example, a rating of 1 indicated that the city's
score on that principal component was in the lowest 10% of all data,
while a rating of 10 indicated that the city's score was in the top
10%. The scoring method for the climate factor was opposite to that
for the other four risk factors, meaning that a higher score corre-
sponded to a lower rating. By plotting radar charts for each city,
managers can quickly identify the risk factors that may contribute
to pollution exceedances in a specific area and initiate further in-
vestigations and corresponding control measures (see Table S1for
the scores of all cities for each risk factor). Fig. 6 shows radar charts
of the representative cities. Nantong (Jiangsu Province) scores high
for all five risk factors, whereas Shanghai scores higher for human
activities, industrial, and climate factors. Notably, some areas may
have multiple risk factors with simultaneously high ratings, indi-
cating that the factors causing pollution exceedances in these areas
are more complex. Therefore, a comprehensive set of policies
should be developed based on the actual situation, and initiating a
macro-level action plan for aquatic environmental protection
should be a priority. The evaluation of pollution control in the
Yangtze River Basin from 2018 to 2019 (Fig. 7) shows that many
areas improved their pollution exceedances, closely related to the
policies implemented in these regions. However, the improvement
in pollution exceedance rates remains inadequate in some areas
and has even increased in others. For example, the orange area in
Fig. 7c indicates an increase in the COD exceedance rate in cities
such as Qujing (Yunnan Province), Chuzhou (Anhui Province), and
Zhenjiang (Jiangsu Province). Regions with poor pollution
improvement should use cities with effective pollution control
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measures as examples and implement relevant policies. For
example, the Yunnan Province has relatively few agricultural and
domestic waste management policy measures, resulting in poor
NH3eN control. Yunnan Province should follow the example of
areas such as Shanghai and Jiangsu Province and implement
appropriate control measures while considering its geographical
environment.

Besides formulating control measures for highly rated risk fac-
tors, environmental protection policies and increasing efforts in
water management have contributed to alleviating the overall
water pollution in the basin. For example, as an area with a rela-
tively high overall exceedance rate, Shanghai issued the “Shanghai
Environmental Protection and Construction Three-Year Action Plan
for 2018e2020” in March 2018, which strengthened environmental
protection efforts, increased the intensity of aquatic environment
management, and focused on agricultural pollution control. The
strictest water resource management system was implemented in
Jiangsu Province in 2018, with various departments coordinating
their efforts to improve the aquatic environment. As a result,
Shanghai and Jiangsu Province reduced their overall exceedance
rates by 5.68% and 6.18%, respectively, from 2018 to 2019.
Furthermore, targeted control plans for specific pollutants have
also contributed to exceedance rate improvements, particularly in
cities with a single pollution source. For instance, many areas of
Guizhou Province experienced significant TP exceedances. In 2018,



Fig. 7. Changes in index exceedance rates in the Yangtze River Basin from 2018 to 2019: a, DO; b, NH3eN; c, COD; d, BOD; e, TP; f, CODMn. The color indicates the change in cities'
exceedance rates, with blue representing a decrease in exceedance rate, orange representing an increase in exceedance rate, and yellow representing no change. The intensity of the
color represents the magnitude of the change.
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Guizhou Province issued a notice on accelerating the comprehen-
sive utilization of P resources and reducing the TP exceedance rate
by 4.44% across the province. Other areas that face exceedances of a
single pollutant can use this approach as an example and imple-
ment targeted control measures for specific pollutants.

However, although the proportion of industries is an important
factor influencing the exceedance rates of indices such as NH3eN
and BOD, and industries such as chemical raw materials,
manufacturing, and pharmaceutical manufacturing are the main
contributors to the exceedances of indices such as TP and NH3eN,
pollution prevention and control measures targeting industrial
sources are relatively lacking in various regions. For example, the
high proportion of pharmaceutical manufacturing in Yunnan
Province, which increased in 2019 compared to 2018, may be an
important factor contributing to the severe TP exceedance in this
province. Similarly, the 5.68% increase in the TP exceedance rate in
Shanghai in 2019 compared to 2018 may have been due to
increased pharmaceutical manufacturing in the city without cor-
responding control measures. Therefore, we recommend that each
region conducts assessments of industrial and key sectors based on
13
their specific circumstances and implement corresponding control
measures. This could effectively improve the water quality.

We also found that some areas had poor pollution control and
even increased exceedance rates of certain indices. For example, in
2019, Chuzhou (Anhui Province) had high COD pollution, with a
27.78% increase in the COD exceedance rate compared to 2018. The
pollution was concentrated in the Shuikou section. Kunming
(Yunnan Province) had significant pollution in the Fumindaqiao
section, the Xiguanqiao section in the Chuxiong Autonomous Pre-
fecture also faced severe pollution, and the Huangdu section in
Shanghai had a significant TP exceedance. For these sections (see
Fig. S1 for the locations of the abnormal sections), we recommend
establishing a list of point sources for investigation to determine
any violations or potential pollution sources in the vicinity.

This study analyzed the drivers of the exceedances of six major
water quality indices in 102 cities in the Yangtze River Basin at a
more macroscopic scale and identified the risk factors for each city,
thereby providing decision-making references for managers.
However, this study has some limitations. First, as mentioned in the
Materials and Methods section, owing to data quantity and scale
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limitations, our study focused more on the impacts of spatial var-
iations, and there was a relative lack of discussion on temporal
factors. Future efforts will be dedicated to acquiring more
comprehensive datasets to enhance the depth of our analysis.
Second, the relationship between each driver and pollutant con-
centration was not explored in detail due to space limitations.
Moving forward, we plan to employ machine learning techniques
and other advanced methodologies to delve deeper into the inter-
play between various drivers and pollution concentrations.

4. Conclusions

This study reviewed the water quality of the Yangtze River Basin
in 2018e2019 during the implementation of the WPPCAP and
constructed a pollution inventory database for urban clusters in the
Yangtze River Basin. Cities were classified into non-polluted, singly
polluted, and compositely polluted. The exceedance drivers of six
primary indices, including dissolved oxygen (DO), ammonia nitro-
gen (NH3eN), chemical oxygen demand (COD), biochemical oxygen
demand (BOD), total phosphorus (TP), and permanganate index
(CODMn), were determined, and risk factor identification was per-
formed for each city.

The analysis of the exceedance drivers revealed that agricultural
factors were the main contributors to the exceedance of various
indices in the basin from 2018 to 2019. Forest coverage also
significantly affected the DO, NH3eN, COD, and CODMn exceedance
rates. Industrial factors, especially those related to pharmaceutical
manufacturing and chemical raw materials and manufacturing,
significantly influenced the NH3eN, TP, and BOD exceedances.
Animal husbandry was identified as an important factor causing
NH3eN, TP, and DO exceedances. Human activity-related factors
significantly contributed to the COD, NH3eN, and TP exceedances.
In addition, climate factors strongly influenced the COD, BOD, and
TP exceedances. Risk identification was conducted for 102 cities in
the basin based on the top index exceedance drivers. Five risk
factors were identified: human activities and industrial, agriculture
and forest cover, climate, husbandry, and key polluting industry
factors. The possible reasons for the exceedances caused by these
drivers were analyzed, and targeted governance recommendations
were proposed for urban agglomerations with high-risk ratings for
each factor. Furthermore, cities with high pollution exceedances
should use cities with effective pollution control measures as ex-
amples and develop tailored governance strategies based on local
conditions.

By comprehensively analyzing the spatiotemporal drivers
behind the pollution in the Yangtze River Basin from 2018 to 2019,
the study analyzed the main possible causes of pollution and pro-
vided a risk assessment of the cities in the basin, which serves as a
reference for the Yangtze River Basin governance planning until
2025, as mentioned in the “Key Basin Water Ecological Environ-
ment Protection Plan”. This study offers tailored governance sug-
gestions for different types of cities, enabling managers to gain a
clear and accurate understanding of policy directions.

In the future, we will further explore the detailed relationships
between the spatiotemporal drivers of pollution in the Yangtze
River Basin and the water quality indicators/pollutant concentra-
tions in this study to make our conclusions more precise. Simul-
taneously, we intend to quantify the control measures proposed by
the cities in the basin and further evaluate the impacts of the
control measures on the water quality of the basin to provide
greater assistance to basin managers.
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