
Patrimony and the Evolution of Risk-Taking
Michael D. Stern*

Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America

Abstract

The propensity to make risky choices has a genetic component, and recent studies have identified several specific genes
that contribute to this trait. Since risk-taking often appears irrational or maladaptive, the question arises how (or if) natural
selection favors risk-taking. Here we show, using a stochastic simulation of selection between two hypothetical species, ‘‘R’’
(risk-seeking) and ‘‘A’’ (risk-averse) that, when expected reproductive fitness of the individual is unaffected by the making of
the risky choice (winnings balanced by losses) natural selection (taken to the point of extinction) favors the risk-averse
species. However, the situation is entirely reversed if offspring are permitted to inherit a small fraction of the parent’s
increased or decreased fitness acquired through risk-taking. This seemingly Lamarckian form of inheritance actually
corresponds to the human situation when property or culture are transmitted in families. In the presence of this ‘‘cultural
inheritance’’, the long-shot risk-taking species was overwhelmingly favored, even when 90% of individuals were rendered
sterile by a losing choice. Given this strong effect in a minimal model, it is important to consider the co-evolution of genes
and culture when interpreting the genetics of risk-taking. This conclusion applies, in principle, to any species where parental
resources can directly affect the fecundity of offspring. It might also be relevant to the effects of epigenetic inheritance, if
the epigenetic state of zygotes can be affected by parental experiences.
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Introduction

The recent financial crisis has shone a bright light on the

tendency of humans to take apparently irrational risks. The

propensity to choose risky behaviors in social situations (impul-

siveness, addiction, conduct disorder) and in economic decisions

(gambling) is known to be influenced by genetic factors [1]. Twin

studies have shown that 20% of the variation in financial risk-

taking in experimental lotteries is genetic [2], as is 35–54% in

compulsive gambling [3]. Recently, particular alleles of several

genes involved in processing of neurotransmitters – monoamine

oxidase (MAOA), the serotonin transporter (5-HTTLPR) and a

dopamine receptor (DRD4) – have been implicated in risk-taking

in behavioral disorders and in experimental financial investing

models, and in gambling [4–7]. It is likely that many other genetic

influences remain to be discovered.

While it has been difficult to establish unambiguous animal

models of gambling behavior [8–11], a natural analog exists, in the

form of risk-sensitive foraging [12]. If individual animals are

confronted with a choice between two feeding alternatives, one of

which provides a certain amount of food, while the other offers an

uncertain yield with the same expected value, they will commonly

show a preference for high or low variance. These traits of risk-

seeking or risk aversion are widespread across phyla, and have

been shown to be partly genetic, though also influenced by

environment and the history of the individual animal [12].

The genetic component of risk-sensitivity might be a coinci-

dental side-effect of selection of genes for other functions in the

nervous system – a spandrel in Stephen Jay Gould’s terminology.

However, in view of the critical importance of risk-management

for the survival of organisms, it is reasonable to suspect that it is

adaptive, i.e. produced by natural selection. Theories of adaptive

risk-sensitive foraging [12–15] have assumed that the animal

implicitly optimizes a currency (e.g. average rate of energy intake)

which is a surrogate for reproductive fitness, the ultimate currency

of evolution. The latter is usually taken to mean expected number

of offspring surviving to reproduce. If the expected yield of

foraging were itself being optimized, then its variance should have

no effect. If, however, the relationship between foraging yield and

reproductive fitness is non-linear – for example if the animal will

starve to death if the current feeding opportunity yields no more

than its expected value – then risk-seeking or risk-averse behavior

would be selected, depending on the direction of the non-linearity.

A similar argument has been applied in the classical economic

theory of maximization of expected personal utility [16], in which

risk aversion is attributed to decreasing marginal utility as a

function of wealth, while long-shot gambling is postulated to be

due to a hypothetical convexity of the utility function at very high

returns.

Such analyses assume that natural selection is tantamount to

rational optimization of the expected number of offspring of an

individual organism. To seek the possible origin of risk-seeking

when there is no apparent benefit, we asked whether the stochastic

process of evolution itself, operating over many generations, would

show a preference for high or low risk in a ‘‘fair’’ match-up in

which the expected number of offspring of each organism was

unaltered by taking the risk. To examine this question in a simple

model, we performed a stochastic, numerical simulation of the

competition between two species which differed in their propensity

to accept a ‘‘fair gamble’’ in which the single-generation fitness
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gain of a ‘‘win’’ was balanced, in expectation, by the cost of a loss.

We found a clear effect of risk per se, but the direction of the effect

was strongly influenced by the inclusion of non-genetic inheritance

in the model.

Results

We constructed a computational model of selection in which

two non-sexual ‘‘species’’ ‘‘R’’(risky) and ‘‘A’’(averse) compete on

equal terms. Each organism begins with the same intrinsic

fecundity g0, (the term fecundity is used here to include both

survival and reproduction over a single generational cycle) but

each ‘‘R’’ organism in each generation experiences a ‘‘risk event’’

in which it may either have its fecundity boosted by a reward

factor r.1, with probability p, or reduced by a penalty factor

(12rp)/(12p) with probability (12p). It is easily verified that the

expected value of g is unchanged by this choice, provided that

r,1/p to avoid the possibility of negative fecundity. The

maximum risk r = 1/p corresponds to the situation in which a

loser has no chance to reproduce. Symmetrical competition for

resources was enforced by dividing all fecundities by (1+n/nmax)

where n is the total population of the current generation (both ‘‘R’’

and ‘‘A’’) and nmax is a population scale. For the case g0 = 2, nmax

approximates the ‘‘carrying capacity’’ of the ‘‘environment’’, and

would be the saturation population size if the model were

deterministic (logistic growth). The actual, realized number of

offspring that each organism contributes to the next generation is

then chosen from a Poisson distribution with mean equal to that

organism’s scaled fecundity w (the absolute fitness according to

traditional definitions).

When r = 1 the two species are, in fact, identical since the risk

event then has no effect on fecundity. Competition between

identical species for a single ecological niche is unstable due to

stochastic drift, and one or the other species will eventually go

extinct. For a modest population size (150) this generally took less

than 200 generations. A typical population trajectory is shown in

Figure 1. The model was run until one species went extinct, and

this run was repeated 10,000 times for each chosen combination of

r and p, in order to estimate the frequency with which ‘‘R’’ (risk-

seeking) organisms are the winners of ‘‘natural selection.’’ There is

no mutation or evolution per se in this model; we model only the

process of competitive selection.

As shown in Figures 2A and B, while the success rate of ‘‘R’’ was

50% when r = 1, as required by symmetry, it declined at higher

risk levels, even though the single-generation expected fecundity

was unchanged. In other words, stochastic evolutionary selection is

itself risk-averse. As shown in Figure 2B, the magnitude of this risk

aversion depended on the relationship between the risk reward

factor r and the long-shot risk probability p. However, the effect

was entirely independent of population size. Over a 4-fold range of

nmax the survival probability curves were superimposable (not

shown). The degree of risk aversion could be quantified by

determining the amount that the native, intrinsic fecundity g0 of

‘‘R’’ needed to be increased in order to restore parity in the

competition. This ‘‘risk premium’’ is plotted in Figure 3 (dashed

line) as a function of the risk-reward r, for a fixed long-shot

probability p = 0.1. Clearly, a gene for gambling would not be

positively selected, in the absence of some other advantage. As

discussed below, this unexpected, intrinsic risk aversion of

stochastic selection stems from the fact that population growth

factors w in successive generations are not statistically indepen-

dent, because fluctuations in fecundity are negatively correlated

with the population saturation (competition) factors in subsequent

generations. As a result, the long-term expected growth rate differs

from that in a single generation, to the disadvantage of the species

with a higher variance in fecundity. Figure 2C shows the

analytically-computed expected population growth after 1 and 2

generations, showing risk aversion that appears only in the second

generation.

This situation was radically altered if the model was changed so

that a small fraction of the reproductive reward or penalty earned

by an individual organism from risk-taking could be passed

directly to the next generation. This was implemented by starting

each organism with a baseline fecundity (12a) g0 + a gparent where

gparent is the achieved fecundity, including risk reward or penalty

(but before population-size scaling) of its parent. This kind of non-

genetic inheritance of a parent’s experience is actually entirely

commonplace in the human population, in the form of inheritance

of property and acquired knowledge. This culturally inherited

wealth may increase the reproductive potential of offspring in the

Figure 1. Trajectory of the populations of two species in the stochastic selection model. The species ‘‘R’’ (solid line) and ‘‘A’’ (dashed line)
were actually identical because the risk-reward r was set to 1. Both species had a baseline fecundity g0 = 2, i.e. in the absence of risk and competition,
each organism would produce a mean of 2 offspring. The population ceiling parameter nmax was set to 150. The model was run until one species
(‘‘A’’) became extinct, after 220 generations.
doi:10.1371/journal.pone.0011656.g001
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next generation. Any species with overlapping generations that

directly supports or assists its own young might show a similar

effect of parent’s success on offspring’s fecundity.

Figure 4 shows that, when this ‘‘cultural inheritance’’ was

present, the ‘‘gambling’’ species was strongly favored. The ‘‘risk

premium’’ became, instead, a discount (Figure 3, solid curve). In

other words, even the propensity to take an unfair gamble would

still be positively selected. At high levels of reward r the discount

was so steep that the baseline fecundity of ‘‘R’’ could be reduced

below replacement and the species would still survive and prevail,

entirely on the basis of the reproductive advantage an organism

acquires from a winning parent in the previous generation.

Discussion

The fact that, in the absence of non-genetic inheritance, the

risk-averse species is intrinsically favored is counterintuitive and

has a somewhat subtle explanation. The single-generation growth

factor w = gparent/(1+n/nmax) is the ratio of two stochastic variables

that are statistically independent, since the population at the start

of a generation has no correlation with the outcome of the risk

event. The expected single-generation growth is thus the same for

both species, since the expected value of gparent is unaffected by risk

(by construction) and the denominator is symmetrical in the two

species. One might anticipate that the expected growth over

Figure 2. Intrinsic selection against risk-taking species. A. The fraction of 10,000 trials in which the ‘‘R’’ species survived the selection, as a
function of the risk-reward r. The probability p of the risk event was kept constant at 0.1, and nmax at 150 Higher values of r indicate a higher
reproductive advantage for the 10% of ‘‘R’’ organisms that ‘‘win’’ the risk event, but also a correspondingly greater penalty for the 90% that lose, so
that the overall expected fecundity remains at 2. When r = 1/p, the losers leave no descendants. B. Similar to A, but showing different values of the
long-shot probability p. C. Analytically computed expectation values of the populations of ‘‘R’’ and ‘‘A’’ organisms after 1 or 2 generations, starting
from 10 of each, with the deterministic saturation population size set to 20 and p = 0.1. The effect of risk to depress the expected ‘‘R’’ population
appears only in the second generation, due to correlation between fecundity fluctuations in the first generation and population competition in the
second. Note that even when r = 1 both populations are slightly depressed due to the effect of Poisson fluctuations in individual fecundity.
doi:10.1371/journal.pone.0011656.g002
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multiple generations would be simply the product of the expected

growth factors in every generation, but this is not correct. While

gparent is independent of the population in its own generation, it is

not independent of the population in the following generations, for

obvious reasons. The growth factors in different generations are

thus non-independent, so the expectation of the product of single-

generation growth factors is not the same as the product of the

expectations. In fact, because the population saturation function

1/(1+n/nmax) is concave, the long-term expected growth is less, by

an amount that increases with the variance of gparent, a fact which

was confirmed by direct calculation for the 2-generation case

(Figure 2C). Therefore, the lower-variance (i.e. risk-averse) species

is systematically favored. It is at first surprising that this risk-

aversion is independent of population size. One might expect this

fluctuation-driven effect to decrease in larger populations, for

which fluctuations in population size become smaller relative to

the total. However, the risk effect acts as a bias of the random drift

which is the mechanism of extinction in otherwise equivalent

organisms. While the bias becomes smaller per generation, the

number of generations required for drift to produce fixation of one

organism is much larger in a large population, so that the bias has

longer to act, leading to the same probability of the eventual

outcome, as long as there is no systematic selective force.

The risk-advantage produced by ‘‘cultural inheritance’’ is due to

a different kind of intergenerational correlation. The transmission

of property or culture (intellectual property) induces a positive

correlation between the reproductive fitness of parents and

offspring. The expectation of the product of fitnesses over multiple

generations is therefore larger than the product of the single-

generation expected fitness, by an amount that increases with the

size of fluctuations, favoring the species with the higher variance.

Although the mean winnings of risk-takers is zero, or even

negative, the next generation of ‘‘R’’ is disproportionately made

up of children of winners, so they receive a net positive

inheritance. To make the example concrete, imagine a polyga-

mous society in which there is available a very risky financial

opportunity with a 10% chance of multiplying the investment 10-

fold, but a 90% chance of bankruptcy. Ten risk-averse men can

each support one wife, and leave one son each. Ten men with a

risk-taking gene on the Y-chromosome invest their life-savings;

nine go bankrupt and cannot afford a wife and children, while one

receives a windfall enabling him to support a harem that gives him

10 sons. In the second generation there are again 10 risk-averse

men who will each have one son, and there are still 10 risk-taking

men, each of whom has inherited one tenth of his father’s winnings

in addition to his own savings. One of these receives a windfall –

now twice that of his father – enabling him to support a harem

Figure 3. Risk premium/discount. Dashed curve: The selective
disadvantage of the risk-taking ‘‘R’’ species, expressed as a ‘‘risk
premium’’: the percentage increase in baseline fecundity of ‘‘R’’ needed
to maintain a 50-50 split in the outcomes of selection trials. P = 0.1,
nmax = 150 Solid curve: In the presence of ‘‘cultural inheritance’’
(a= 0.091 corresponding to a wealth persistence time of 1.1 genera-
tions) the risk ‘‘premium’’ is strongly negative, i.e. a discount, indicating
that the propensity to take even an unfair gamble is positively selected.
doi:10.1371/journal.pone.0011656.g003

Figure 4. Selective advantage of risk-taking in the presence of ‘‘cultural inheritance’’. a. Fraction of selection trials won by the ‘‘R’’ species,
as in Figure 2A, but for the case where an ‘‘R’’ organism inherits a fraction a of the reproductive advantage or disadvantage obtained by its parent,
before undergoing its own risk event. Note that there is a slight droop in the curves at the highest risk levels, indicating that the intrinsic risk aversion
of due to population fluctuations is still active as in Fig. 2A,B, but is overcome by the accumulation of ‘‘inherited wealth’’ even at the smallest value of
a The dashed line shows the effect of doubling the population size, which increases the selective pressure of ‘‘wealth’’ relative to drift. b. Probability
that a single ‘‘R’’ organism with g0 = 1.5 will invade and replace a population of 149 ‘‘A’’ organisms with g0 = 2, despite the ‘‘R’’ having 25% lower
expected reproductive fitness (a= 0.091, p = 0.1).
doi:10.1371/journal.pone.0011656.g004
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that gives him 20 sons. Thus, in the third generation, 2/3 of the

population now carries the risk taking gene, and the process

continues.

As shown in Figure 4a (dashed curve), this risk-advantage,

unlike the intrinsic risk aversion in the purely genetic case above, is

not independent of population size, but instead increases with

population. This is because the correlation between fecundity

fluctuations of parent and offspring, unlike that due to population

fluctuations, does not decrease with population size, making it a

systematic selective force. The effect of population size is shown in

Figure 5 for several values of a, at the maximum risk level r = 1/p.

The positive correlation effect due to cultural inheritance

competes with the negative correlation effect due to population

fluctuations (which scales like drift). The careful reader will also

notice a very slight droop in the curves in Figure 4a at the highest

risk levels due to this competition.

The effect of the positive correlation is cumulative over

generations. This requires further comment in relation to the

concept of fitness. The model has been constructed so that the

expected number of offspring is either unaffected by taking the

gamble, or – in the case of an unfair gamble – is actually reduced.

In particular, the expected number of offspring of ‘‘R’’ is the same

or less than that of ‘‘A’’ in the first generation. However, the

operation of the cultural inheritance mechanism will result in the

accumulation of ‘‘family wealth’’, so that, in later generations, the

expected number of offspring of ‘‘R’’ will be higher than that of

‘‘A’’. It is misleading to think of this as implying that risk-taking

increases individual fitness in the usual sense. For an ‘‘A’’

individual offered an unfair gamble, the rational strategy to

maximize the expected number of his own offspring would be to

save his inherited wealth in a risk-less asset and ‘‘mutate’’ to

become risk-averse. However, if he did so, his family wealth would

dissipate over a few generations and his line would become extinct

in competition with continuing risk takers. The family wealth is

maintained, not by any fitness advantage of gambling, but by the

statistical correlation between gambling success and natural

selection in the following generations.

This reveals an ambiguity in the concept of evolutionary fitness.

The true fitness of an organism is the a posteriori realized number of

offspring that it contributes to the next generation, in its actual

environment (including the effect of other organisms). In this sense,

evolution is indisputably the result of higher fitness operating over

many generations. But a single organism does not evolve. When

we speak of the fitness of an individual organism, there is implied

some kind of a priori expectation value. As shown by our examples,

when risk is involved, an expectation taken in a single generation

does not successfully predict the outcome of selection, because it

neglects inter-generational correlations, due either to population

size fluctuations or to cultural or epigenetic effects. Therefore, we

would favor Darwin’s term ‘‘natural selection’’ over Spencer’s

‘‘survival of the fittest.’’

The accumulation of family wealth in the ‘‘R’’ population can

be estimated. Starting with a population of ‘‘R’’ whose average

fecundity in the i’th generation is ,gi., we estimate the number of

winners and losers, and the respective numbers of offspring of

winners and losers, and the values of g that they inherit, and then

average those values over the next generation to obtain ,gi+1..

After some algebra, the result is:

vgiz1w~
avgiw pr2{2prz1

� �

1{p
z 1{að Þg0

This is a linear recurrence relationship (finite-difference

equation) for ,g. describing the accumulation of average

fecundity ‘‘wealth’’ over generations. As long as a,p, the

coefficient of the linear term on the right will be less than 1 for

all allowed risk levels (r,1/p) so ,g. will converge asymptotically

to a steady value higher than g0. If a.p there will be risk levels for

which wealth increases exponentially over generations, which

might make sense in financial terms but is unrealistic in terms of

fecundity. To keep things simple and maintain explicit symmetry

between the two species, the competition model was set up in such

a way that the carrying capacity is proportional to the expected

fecundity. As a result, in the presence of cultural inheritance,

accumulated wealth can substantially increase the saturation

population size. This is generally in keeping with the human

experience, but since large increases in individual fecundity are

unrealistic, we examined also a model in which the saturation

denominator was computed from the sum of g21 (at birth, before

the risk event) rather than the physical number of organisms. This

is tantamount to assuming that wealth places a proportional

burden on resources. In this version, the saturation population

stayed very close to nmax but the results (not shown) were otherwise

virtually identical to those shown above, the only difference being

an increase in the slight ‘‘droop’’ in Figure 4 at the highest risk

levels, due to a greater drift effect in the smaller population.

There is an intriguing, real-world case that bears a surprising

degree of resemblance to our cartoon example of polygamous risk-

takers. Zerjal et al [17] found a unique cluster of Y-chromosome

haplotypes distributed throughout northern Asia at the extraor-

dinary frequency of 8% coextensive with the boundaries of the

former Mongol Empire founded by Genghis Khan. They provided

evidence that this is, in fact, the Y-chromosome of Genghis Khan

and his close male relatives, amplified enormously by ‘‘social

selection’’ as a result of their founding of long-lived male dynasties

whose rulers had very large numbers of children and passed their

power (culturally) down the direct male line for centuries There is

Figure 5. Effect of population size on selection for or against
the risk-taking species. The fraction of trials in which the ‘‘R’’ species
prevailed, at the maximum risk level (r = 10, p = 0.1) as a function of the
population size parameter nmax for several values of the ‘‘cultural
inheritance’’ rate a, or in the absence of cultural inheritance (a= 0).
When a= 0 there is no systematic effect of population size, because the
‘‘intrinsic risk aversion’’ due to the negative correlation of population-
size fluctuations between generations scales in the same way as drift.
When a.0 the positive inter-generational fecundity correlation
competes with intrinsic risk aversion, prevailing in larger populations
and higher values of a.
doi:10.1371/journal.pone.0011656.g005
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presently no evidence for a risk-taking gene on the Y-chromosome,

but the early Mongols were notoriously daring. Since it is

estimated that ,4% of autosomes and 2.7% of X-chromosomes

in the region are also descended from Genghis Khan, it might be

fruitful to look for an excess of risk-taking genes in that population.

Limitations
The results from our simplified model must be applied with

caution to real biological and social situations, because of three

kinds of limitations: (1) human and animal risk-taking is

complicated and controlled by many genes; (2) there could be

other evolutionary processes that would lead to apparently

irrational risk sensitivity; (3) recombination in a sexually

reproducing species might substantially affect the dynamics of

selection.

(1) Risk-sensitivity in man and other animals is complex,

involving sequential life-history choices with genetic and

environmental components and a strong interaction between

the two [12]. In social species, selection for risk-taking

behavior is also likely to be coupled to group interactions,

hierarchy, altruism, etc. The evidence for irrationality in

human risk sensitivity goes beyond gambling against the odds,

and includes the ‘‘framing’’ effect, in which the willingness to

take risks depends on whether they are presented in terms of

gain or loss – an asymmetry that cannot be explained by any

form of utility maximization [18]. Framing is sensitive to

social and ethical value judgments (see [19] for a nice

summary of the literature on this point). The risk-processing

mechanisms in the brain responsible for such phenomena are

a subject of active study. The kinds of heuristics used by the

brain to respond to risky choices may be constrained as much

by the limitations of neuroanatomy and physiology as by the

evolutionary fitness effects of risk.

(2) To know whether a gamble is a fair deal requires the organism

to estimate quantitively the small probability of winning, and

to effectively multiply this small number by the large payoff;

neither of these quantitative operations is very practical in the

natural world. An organism in an environment where most

long-shot risks have positive expected payoff might evolve a

simpler strategy: Always take the risk. Such an organism

would perform disastrously when placed in a casino, but that

would be merely a side effect of adaptation to a different

environment. However, our model shows that even in an

environment where every risk is a losing proposition in

individual fitness terms, risk-taking can still be subject to

positive selection if there is non-genetic inheritance.

While our model does not prove the necessity of non-genetic

inheritance for the evolution of risk-seeking, the powerful

effect it exerts in this simplified model suggests that it needs to

be taken into consideration whenever cultural or epigenetic

inheritance is present in more realistic situations. We modeled

only symmetrical competition in which the reproduction of all

individuals is equally depressed by the overall population size.

Therefore, there is only one ecological niche, and no chance

for the formation of a stable behavioral polymorphism of the

kind that has been proposed as an explanation for animal

personalities [20]. Our model differs also from the approach

taken in evolutionary game theory [21–22] in which there is

explicit competition between individuals in the same gener-

ation, so that fecundity gain by one organism represents a loss

for others. In the extreme case of ‘‘winner take all’’

competition, such as the competition for mates among lekking

birds, long-shot risk taking can be favored [23] because in a

sufficiently large population there will always be at least one

winner, who gets to father the entire next generation (this may

be regarded as a convex nonlinear relationship between

‘‘earnings’’ and fecundity, analogous to the starving-animal

paradigm in risk-sensitive foraging theory).

(3) Our simulation methods can be applied to the more realistic

case in which risk-seeking and risk-averse alleles compete

within a single sexually-reproducing species. To do this

requires consideration of a great number of different cases.

The fecundity phenotype needs to be specified for all possible

matings of homozygote and heterozygote winners and losers.

In the case of cultural or epigenetic inheritance, the manner in

which ‘‘wealth’’ is transmitted to offspring as a function of

gender (and perhaps birth order) needs to be specified, as well

as the effects of assortive mating, which is the rule in human

populations in relation to culture and material wealth. These

studies will be important before the theory can be compared

to empirical data. Because of the large numbers of scenarios

that need to be simulated, we have elected not to consider the

sexual case in this paper. We can point out, however, that as

long as the inheritance system is such that acquired fitness

exerts a positive effect on the fitness of offspring, the

correlations that favor risk-taking genes will exist.

While we have been motivated mainly by the human case, in

which the propensity of some individuals to take unfair, long-shot

gambles is most striking, a similar effect might occur in any species

with overlapping generations. The contribution of parental

nurturing to survival of the young is already taken into account

in the definition of reproductive fitness of the parent (we

conceptualize the life cycle as going from one reproductively

competent adult to the next). However, any direct contribution of

parental resources to reproductive success of the offspring in the

next generation would have an effect similar to cultural

inheritance in our model. Even in species without overlapping

generations, parental effects transmitted through the egg can

propagate parental experience to affect offspring fecundity [24].

Another form of non-genetic inheritance is the epigenetic

modification of genes in the zygotes. It has been shown that

environmental and nutritional influences can alter trans-genera-

tional epigenetic gene regulation [25–26]. This might potentially

produce effects analogous to cultural inheritance. It is reasonable,

then, to consider a role for non-genetic inheritance when

interpreting risk-sensitivity of decision-making behavior across

the animal kingdom.

Materials and Methods

The stochastic selection algorithm was implemented in Fortran.

The population of a species was represented by an array listing the

initial fecundity g of each of the organisms. At the start this was set

to g0 for all organisms, where this constant could be chosen

separately for each species. One generation of reproduction

consisted of the following: For each ‘‘R’’ organism, a uniform

random number between 0 and 1 was chosen, and if it was less

than a fixed probability p, the initial fecundity was multiplied by r,

the risk reward factor (.1); otherwise it was multiplied by (12rp)/

(12p) which is less than 1. This gave the organism’s unconstrained

fecundity gparent (i.e. the expected number of offspring that it would

contribute to the next reproductive generation if there were not

competition for resources). For the ‘‘A’’ species, the risk event was

omitted. The actual, realized number k of offspring contributed to

the next generation by an organism was chosen from a Poisson

distribution with mean w = gparent/(1+n/nmax) where n is the total
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number of organisms of both species present in the current

generation. The organism was then replaced in the array by k

entries ‘‘born’’ with initial fecundity (12a) g0 + a gparent. For the

case of purely genetic inheritance, a= 0. For the version of the

model with constant carrying capacity, the total population n in

the saturation denominator was replaced by the sum of (12a) g0 +
a gparent21 over all organisms.

Starting from a population containing equal numbers of each

species, the above generation cycle was repeated until the number

of organisms of one species reached zero (extinction) as shown in

Figure 1. This selection process was repeated 10,000 times to

estimate the frequency with which ‘‘R’’ was the winning species,

plotted in Figures 2A,B, 4a and 5. The probability of invasion

(Figure 4b) was calculated similarly, but starting with nmax21 ‘‘A’’

organisms and only a single ‘‘R’’. To calculate the risk premium,

the g0 value of ‘‘R’’ was adjusted up or down manually until

exactly 50% of the selection runs resulted in survival of ‘‘R’’. The

required change in g0 was plotted as a percentage in Figure 3.

The methods used in these simulations are analogous to the

techniques used to predict the survival of endangered species in

population viability analysis (cf. [27]). We have the advantage of

being able to invent the demographic parameters instead of having

to measure them over decades, and we have omitted such effects as

age/stage stratification, spatial variability, sub-populations, migra-

tion and continuous-time demographic events that will eventually

need to be considered to extend our arguments to realistic species.

In order to demonstrate that the ‘‘intrinsic risk aversion of

selection’’ arose from correlations between growth rate fluctua-

tions in different generations, we computed analytically the

expected population sizes after igen generations. This proved

surprisingly difficult. It requires summing over all the possible

population paths defined by the numbers of offspring of each

organism in each generation, weighted by their probabilities, an

impossible task. Fortunately, our model represented risk as a

simple dichotomy (win vs. lose) which enables the state of the

population to be described by a single binomial distribution, and

the stochasticity of individual reproduction was represented by a

Poisson distribution, which has the convenient property that the

sum of multiple Poisson variates is again Poisson. This allowed

lumping of organisms into three pools – winners, losers and risk-

averse, by which means we arrived at the following recursive

equation for the expected number of ‘‘R’’ individuals after igen

generations, starting with nr risk-taking and na risk-averse

organisms in the first generation:

with the understanding that when igen = 0, R = nr. A similar function

applies to ‘‘A’’. The operation of this equation may require some

clarification. At entry to the ‘‘top level’’ of function R on the left, the

function is presented with the integer numbers of ‘‘R’’ and ‘‘A’’

organisms in the first generation. The function considers all possible

integer numbers of winners and losers and the possible integer

numbers of of offspring they might produce at the end of the first

generation. The probabilities of all these possible second-generation

populations are computed and used as weighting factors multiplying

the (non-integer) expected numbers of organisms after the

remaining igen21 generations. The latter is computed by a second,

recursive call to the function R itself. The top level of this call

receives as input the integer numbers of ‘‘R’’ and ‘‘A’’ in (each of)

the hypothetical second generations. The number of remaining

generations is decremented by one on each successive nested call,

until, when there are no generations left, the innermost call of R

simply returns the population size it was presented with. At each

level, an independent quadruple sum is carried out over the possible

productions of that generation, so that eventually the top level of R

returns an average of the final population size taken over all possible

intermediate population histories weighted by their likelihood. In

each probability computation, the saturation denominator is

calculated using the integer number of organisms present in that

hypothetical generation, so that the fluctuations in competition are

fully accounted for.

This function was computed numerically by a recursive Fortran

subroutine. The comparatively compact form of the equation

belies the huge number of individual function evaluations, which

increases exponentially with the number of generations, and

approximately as the 8th power of the population size when

igen = 2. This limited numerical evaluation to one or two

generations and a small population (10 of each species with

nmax = 20), which still required several hours of computer time on a

3 GHz Pentium. This proved sufficient to demonstrate the

principle (Figure 2C). Even though the expected output of the

second generation was the same for both species for each possible

input coming from the first generation, the two-generation

expected growth rate differed, due to correlation between the

fluctuations of realized w between generations.
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