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Glycan analysis of therapeutic glycoproteins
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ABSTRACT
Therapeutic monoclonal antibodies (mAbs) are glycoproteins produced by living cell systems. The glycan
moieties attached to the proteins can directly affect protein stability, bioactivity, and immunogenicity.
Therefore, glycan variants of a glycoprotein product must be adequately analyzed and controlled to
ensure product quality. However, the inherent complexity of protein glycosylation poses a daunting
analytical challenge. This review provides an update of recent advances in glycan analysis, including the
potential utility of lectin-based microarray for high throughput glycan profiling. Emphasis is placed on
comparison of the major types of analytics for use in determining unique glycan features such as
glycosylation site, glycan structure, and content.

Abbreviations: AE, anion-exchange; CE, capillary electrophoresis; cIEF, capillary isoelectric focusing; ESI, electrospray
ionization; HILIC, hydrophilic interaction liquid chromatography; HPAEC-PAD, high-performance anion-exchange
chromatography with pulsed amperometric detection; HPLC, high-performance liquid chromatography; ICH, Inter-
national Conference on Harmonization; IEF, isoelectric focusing; IEX, ion-exchange; IM, ion-mobility; MALDI, matrix-
assisted laser desorption/ionization; MS, mass spectrometry; MS/MS, tandem mass spectrometry; PAGE, polyacryl-
amide gel electrophoresis; PGC, porous graphitic carbon; RP, reversed-phase; SEC, size-exclusion chromatography
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Introduction

Many biopharmaceuticals are glycosylated proteins (also
named glycoproteins) produced by living cell systems. These
include monoclonal antibodies (mAbs) and other recombinant
protein products (e.g., fusion proteins, growth factors, cyto-
kines, therapeutic enzymes, and hormones), which are
approved (see examples in Fig. 1A–B and supplement I) or
under development as treatments for cancer, autoimmune dis-
eases, and other life-threatening conditions. Appropriate glyco-
sylation of a therapeutic protein is critical for product
solubility, stability, pharmacokinetics and pharmacodynamics
(PK/PD), bioactivity, and safety (e.g., immunogenicity).1 It is
well documented that protein glycosylation not only increases
protein stability in vitro, but also protects proteins from proteo-
lytic degradation in vivo.2–5 In this regard, non-glycosylated
erythropoietin is known to be more susceptible to denaturation
or degradation induced by chemicals, pH changes or heating
conditions compared to the fully glycosylated form.6

Protein glycosylation can also influence PK/PD properties of
therapeutic glycoproteins.2,7 There is evidence that partially
glycosylated proteins, which usually contain terminal galactose,
have much shorter circulatory lifetimes compared to fully gly-
cosylated proteins with terminal sialic acid. This is mainly due
to the binding of galactose with hepatic asialoglycoprotein
receptors expressed on hepatocytes, which promotes hepatic
clearance of the partially glycosylated protein.8 Other
lectin-like receptors with binding specificity to terminal

mannose, N-acetyl-glucosamine (GlcNAc) or fucose also con-
tribute to clearance of glycoproteins containing these glycans.2

Additionally, IgG Fc glycosylation is critical to many antibody
effector functions through modulating Fc-FcgR interactions.9–
12 Human FcgR family includes activating (FcgRIa, FcgRIIa,
and FcgRIIIa) and inhibitory (FcgRIIb) receptors. Fc glycosyla-
tion plays important roles in modulating antibody binding
affinities with FcgRs or C1q on effector cells, and thus affects
immune effector functions such as antibody-dependent cell-
mediated cytotoxicity (ADCC), antibody-dependent cellular
phagocytosis (ADCP), and complement-dependent cytotoxicity
(CDC) (Table 1).13 Optimization of Fc glycosylation has been
explored to enhance the ADCC activity of therapeutic mAbs.14

Protein glycosylation is a complex post-translational modifi-
cation (PTM) involving attachment of glycans at specific sites
on a protein, most commonly at Asn (N-linked) or Ser/Thr (O-
linked) residues. The N-linked glycosylation occurs at the con-
sensus sequence of Asn-X-Ser/Thr (where X is any amino acid
except proline). By contrast, O-linked glycans are usually
attached to serine (Ser) or threonine (Thr) residues via an a-O-
glycosidic bond formed between N-acetylgalactosamine (Gal-
NAc) and the hydroxyl group (-OH) of Ser/Thr (murine a-Gal-
NAc O-glycans).15 Protein N-glycosylation starts in the
endoplasmic reticulum (ER), where a glycan chain
(Glc3Man9GlcNAc2) is added to Asn of the Asn-X-Ser/Thr
sequon. The glycan chain is then trimmed by various glycosi-
dases and the resultant glycoprotein is transported to the Golgi
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apparatus for further modifications. Within the Golgi, protein
glycans are subjected to a multi-step trimming and modifica-
tion process, which is catalyzed by various glycan-processing
enzymes, resulting in diverse N-glycan structures such as high-
mannose, complex, and hybrid glycans.16 Protein O-glycan bio-
synthesis is initiated in the Golgi by directly transferring Gal-
NAc from UDP-GalNAc to Ser/Thr residues.17 The O-GalNAc
precursor undergoes further derivations, thereby producing up
to 8 O-GalNAc glycan core structures with 4 (core 1, 2, 3 and
4) of them commonly seen in mammals.18

To add complexity, protein glycosylation is influenced by
the type of host cells and fluctuations in fermentation condi-
tions (e.g., media, pH, temperature, agitation).19 Therapeutic
glycoproteins can be produced by mammalian cells, yeast
strains, plant cells, or genetically modified animals in which
each host system has its own unique glycosylation machinery
that produces proteins with distinct glycan patterns (Fig. 1C
and Supplement I). For instance, mammalian cells (e.g., Chi-
nese hamster ovary cells) are widely used for production of
therapeutic glycoproteins containing human-like glycans.
However, mammalian cell-expressed proteins may also contain
minor non-human glycans such as N-glycolylneuraminic acid
(Neu5Gc) and terminal a1-3-Galactose (a-Gal) modification
(Fig. 1C). By contrast, yeast strains usually express proteins
with high content of mannose (up to 100 units). Other plat-
forms for expressing therapeutic glycoproteins include engi-
neered plant cells and genetically modified animals.20,21

However, these systems may produce proteins with non-
human glycan variants such as xylose, Neu5Gc or terminal
a-Gal, which are known to be immunogenic.21 Due to the com-
plexity of the glycosylation process, glycoproteins produced by
living cell systems usually contain macro- and micro-heteroge-
neity in terms of glycosylation patterns. Macro-heterogeneity

Figure 1. Examples of N-glycans found in recombinant glycoproteins. Shown are typical glycan structures for therapeutic humanized IgG1 mAb (A), recombinant
human erythropoietin (B), and N-glycans produced in the commonly used expression systems (C) (derived from Ghaderi D et al. 2012).115

Table 1. Potential impacts of Fc glycosylation on therapeutic mAbs.13

Glycans/glycosylation Impacts

a1–3-galactose;
N-glycolylneuraminic acid

Immunogenicity

Terminal sialylation # binding to FcgRIIIa, # ADCC; " PK/PD
Afucosylation " binding to FcgRIIIa, " ADCC, " ADCP
Galactosylation " binding to C1q, " CDC,

moderate effect on ADCC
High-mannose # PK/PD; " binding to FcgRIIIa, " ADCC; #

binding to C1q, # CDC

" positive impact; # negative impact.
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refers to the variability of glycosylation sites and glycan num-
bers while micro-heterogeneity concerns glycan structural var-
iations at a specific site. Both macro- and micro-
heterogeneities contribute to diversity of glycoforms, which
share identical amino acid backbones, but may be different in
glycosylation sites, glycan contents or structures.22

Analytics for therapeutic protein glycosylation

The multiple levels of glycan heterogeneity pose a daunting
analytical challenge. In the development of therapeutic glyco-
proteins, especially biosimilar products,23 glycan analysis usu-
ally involves the use of complementary methods for assessing
specific glycosylation attributes, including glycosylation site,
glycan structure and abundance.24–26 The analytical methods,
which include high-performance liquid chromatography
(HPLC), capillary electrophoresis (CE), mass spectrometry
(MS), isoelectric focusing (IEF), and lectin-based microarray,
are grouped and discussed according to their utility in analyz-
ing intact glycoproteins, glycopeptides, released glycans, and
monosaccharides (Fig. 2).

Glycan profiling of intact glycoproteins
Intact glycoproteins can be directly analyzed for general glycan
patterns and glycan heterogeneity. In this regard, electrospray
ionization - time of flight (ESI-TOF) MS coupled with
reversed-phase (RP) HPLC or size-exclusion chromatography
(SEC) have been commonly used.27 RPLC-MS provides better
chromatographic separation of protein variants27 and has
shown ability in the detection of intact mAb with 10 ppm accu-
racy (approx. 150,000 § 1.5 Da), but the procedures require
high column temperatures (60–80�C).22,28,29 SEC-MS using
either a non-denaturing or denaturing mobile phase is operated
at room temperature and produces good quality of mass spec-
tra, but SEC resolution is relatively lower than RP.30-32 The LC-
ESI-MS approach has been applied to glycoform profiling of
more complex therapeutic proteins such as erythropoietin,
which contains one O- and 3 N-glycosylation sites.33 While tra-
ditional ESI-TOF-MS analysis of even more heterogeneous gly-
coproteins such as darbepoetin alfa (known to contain 5
N-glycosylation sites) under denaturing conditions remains
challenging, the recently developed Orbitrap ExactiveTM Plus
high-resolution mass spectrometer enables accurate determina-
tion of highly complex glycan profiles at the native intact pro-
tein level. This technology takes advantage of the substantially
fewer charges on a given protein when ionized in an aqueous
ammonium acetate buffer, where the protein retains more
folded “native” structure.34,35 In addition to ESI-MS, matrix-
assisted laser desorption ionization (MALDI) MS can be used
for fast glycan analysis of small intact proteins, but with a lower
mass accuracy.36

To increase the sensitivity of MS analysis of mAbs, one
approach has been to reduce a mAb into individual heavy
and light chains.28,37 For this purpose, commonly used
reducing reagents include dithiothreitol (DTT), tris(2-car-
boxyethyl)phosphine (TCEP), b-mercaptoethanol (b-ME)
and mercaptoethylamine (MEA).38 Alternatively, a mAb can
be cleaved into smaller fragments using selective proteases
such as papain, pepsin, IdeZ, and IdeS.39,40 Papain cleaves

IgG above the hinge region into 3 fragments, 2 Fab and
one Fc, while pepsin cleaves IgG below the hinge region to
produce F(ab’)2 fragment and a degraded Fc fragment. IdeZ
and IdeS both cleave IgG to yield a F(ab’)2 fragment and an
intact Fc fragment.

The heterogeneity of glycoforms can also be analyzed by CE-
MS.41–43 Additionally, protein sialylation heterogeneity can be
analyzed at the intact glycoprotein level using charge-based
electrophoresis such as IEF,41,44 CE,45 capillary isoelectric
focusing (cIEF),41,46 or ion-exchange (IEX) chromatogra-
phy.43,47 These approaches are commonly used for quality con-
trol testing;48 however, although IEF and IEX are traditional
methods, they are incompatible with MS and time-consuming.
CE and cIEF are emerging technologies with attractive features
such as high speed, high resolution, and compatibility with MS,
but their drawback is that the capillaries tend to adsorb intact
proteins.49

Analysis of glycopeptides
Characterization of protein glycosylation site(s) and occupancy
is usually achieved at the glycopeptide level using ESI-MS or
MALDI-MS.50,51 This approach is also important for character-
ization of O-glycans because it has been difficult in achieving
quantitative O-glycan release (US. Pharmacopoeial Convention
(USP) general chapter <1084 >).52,53 Other PTMs can also be
detected through peptide analysis. The analytical procedures
start with digestion of glycoprotein into suitably sized glyco-
peptides by a highly specific protease such as trypsin, Lys-C, or
Glu-C based on the sequence of the protein as well as the gly-
can modifications close to the peptide backbone. A combina-
tion of multiple proteases may be necessary in specific cases
like erythropoietin.54

Following digestion and prior to MS analysis, enrichment
of glycopeptides by HPLC is often required in order to over-
come ion suppression of glycopeptide signals by regular pep-
tide signals.55 This can be achieved by coupling HPLC with
ESI-MS in an online manner, or with MALDI-MS in an off-
line manner, where the LC-ESI-MS with online separation is
a more efficient approach, and thus is most widely used. As
for traditional RPLC-MS analysis using C18 columns, detec-
tion of low-abundant glycopeptides may be challenging due
to the ion suppression of co-eluting glycopeptides with high
abundance. Hydrophilic interaction liquid chromatography
(HILIC) provides better separation of hydrophilic glycopep-
tides as well as regular peptides.56 However, glycopeptide
isomers with the same mass cannot be distinguished by this
approach. A novel nano-LC-MS method was recently intro-
duced to differentiate glycopeptide isomers by using micro-
fluidic chip-based capillaries packed with porous graphitic
carbon (PGC) stationary phase, which can resolve isomeric
glycopeptides containing very short peptide moieties (as
short as 3 residues) produced by unique and nonspecific
digestion enzyme pronase E.57 On the other hand, a high-
throughput work flow for monitoring Fc-glycosylation dur-
ing fermentation was tested where the IgGs were purified by
protein A immobilized on 96-well plates, and the tryptic gly-
copeptides were extracted from the plates by HILIC beads
followed by ESI-MS analysis without HPLC separation of the
extracted glycopeptides.58
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Compared to ESI, MALDI is more suitable for rapid glyco-
peptide profiling because of the relatively simple mass spectra
resulting from the singly charged ions, but its drawback is
related to degradation of the underivatized sialylated glycopep-
tides due to in-source and post-source decay,59 which could be
avoided by sialic acid derivatization prior to MALDI-MS
analysis.60

Tandem MS analysis of glycopeptides allows determination
of glycosylation site(s) and glycan composition present on a gly-
copeptide. The recently developed in-source electron-transfer
dissociation (ETD), which predominately cleaves the peptide
bonds, can be used to identify the glycosylation site(s) of

glycoproteins.61 Classical collision-induced dissociation (CID)
method, on the other hand, mainly cleaves the glycan moiety
attached to a glycopeptide, which generates information about
carbohydrate composition and sequence.50,54 The combination
of these methods in one LC-MS experiment could provide an
efficient sequencing of glycopeptides.61,62

CE-MS is also a useful tool in determining site-specific gly-
can micro-heterogeneity of glycoproteins at the glycopeptide
level.63 In traditional RPLC-MS, highly hydrophilic peptides
may have insufficient interaction with the RP chromatography
matrix, and thus get lost during the loading and desalting step.
In this case, CE-MS can be a good alternative to detect these

Figure 2. Overview of analytics for assessing glycans. The commonly used methods for glycan analysis are divided into 4 main groups per their applications in analyzing
intact proteins, glycopeptides, released glycans or monosaccharides (see detail in the text). These methods are usually used in combination to determine glycan profiles,
glycan structures and heterogeneity, glycosylation site(s) and the content of specific glycans.
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small hydrophilic peptides and achieve complete sequence
coverage.63,64

Analysis of released glycans
N-linked glycans on a glycoprotein can be released by an ami-
dase such as peptide-N-glycosidase F (PNGase F). O-linked gly-
cans are commonly released through reductive alkaline
b-elimination.65 However, it is difficult to achieve complete gly-
can release and the unreleased glycans are left undetermined.
Released glycans can be rapidly profiled by MALDI-TOF MS
where glycan permethylation is usually employed to improve
ionization efficiency and to stabilize sialylated glycans during
simultaneous analysis of neutral and sialylated glycans in the
positive-ion mode.27,66,67 Moreover, with linkage-specific sialic
acid esterification, not only the sialic acids can be stabilized,
but different sialic acid linkages (a2–3 and a2–6) can also be
distinguished by MALDI-MS.68

To facilitate HPLC- and MS-based glycan analysis, released
glycans are usually fluorescently labeled through reductive ami-
nation. The two most commonly used fluorescent tags are 2-
aminobenzamide (2-AB) and 2-aminobenzoic acid (2-AA).69

2-AB lacks negative charges and is used as a gold standard for
HPLC approaches with extensive database established, but
shows low ESI ionization efficiency. 2-AA carries one negative
charge, and thus is suitable for CE and MALDI analysis.69 A
recent study indicated that procainamide [4-amino-N-(2-dieth-
ylaminoethyl) benzamide]-labeled N-glycans show enhanced
ESI ionization efficiency and fluorescence intensity comparing
to 2-AB-labeled glycans, and thus improve identification of low
abundance N-glycans.70 Prior to HPLC and MS analysis, purifi-
cation steps are usually required to remove excess tags and
salts, which include HILIC, RP, PGC, or gel filtration
approaches based on the labeling method.69

The labeled glycans can be separated using chromatographic
approaches such as HILIC, RP-HPLC, or anion exchange
HPLC (AE-HPLC). HILIC has shown better resolution in sepa-
rating glycans over other HPLC methods.71–73 The elution pro-
file of 2-AB-labeled glycans is compared against a 2-AB-labeled
dextran ladder (glucose homopolymer), yielding an estimation
of the number of glucose units of each species.67,74 This infor-
mation is then used to calculate the abundance of individual
monosaccharides, which allows prediction of glycan struc-
ture.75 On the other hand, N-glycans without fluorescence-
labeling can be separated by high-performance anion-exchange
chromatography with pulsed amperometric detection
(HPAEC-PAD) or PGC chromatography,74,76 but with limited
robustness and reproducibility.73

Released glycans, upon fluorescence labeling, can also be
determined using CE at high sensitivity and resolution. The
fluorescent tag 8-aminopyrene-1,3,6-trisulfonate (APTS) is
widely used for CE analysis of oligosaccharides;77,78 sometimes
other labeling reagents such as 2-AA are also used.79 This
approach offers a unique ability to differentiate isomeric glycan
structures.77–81 However, only a limited number of glycan
standards is available for use in making the assignment of a gly-
can structure to a corresponding CE peak signal. In this case,
sequential exoglycosidase digestion of oligosaccharide followed
by CE analysis has the potential to provide detailed carbohy-
drate sequence information.81,82 When hyphenated with MS,

CE-MS proves to be useful in peptide mapping and glycoform
characterization;42,64,83–85 however, its application in oligosac-
charide analysis is somewhat limited.86,87 A recent study com-
pared 7 orthogonal methods (e.g., HILIC, CE, and HPAEC-
PAD) in analyzing released Fc glycans, which showed similar
results for glycan patterns and content.88

Glycan structure assessment is challenging due to the iso-
meric and branched nature of oligosaccharides. The traditional
approach involves the use of exoglycosidases to selectively and
sequentially release terminal monosaccharides, which produces
trimmed glycans to be analyzed by HILIC, CE or MALDI-MS.
The structure of the originating glycans can be postulated
according to respective shifts in glucose units, migration time
and mass following each enzymatic digestion.89 These
approaches are valuable for new glycan structure analysis, but
they involve a lengthy procedure and require highly pure
enzymes to achieve cleavage at the desired sites. Recently, LC-
ESI-CID-MS/MS was applied to glycan sequencing, which
showed improved speed and sensitivity.90 To determine the
linkages in a glycan by MS/MS, cleavage across the glycosidic
ring (cross-ring fragmentation) is required, which can be done
by ESI-QTOF MS in a negative-ion mode under low energy
CID conditions.91–93 However, MS generally cannot resolve the
structural isomers, or determine the 3-dimensional structure of
the glycans. To fill this gap, nuclear magnetic resonance
(NMR) and X-ray crystallography are employed.94,95 In fact,
NMR remains the only technique that can determine anomer-
icity and linkage information in a new glycan structure,67 but it
requires relatively large amounts of purified glycans. A newly
developed ion-mobility (IM) MS technique, which separates
ions in gas phase based on size, shape, and charge, was shown
to effectively detect glycan isomers.96

Analysis of monosaccharides
Quantification of released monosaccharide provides informa-
tion on the content of a specific-terminal monosaccharide such
as sialic acid, mannose-6-phosphate (M6P), GlcNAc, or O-
linked monosaccharides.97–99 Sialic acid residues can be selec-
tively released by mild acid hydrolysis or by an enzyme neur-
aminidase (USP<1084>). Released sialic acids are normally
quantitated by HPAEC-PAD without derivatization.100 The
absolute amount of sialic acids can be determined by HPAEC-
PAD using commercially available sialic acid standards,25 e.g.,
3-deoxy-D-glycero-D-galacto-nonulosonic acid (USP<1084>).
Alternatively, released sialic acids can be labeled with a fluores-
cent tag 1,2-diamino-4,5-methylenedioxybenzene followed by
RP-HPLC analysis.101

To analyze the composition of monosaccharides other than
sialic acids, these monosaccharides are commonly released by
strong acid hydrolysis and separated by HPLC.102 Specifically,
trifluoracetic acid (TFA) is widely used for hydrolysis of glycans
after selective release of sialic acids, and released amino mono-
saccharides are normally re-N-acetylated.67,103 Common prob-
lems associated with acid hydrolysis are incomplete glycan
cleavage and instability of the released monosaccharides under
the acidic conditions.102 Identification and quantification of
non-sialic acid monosaccharides are normally conducted by
HPAEC-PAD without derivatization, and 2-deoxy-glucose can
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be used as standard for these neutral monosaccharides
(USP<1084>).104

Lectin array-based glycan analysis

Lectins, which are a group of glycan binding proteins (GBPs)
that are naturally occurring in plants and many other species,
are known to selectively interact with glycan molecules either
released or attached to a peptide backbone. This unique prop-
erty has been explored in the development of analytics for gly-
can determination. Several relevant platforms have been
reported in which lectin-based microarray has demonstrated a
utility in capturing glycan profiles of therapeutic glycopro-
teins.105–109

In the design of a lectin microarray, specified lectins are
immobilized onto a solid phase (e.g., glass chips) that is acti-
vated either chemically (e.g., epoxy, NHS ester, gold or amino
group) or biochemically (e.g., streptavidin).105,107 After lectin
coating, residual active groups on the solid surface are blocked
by appropriate agents (e.g., Tris buffer or bovine serum albu-
min). When a glycoprotein is applied onto the lectin chip, the
binding events detected at specific lectin spots provide a picture
of glycan variants that are likely present in the sample. In con-
ventional microarray analysis, washing procedures are required
to remove unbound glycoproteins from the lectin chips. Such
operation procedures will disrupt the steady-state interactions
between lectins and glycans because lectin-glycan binding is
generally weak (Kd»10¡4–10–7 M) compared to high binding
affinity of antibody-antigen and biotin-streptavidin complexes.
The recently developed evanescent-field activated fluorescence
system allows real-time detection of lectin-glycan interactions
at equilibrium without the need of washing proce-
dures.106,110,111 Such a platform has been used in assessing gly-
can variants of purified glycoproteins, crude extracted
membrane proteins,112 and live cell plasma membrane

proteins.113 A recent study compared 3 chromatographic meth-
ods (HPAEC-PAD, 2-AA HILIC, 2-AB HILIC) and a lectin
microarray method for glycan profiling of a therapeutic
mAb.114 The lectin-based assays identified “glycan structural
classes” in the 4 mAb lots, which were generally consistent with
those detected by other classical methods.

Our laboratory has recently tested over a dozen Food
and Drug Administration-approved therapeutic glycopro-
teins (including 9 mAbs) using commercial lectin chips that
contain 45 distinct lectins (GlycoTechnica Ltd.). The
derived glycan profiles (e.g., glycan variants and relative
content) are generally consistent with the known glycosyla-
tion patterns of each product (data not shown). For exam-
ple, a recombinant human glycoprotein shows strong
binding signal at phytohemagglutinin-L (PHAL)-coated
spots, confirming the presence of tri-/tetra-antennary glycan
structures in the sample (Fig. 3A). No binding signal was
detected for a recombinant IgG1 monoclonal antibody that
is known to be deficient of such glycan structure. In
another case, we found that the lectin-based assay was able
to distinguish terminal sialylation variants (e.g., a2–3- vs.
a2–6-sialylation) (Fig. 3B). Our data show promise for lec-
tin microarrays in profiling glycan variants that are com-
monly present in therapeutic proteins. Compared to MS-
based methods, which usually involve multiple sample proc-
essing steps, a lectin microarray directly works on intact
glycoproteins with only minimal alteration to a testing sam-
ple (e.g., fluorescent labeling). The lectin microarray, when
coupled with a sophisticated detection system, appears to
provide a high throughput platform for rapid screening of
glycan profiles of therapeutic proteins. However, the lectin-
based microarray still faces major challenges before being
adopted as a tool for characterization of therapeutic glyco-
proteins. In this regard, most commercial lectin microarrays
utilize lectins from natural sources (e.g., plants) that are

Figure 3. Lectin microarray analysis of glycans. (A). A recombinant human glycoprotein showed strong binding signal at PHAL coated spots (left panel), confirming the
presence of tri- and/or tetra-antennary glycan structures in the testing sample. By contrast, no binding signal was detected for another mAb lacking such glycans (right
panel); (B) Two therapeutic mAbs, which were known to contain a2–3- or a2–6-sialylation, respectively produced signals at a2–3-sialic acid binding lectin MAL (left panel)
and a2–6-sialic acid binding lectins (SNA, SSA, TJA-I)(right panel).
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expected to display weak binding affinities to a spectrum of
glycans. This phenomenon complicates interpretation of the
detected binding events with a specific lectin molecule.
Nonetheless, the lectin microarray platform appears to allow
high throughput screening of the presence or absence of
specific glycan variants in glycoprotein samples.

Perspectives

The complexity of protein glycosylation poses a daunting ana-
lytical challenge in the development of therapeutic glycopro-
teins (e.g., mAbs). Orthogonal methods are required to
characterize specific features: 1) the carbohydrate content (neu-
tral sugars, amino sugars, and sialic acids); 2) the structure of
the carbohydrate chains, the oligosaccharide pattern (antenn-
ary profile), and 3) the glycosylation site(s) (ICH guidance
Q6B). The selection of appropriate methods for a specific glyco-
protein will depend on the purpose of testing and the ability of
individual method (Fig. 2 and Table 2). IEF, IEX, or CE alone
or in combination is commonly used to monitor heterogeneity
in sialic acids on intact glycoproteins. HPLC is widely used to
quantify the amounts of released oligosaccharides. MS coupled
with HPLC remains a powerful tool in the characterization of
glycosylation site(s) occupancy and carbohydrate structures.
However, those oligosaccharide-based methods involve release
of glycans from a glycoprotein. When conducting these assays,
cautions must be taken to ensure that glycans are effectively
released and recovered using appropriate procedures. Ideally,
glycan analysis should involve procedures that only minimally
alter the test samples. In this regard, lectin microarray appears
to directly measure glycan variations in an intact protein with-
out the need of clipping glycans from the protein backbone.
Such a platform could be used as a complementary tool for
characterization of protein glycosylation.
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