
 Title: Use of compressed sensing to expedite high-throughput diagnostic testing for COVID-19 and beyond 1 

 2 

Authors:  3 

Kody A. Waldstein1,2†, Jirong Yi3†, Michael Myung Cho4, Raghu Mudumbai3, Xiaodong Wu3, Steven M. 4 

Varga1,2,5‡, and Weiyu Xu3‡* 5 

†‡Denotes equal contribution  6 

 7 

Affiliations: 8 

1Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA. 9 

2Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA. 10 

3Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA. 11 

4 Department of Electrical and Computer Engineering, Penn State Behrend, Erie, PA 16563, USA. 12 

5Department of Pathology, University of Iowa, Iowa City, IA 52242, USA. 13 

 14 

*To whom correspondence should be addressed: Weiyu Xu, weiyu-xu@uiowa.edu  15 

 16 

  17 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.21261669doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:weiyu-xu@uiowa.edu
https://doi.org/10.1101/2021.08.09.21261669
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2 

Abstract 18 

The rapid spread of SARS-CoV-2 has placed a significant burden on public health systems to provide rapid and 19 

accurate diagnostic testing highlighting the critical need for innovative testing approaches for future pandemics. 20 

In this study, we present a novel sample pooling procedure based on compressed sensing theory to accurately 21 

identify virally infected patients at high prevalence rates utilizing an innovative viral RNA extraction process to 22 

minimize sample dilution. At prevalence rates ranging from 0-14.3%, the number of tests required to identify 23 

the infection status of all patients was reduced by 75.6% as compared to conventional testing in primary human 24 

SARS-CoV-2 nasopharyngeal swabs and a coronavirus model system. Additionally, our modified pooling and 25 

RNA extraction process minimized sample dilution which remained constant as pool sizes increased. Our use of 26 

compressed sensing can be adapted to a wide variety of diagnostic testing applications to increase throughput 27 

for routine laboratory testing as well as a means to increase testing throughput to combat future pandemics. 28 
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Graphical Abstract 43 
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Introduction 58 

The rapid community spread of SARS-CoV-2 has placed a significant burden on diagnostic testing and 59 

public health to provide fast and accurate testing strategies. The number of COVID-19 tests being performed 60 

each day has increased 8-fold since testing reagents became widely available with an average of over 1.5-2 61 

million COVID-19 quantitative reverse transcription polymerase chain reaction (qRT-PCR) tests performed by 62 

day in the United States alone (1-3). Additionally, multiple new and more infectious variants of COVID-19 63 

have emerged worldwide harboring genetic mutations significant enough to evade recognition by host 64 

antibodies causing some concern for current vaccine formulations (4-8). Testing and screening remains an 65 

imperative safeguard to minimize spread, thus the development of innovative strategies and techniques to 66 

increase testing capacity without reducing the accuracy and efficacy of testing is crucial.  67 

 A traditional method to increase testing capacity is by pooling samples as opposed to conducting 68 

individualized testing, known as “group testing” (9-11). The principle is simple, if the prevalence rate is low 69 

within the population, the majority of samples will inevitably test negative. In this scenario, a single negative 70 

result indicates that all patients within that pool are also negative. However, the ability to accurately test using 71 

this method diminishes quickly as the prevalence rate increases (12-15). Current CDC guidelines require 72 

subsequent individual testing of all patients within a pool if the pool is positive (16). Worldwide SARS-CoV-2 73 

prevalence rates continue to be >10% with a worldwide estimate of ~30% (17). These rates are well beyond the 74 

capacity of traditional pooling methods as many pools will be positive requiring additional individual testing 75 

and inevitably increasing the number of tests required. More sophisticated pooling efforts have arisen during the 76 

pandemic though the testing models’ accuracy and effectiveness falls apart rapidly as the prevalence rate rises 77 

and are thus not viable options for the current and future pandemics (13, 16, 18, 19).  78 

In this study, we present a novel and innovative pooling protocol which utilizes mathematically-derived 79 

mixing matrices and decoding algorithms to accurately identify positive patients within pools using the CDC-80 

approved range of positive Ct values at high prevalence rates. Additionally, we propose a new approach based 81 

on compressed sensing theory for detection of viral load using pooled sample testing (20-22).  We also employ 82 
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a modified RNA extraction process in which the patient swab samples are pooled prior to RNA extraction 83 

allowing the sample to be concentrated thus minimizing sample dilution. This modified approach has shown 84 

high accuracy and reproducibility at prevalence rates over 10% with large sample sizes using an experimental 85 

mouse coronavirus, mouse hepatitis virus strain 1 (MHV-1) as well as human COVID-19 patient samples.  86 

 87 

 Problem Formulation 88 

Notations: We use [ ]N  to denote the set  1,2, , N , and 
N

+  to denote the set  )0,
N

+ . We denote by ( )Pr E  the 89 

probability of an event E , and use round( )x to round x  to the closest integer. The j -th element of a vector 90 

Nx  is denoted by jx  or ( )
j

x . The support set or the set of indices corresponding to the nonzero elements of 91 

a vector 
np +  is denoted by supp( )p . 92 

Mixing matrix design 93 

Parity check matrix and fixed dilution  94 

In this section, we introduce how the participation matrix P and the allocation matrix W are designed for 95 

MHV-1 with small population size N, i.e., N=7, 15, and 31. For a prevalence rate of 1%, there can be 96 

approximately one infected sample for N=7, 15, and 31. From information theory, we know that the parity 97 

check matrices for Hamming codes can guarantee the correction of one error in codewords or the identification 98 

of the parity check matrix column which corresponds to the error in the codewords (23). In the context of virus 99 

testing, such parity check matrices can guarantee the identification of one positive from all the tested samples. 100 

This exactly fits our need for a small population number with 1% prevalence, and we can use such parity 101 

checking matrices as the participation matrices. 102 

The construction of such parity check matrices can be described as follows. Suppose  0,1
n N

P


 , then 103 

we let 2 1nN = − , and the columns of P are simply all the nonzero binary sequence of length n. As we consider 104 

N=7, 15, and 31, the corresponding participation matrices are shown in Figure 1 A-C.  105 
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 The allocation matrix should be designed in correspondence with the practical clinic procedures for 106 

mixing the samples. As for the allocation matrix W for MHV-1 in our laboratory experiments, since we take 5 107 

μL from each individual sample to form the sample pool which is then concentrated to a volume of 20 μL, this 108 

implies that the virus load for an individual sample in the mixing is ¼ of its original virus load. Thus, we can 109 

design the allocation matrix as follows:  110 

1/ 4, 0
, [ ], [ ].

0, 0

ij

ij

ij

P
W i n j N

P


=  



 111 

Bipartite graph matrix and equal partition   112 

Though the parity check matrices of Hamming codes can be easily used as the participation matrix, it 113 

cannot scale up for high N  or prevalence rates. This is because such parity check matrices can only guarantee 114 

the identification of one positive sample, while high N or prevalence rates can result in more than one positive 115 

sample in the population. Another consequence of a high N is the large number of nonzero elements in the 116 

participation matrix, which means high complexity during laboratory experiments. This motivates us to design 117 

participation matrices which can not only succeed in scenarios where more than 1 positive samples are present, 118 

but also have low complexity as indicated by the number of nonzero elements in the participation matrix. We 119 

propose to use the binary matrices constructed using a bipartite graph as the participation matrices (24, 25). For 120 

the COVID-19 experiments, we will use a well-designed binary matrix  
16 40

0,1P


  with each column having 121 

only 4 nonzero elements as shown in Figure 2. 122 

For SARS-CoV-2 virus testing in our laboratory experiments, since equal volumes of samples 123 

participating in a particular pool are mixed together, and we did not perform sample concentration, the virus 124 

load for each individual sample in the mixture is actually scaled down by the number of participants. Thus, the 125 

allocation matrix can be designed as:  126 

1

1
, 0

, [ ], [ ].

0, 0

ijN

ijij
j

ij

P

PW i n j N

P

=





=  

 =

  127 
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Since there is a one-to-one correspondence between the participation matrix P and the mixing matrix A , 128 

we will refer them alternatively in the subsequent sections without confusion. 129 

Mixing matrix and dilution upon adaptive requests 130 

Apart from the above pooling results with a prefixed mixing matrix, we can make requests for extra pooling 131 

results adaptively according to the decoding results at each stage. The mixing matrices used in the adaptive 132 

requests will depend on the specific decoding results, e.g., the determination of 
( ) ii n N

P


 cannot be 133 

determined in advance. However, the corresponding allocation matrix will be designed according to the parity 134 

check matrix for MHV-1 and the bipartite graph matrix for SARS-CoV-2 in our laboratory experiments. 135 

Sample pooling  136 

In many group testing processes, patient samples are pooled after RNA extraction or the total pool 137 

volume dictates the RNA elution volume. In both cases, this means the fold dilution of each patient is dependent 138 

on the total number of patients within a pool. Thus, as the number of patients pooled increases, the sample 139 

become more dilute significantly increasing the probability of a false negative test result. This phenomenon has 140 

required pools to remain small, usually under 5 patients per pool (14, 15, 26). To reduce the dilution effect of 141 

pooling, a modified RNA isolation protocol was developed using TRIzol phenol/chloroform that can be more 142 

broadly applied to RNA extraction kits and automated systems such as the KingFisher (27). With this method, 143 

patient samples are pooled prior to RNA extraction. After the isopropanol precipitation and ethanol step, the 144 

pelleted RNA can be significantly concentrated by reducing the final volume of water used to solubilize the 145 

RNA thus minimizing the potential impact of sample dilution (Fig. 2A).  146 

To test the dilution effect of traditional pooling on qRT-PCR Ct results as compared to our modified 147 

RNA extraction protocol, we utilized the widely used murine coronavirus MHV-1 as a model system (28-33). 148 

Using a MATLAB-derived computational script, we pseudo-randomly generated simulated patients based on a 149 

Ct value range of 12-34 cycles. These experimental parameters were chosen from current CDC testing 150 

guidelines and growing evidence that individuals with viral loads corresponding to a Ct value of 34 and above 151 

are likely non-infectious and/or not reliable to diagnose positive patients (34-37). Additionally, in our hands, Ct 152 
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values greater than 36 are generated from MHV-1 and SARS-CoV-2 qRT-PCR reactions containing ≈1-10 153 

copies of the target gene and enter a realm where non-specific amplification and false positive rates increase. 154 

Simulated patient samples were evaluated in qRT-PCR reactions as individuals to establish their ground 155 

truth Ct values. The samples were subsequently individually mixed with viral transport media (VTM) to 156 

generate dilutions of 8, 10, and 16-fold. The dilution was performed to simulate a situation where a single 157 

patient within a pool is positive, and consequently, the addition of other negative patient samples contributes 158 

solely to the dilution of the positive patient sample. RNA was extracted from each pool using TRIzol by either 159 

the modified RNA extraction protocol or traditional group testing. An elution volume of 20 μL was chosen to 160 

allow a 5 μL qRT-PCR test to be run in duplicate with 10 μL remaining for a retest. (Fig. 2A). 161 

As expected, samples pooled by traditional group testing exhibited a significant impact on the Ct value 162 

resulting in signal dilution (Fig. 2B). However, the dilution effect was minimized or eliminated in the modified 163 

RNA extraction protocol. (Fig. 2B). Importantly, the ΔCt was consistent among all pools regardless of the 164 

number of patients indicating the pool size could be significantly increased without causing further sample 165 

dilution. One issue with increasing the number of patients within a pool is the corresponding increase in the 166 

total volume of the pool. To reduce to total pool volume, we created pools by adding 5 μL of sample from each 167 

patient to the pool and eluting with 20 μL resulting in a 1:4 dilution. This approach resulted in a significantly 168 

smaller total pool volume with an average increase in Ct of 1.5 cycles with no correlation to the number of 169 

patients within the pool (Fig. 2B). 170 

 These results suggest that the dilution caveat of traditional group testing can be minimized by 171 

implementing our modified extraction protocol. Patient RNA samples can also be concurrently extracted 172 

individually and banked if repeat testing is required. This approach provides a standard dilution effect that is 173 

consistent regardless of either the pool size or the volume which significantly simplifies downstream 174 

computation and decoding while reducing the chance of a false negative result.   175 

Virus load decoding with success certificate  176 
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In this section, we describe a decoding algorithm which decodes each sample’s viral load from testing 177 

results of pooled samples. A unique feature of our decoding algorithm is the decoding success certificate it 178 

provides: assuming that the testing results are accurate, we are guaranteed that the decoding results are the only 179 

set of positive samples that fit the testing results.  180 

We consider the problem of recovering a ground truth signal Nx +  from its under-sampled 181 

measurements. Given a mixing matrix n NA   with n N , suppose we have qualitative measurements182 

 0,1
n

p and qualitative measurements 
ny + for the n  pools which are complicated functions of 

Nx + , our 183 

goal is to recover 
Nx + from  0,1

n
p  and 

ny + . More specifically, ( )( )p h f Ax= where ( ) : {0,1}n nh + → , 184 

and ( )y f Ax= where ( ) : nf + →  and   is a set of valid Ct values. 185 

   In the qRT-PCR amplification and quantification process (2) for a mixture of multiple patient samples, 186 

the quantitative relation between :b Ax=  and Ct value y can be obtained via interpolation (38). This means the 187 

function ( )f is the composite of the qRT-PCR amplification process and the interpolation operation. The Ct 188 

value will be compared with a threshold value   preset by the authority to determine the final status of the 189 

mixture, and it varies under different scenarios. For the sake of reducing the false negative at the cost of more 190 

later tests, the technician can be conservative enough to mark positive results for mixtures although they have 191 

moderately large Ct values for which negative results can be assigned when the criterion is relaxed. 192 

Our goal is to decode the status of x , i.e., positive (meaning that a sample is infected by virus) or 193 

negative (meaning that a sample is not infected by virus) status for each sample, and the amount of virus in each 194 

sample. We want to emphasize that in the virus testing practice, we will only have the Ct value data y , and the 195 

qualitative data p which is obtained from the Ct value. The ijA  implies whether the sample j participates in the i-196 

th pooling test with 1, 2, ,i n=  and 1,2, ,j N= . Thus, if there is no error, a pool has positive results, i.e., 1ip =  197 

if and only if there is at least one positive element of x  participating in the i-th pooling test. To achieve the 198 

above goals, we apply techniques from compressed sensing to solve it, and we end up with solving under-199 

determined systems for x, i.e., ( )1f y Ax− =  where 1f − is the inverse function of f . The problem is usually solved by 200 
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( )1

1
min , such that x x f y Ax− =  under the assumption that x is sparse (20, 22). In virus testing, the Ct value is first 201 

obtained from the qRT-PCR, and then used for interpolating the virus load ( )1f y− . This means the 1f − can be 202 

treated as the interpolation procedure. We also consider ( )1

1
min , such that x x f y y Ax− + =  where ny 203 

characterizes the noise occurring in the measurement of Ct values.  204 

One difference between solving under-determined systems in compressed sensing and those in the virus 205 

testing is that the values of N and n are small in the later, and large in the former. This subtle difference is 206 

critical for successful recovery, and the commonly used 
1L  minimization in compressed sensing may not be able 207 

to recover x when N is small. Though the accuracy outcomes are favorable when N is large, this is not optimal 208 

for reliability and keeping the complexity of mixing process low in clinical virus testing. (Supplemental Fig. 209 

1). Thus, in this paper we will focus on the case where N is small. 210 

Compressed sensing decoding 211 

In this section, we present a novel algorithm for virus decoding (Supplemental Fig. 2A). Our proposed 212 

algorithm consists of three components, i.e., a support set estimation component for qualitative decoding, a 213 

quantitative decoding component which makes use of the results from the support set estimation component, 214 

and an adaptive data requesting component which asks for more testing results for improve decoding 215 

performance according to the qualitative and quantitative results.  216 

In the support set estimation component, the goal is to give an initial estimate of the index sets of 217 

positive samples, negative samples, and samples whose status cannot be determined, respectively. We propose 218 

to solve a sequence of minimization and maximization pair for estimating an upper and a lower bound for each 219 

element of Nx + , i.e., for 1,2, ,i N= , we solve  220 

( )

min ,

such that , supp( )

0,

x i

j jj

x

L Ax U j p

x

  



 221 

and 222 
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( )

max ,

such that , supp( )

0,

x i

j jj

x

L Ax U j p

x

  



 223 

where ( ) ( )1 1ub

j j jL f y f y − −= = + and ( ) ( )1 1lb

j j jU f y f y − −= = −  with 0  is a parameter characterizing the noise 224 

in Ct value readings. We want to emphasize that in virus testing using qRT-PCR, a larger Ct value corresponds 225 

to a smaller virus load (2). After we get the lower (upper) bound estimates 
* N

lbx +  (
* N

ubx + ), we compare 226 

each of its element with a upper bound virus load threshold parameter 
lubv + (

l bv l + ). If ( )*

lublb vi
x   or 227 

( )*

l bub v li
x  , we claim the i -th sample of x  must be positive or negative. By repeating the comparison for each 228 

 i N , we can obtain index sets Pos  and Neg  which are the index sets of samples which must be positive and 229 

negative, respectively. Finally, the index set of samples whose status cannot be determined can be obtained as 230 

  ( ): \U N Pos Neg=  . The above algorithm is presented in Algorithm 2 (Supplemental Fig. 2B). 231 

The set estimates , ,Pos Neg U  are then exploited in the quantitative decoding component whose core is 232 

an exhaustive search algorithm. For the exhaustive search component, we solve a weighted least square for each 233 

possible cardinality  1,2, ,| |k U  and for each possible support set K U  with cardinality K k= , i.e., 234 

( ) ( )( )
( )( )( )

( )

2
1

2
1

supp

\

min ,

such that 0, 0, 0.

j j

x

j p
j

K NegPos U K

f y Ax

f y

x x x

−

−




−

 = =



 235 

The main idea is to estimate a sample virus load 
Nx +  such that the deviation between the estimated pool 236 

virus load ( )
j

Ax  and the corresponding interpolated pool virus load ( )1

jf y−
 is minimized. Due to the wide 237 

range that the sample virus load can reside, i.e., from 
610−
 to 

610 , we normalize the deviation via a scaling 238 

factor 
( )1

1

jf y−
The algorithm is presented in supplemental files. Usually in practice, the combinatorial 239 

characteristics of exhaustive search can bring high computational complexity and high accuracy. In our virus 240 
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testing problem, due to the small size of the problem, the exhaustive search can be a good option. Besides, the 241 

support set estimation component can be used to further reduce the size of the combinatorial problem. Another 242 

trick we use to reduce the computational complexity is that we try to find the sparsest solution. This is achieved 243 

by finding the solution with the smallest support set such that the misfit between the estimated Ct value and the 244 

measured Ct value is smaller than a given tolerance for all the observed positive pools.  245 

        In the data adaptive requesting component, based on the results from the support set estimation and the 246 

quantitative decoding components, we design new pooling strategies for pooling samples. The extra pooled 247 

testing results are obtained using individual samples whose status and virus load cannot be determined by 248 

previous pooled testing results. The mixing matrices for pooling the undetermined individual samples can be 249 

case-specific in practice. The algorithm is presented in Algorithm 3 (Supplemental Fig. 2C). Usually in 250 

practice, the combinatorial characteristics of exhaustive search can bring high computational complexity though 251 

it can achieve high accuracy for estimating x . In our virus testing problem, due to the small size of the problem, 252 

the exhaustive search can be a good option. Besides, the Algorithm 2 can be used to further reduce the size of 253 

the combinatorial problem. Another trick we use to reduce the computational complexity is that we try to find 254 

the sparsest solution. This is achieved by finding the solution with the smallest support set such that the misfit 255 

between the estimated Ct value and the measured Ct value is smaller than a given tolerance y  for all the 256 

observed positive pools. 257 

 258 

Results 259 

 To demonstrate proof of concept, we began our initial experiments with the model coronavirus MHV-1 260 

testing a range of experimental parameters (28-33). As in the pooling dilution effect experiments, a MATLAB-261 

based script was used to generate pseudorandom experimental parameters based on N total samples with a 262 

prevalence rate of 1-10%. Samples were mixed together to form n different pools according to the participation 263 

matrix in Figure 1. Total RNA was extracted from the generated pools utilizing our 1:4 modified pooling 264 

technique (Fig. 2A). Total RNA isolated from sample pools was then amplified via qRT-PCR to generate a 265 
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numerical readout of cycle threshold values. To avoid accidental errors, for every group of N samples and a 266 

given mixing matrix n NA  (here n  is just 1n  in Algorithm 1) experiments were duplicated.    267 

 In one of our experiments, pools 1, 2, 4, and 5 returned Ct values within the bounds to be considered 268 

positive (Table 1). With this information alone, Algorithm 2 can decode the samples with 269 

 3,6,8,9,12,13,14,15,16,20,21,23,24,25,27,29Neg =  as negative, and the rest of the samples are undetermined. This 270 

means  1,2,4,5,7,10,11,17,18,19,22,26,28,30,31U = , and Pos =  (Supplementary Table 1). These sets are 271 

consistent with the virus load decoded by exhaustive search in which the samples decoded by Algorithm 2 as 272 

negative indeed have almost zero virus load, while those which are decoded as undetermined have virus loads 273 

which are neither too big nor too small to be considered negative. However, from the decoding results from 274 

Algorithm 3, we can see that apart from giving zero estimate for the virus load of samples specified by Neg , it 275 

also estimates all samples from U , except sample 17, to have zero virus load. This can be validated with 276 

request for one extra pooling test involving all the samples in U except 17.     277 

After initial pooling and decoding, further pooling for confirmation testing may be required. We will 278 

refer to the matrix in Figure 1C as 
( )1

P .  From our decoding result, we request an additional pooling test (
( )2

P ) 279 

since not all sample infection statuses can be determined with 100% certainty. Thus, we designed the mixing 280 

matrix which pools all the samples that are highly likely false positive (Supplementary Fig. 3). Viral loads 281 

which are very small in magnitude can be due to numerical error, and we can simply treat it as 0.  282 

 Overall, the infection status of 1325 unique experimentally generated samples were determined with 283 

individual experimental prevalence rates ranging from 0-14.3% (Table 2). After a single round of testing, the 284 

infection status of 97.4% of all samples was established with 100% certainty. One subsequent round of 285 

verification testing identified the infection status of 98.9% samples with full certainty and 15 remaining samples 286 

which required further testing to determine infection status with full certainty.  287 

In total, 322 tests were required to identify all positive samples within the population of 1325 total 288 

samples. This resulted in a 75.6% reduction in the total number of tests required as compared to individualized 289 
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testing. These experiments were repeated with similar parameters and results bringing the total number of 290 

experimentally generated samples tested to 2650.       291 

To validate our pooling and detection system, we obtained human patient RNA samples from the 292 

University of Iowa diagnostic testing laboratory. Samples were provided as extracted RNA, thus our modified 293 

RNA extraction protocol was not utilized and samples were mixed using traditional pooling (Fig. 2A). An 294 

optimized participation matrix was generated to reflect the expected dilution effect (Fig 1D). Experimental 295 

parameters were pseudo-randomly generated as previously described with a total N of 40 patients and a set 296 

prevalence rate of 10%. The pooling results for one of two independent experiments is presented in table 3. For 297 

both of the two runs, we requested extra pooling results for decoding, and thus required the generation of an 298 

additional mixing matrix (Supplementary Fig. 4). Additional pooling results and individual patient viral loads 299 

is shown in supplementary tables 2 and 3.  300 

 After one round of testing and compressed sensing decoding, 2 patients were identified and confirmed as 301 

positive and 72 were confirmed as negative leaving 6 patients as likely positive. Two subsequent pools and four 302 

individual confirmation tests provided adequate data points to determine the infection status of all patients with 303 

100% certainty. 32 tests were required to determine the infection status of 92.5% of all patients. Additional 304 

confirmatory testing brought the total tests performed to screen 80 patients to 38. This is a 52.5% reduction in 305 

the number of tests needed as compared to current individual testing (Table 2).   306 

Discussion 307 

Together, our experimental data provides proof of concept and validates our compressed sensing pooling 308 

system as an effective and reproducible method to greatly increase COVID-19 testing capacity while 309 

simultaneously providing more diagnostic information by determining patient viral load. Using our novel 310 

testing approach, we were able to identify positive samples with extreme accuracy at prevalence rates at 10% or 311 

higher in both an MHV-1 coronavirus model system and human COVID-19 patient samples. This required 312 

approximately one third as many tests as would be needed with current individual testing procedures.  313 
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Pooled testing is an effective approach to increase testing capacity and allow widespread screening to 314 

occur and has been implemented with limited success during the COVID-19 pandemic (9-14, 26, 39-44). 315 

However, current pooled testing efforts lose efficacy and precision at real world prevalence rates and ultimately 316 

require substantial additional confirmation testing. In 2020 for the first time in the field, we proposed to use 317 

compressed sensing techniques for quantitative virus testing with high prevalence, and computational 318 

experiments validated the effectiveness of our method (42). Others such as Ghosh et al. and Shental et al., 319 

showed the superiority of compressed sensing virus testing technology using a non-adaptive approach though 320 

their method could only succeed at low prevalence, e.g., less than 10% (43, 44). In contrast, our current work 321 

uses an adaptive approach and can succeed at prevalence rates greater than 10% and utilizes a success 322 

certificate to ensure results are accurate (Section S1.3). Additionally, one major caveat of pooled testing is 323 

sample dilution and the increase of false negatives. To eliminate the pooling dilution effect, we utilized a 324 

modified RNA extraction protocol which differs from current clinical diagnostic lab procedures by simply 325 

concentrating the RNA to a set volume regardless of the patient input number (Fig. 2A). This standardizes the 326 

dilution to an expected and reproducible Ct from the ground truth value that does not change if the number of 327 

patients within a pool increases (Fig. 2B). This protocol alone removes the risk of samples with low levels of 328 

virus being diluted in a pool and being read as a false negative.  329 

Our approach demonstrates an effective process to combat testing bottlenecks for future pandemics. 330 

Many clinical testing labs currently utilize automated RNA extraction systems in which parameters can be 331 

changed to fit our new protocols. Additionally, we have created a beta decoding software in which qPCR data 332 

can be entered and the program will decode the data, identify positive patients, and generate additional pools for 333 

further testing, if needed, all automatically (software code available upon request). Most importantly, the 334 

application of our testing method is broad and can be applied to many testing applications within medicine and 335 

beyond such as serum antibody testing, drug screening, avian influenza surveillance, water contamination 336 

testing, etc. Our application of compressed sensing is perfectly positioned for testing applications such as these 337 

as they are sparse by nature and require accurate results from many data points.  338 
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The emergence of new pathogens and deadly variants is ongoing and will continue to be a significant 339 

threat to public health and humanity as a whole (4-8). Implementing a highly accurate pooled testing procedure 340 

is absolutely critical to mitigating the spread of deadly viral pandemics such as COVID-19, thus saving lives 341 

and decreasing the economic destruction from high mortality rates and widespread quarantines. Our use of 342 

compressed sensing in pooled COVID-19 testing demonstrated high sensitivity in experimental infection 343 

models with the model coronavirus MHV-1, as well as with primary human COVID-19 samples. The utilization 344 

of compressed sensing theory in signal analysis is well established, but its use in the testing of physical 345 

specimens has the potential to revolutionize how we provide accurate results when testing extremely large 346 

numbers of samples. This will position healthcare professionals to rapidly respond to future pandemics by 347 

identifying infected individuals early, minimizing spread, and thus saving lives.  348 

Materials and Methods 349 

Generation of experimental parameters and positive MHV-1 samples  350 

We used a computer script to generate pseudorandom viral loads for each of N individual samples based 351 

on an average prevalence rate of 5%, and positive patient Ct values in the range 12-34. The MHV-1 standard 352 

curve was used to plot the generated sample Ct value (X) and interpolate the dilution of MHV-1 virus stock (Y) 353 

required. According to these estimates Y, MHV-1 was diluted in viral transport media as in the CDC-approved 354 

nasopharyngeal swab collection protocol. (34, 36).  355 

MHV-1 sample pooling 356 

5-20 μL of generated MHV-1 samples were pooled together in equal volumes on ice as designated by 357 

the appropriate mixing matrix. Negative samples were added as sterile viral transport media.  358 

Human patient sample pooling 359 
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Human samples that were to be discarded were supplied as extracted RNA in 96-well plates from the 360 

University of Iowa Diagnostic Testing Lab. Patients were identified as positive or negative with no information 361 

on Ct number, viral load, or any patient identifiable information. 5 μL of patient samples were pooled together 362 

in equal volumes on ice as designated by the appropriate mixing matrix. The University of Iowa determined that 363 

this project did not meet the regulatory definition of human subjects research and therefore IRB approval was 364 

not required. 365 

Isolation of viral RNA 366 

Viral RNA was extracted via a modified TRIzol phenol/chloroform extraction protocol and can be 367 

scaled as needed (Fig 2). A patient pool of 20 μL total volume was mixed with 200 μL TRIzol. The sample was 368 

vortexed for 10 sec and incubated for 5 min at room temperature (RT). 40 μL of chloroform was added, 369 

vortexed for 10 sec, and incubated for 5 min at RT. The mixture was centrifuged at 12,000 x g for 10 min at 370 

4°C. 100 μL of the upper aqueous layer was transferred to a sterile 1.5 mL tube. 100 μL of isopropanol 371 

supplemented with 2 μg glycogen was added, vortexed for 10 sec, and incubated for 5 min at RT. The pellet 372 

was mixed with 180 μL of 75% ethanol and resuspended by gentle inversion and centrifuged at 14,000 x g for 373 

10 min at RT. The supernatant was aspirated and the pellet was air dried for 10 min in a sterile laminar flow 374 

hood. The RNA pellet was resuspended in 20 μL of RNAse-free diethyl pyrocarbonate-treated H2O and 375 

incubated at 55°C for 5 min.  376 

qRT-PCR 377 

5μL of patient pools and samples were mixed with the GoTaq qRT-PCR master mix (Promega) and ran 378 

in duplicate on a QuanStudio 3 thermocycler via the FAST qRT-PCR protocol as recommended by the CDC 379 

(36). An MHV-1 virus stock or SARS-Cov-2 S protein containing plasmid of known concentrations were used 380 

to generate a standard curve consisting of seven to ten 10-fold serial dilutions. The resulting amplification 381 

curves were analyzed with AppliedBiosystems Design and Analysis 2.4. 382 
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Compressed Sensing Decoding 383 

An optimization algorithm leveraging the non-negativity of viral loads was used to give an upper and 384 

lower bound on the viral load for each sample. If the lower bound for a sample’s viral load is not zero, we are 385 

sure that that sample is positive; if the upper bound for a sample’s viral load is equal to 0, we are sure that that 386 

sample is negative. This identifies samples which are either definitely positive or definitely negative. For the 387 

samples with ambiguous infection statuses, we perform exhaustive search for the smallest set of positive 388 

samples (namely sparsest solution, having the smallest number of positive samples) fitting the observed viral 389 

loads of these pools. The remaining samples were mixed together into a pooled sample to confirm that they are 390 

indeed negative: if this pooled sample comes back positive, further testing will be necessary, but this is 391 

statistically unlikely.  392 

 393 
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Figure 1. Optimized group testing mixing matrix design. (A-C) Hamming code parity check pooling matrix 

design for N=7, 15, and 31. (A) N=7 numerical matrix with 3 pools (3x7). (B) N=15 numerical matrix with 4 

pools (4x15). (C) N=31 pixel matrix with 5 pools (5x31). (D) Bipartite pooling matrix design optimized for 

high N and prevalence rates.  N=40 pixel matrix with 16 pools (16x40). (A,B) 1 indicates patient is included in 

the pool. 0 indicates the patient is not included in the pool. (C,D) White pixel indicates patient included in pool. 

Black pixel indicates patient not included in pool. 
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Figure 2. Modified pooling protocol eliminates dilution effect of group testing. (A) RNA extraction and 

qRT-PCR workflow in individual testing, traditional pooling (group testing), and the modified pooling protocol. 

Numerical examples are theoretical to display dilution effect and can be scaled to individual diagnostic testing 

facility protocols. (B) MHV-1 was used to generate individual samples of various viral loads (1x109-1x102 copy 

number/qRT-PCR reaction). qRT-PCR was performed on each samples to develop ground truth Ct values. 

Samples were then used in various pool sizes in traditional pooling and in the modified pooling protocol. 

Increases in sample Ct values from the ground truth values were calculated and plotted as ΔCt Value. 
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