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ß-arrestins are multifunctional proteins that modulate heptahelical 7 transmembrane 
receptors, also known as G protein-coupled receptors (GPCRs), a superfamily of receptors 
that regulate most physiological processes. ß-arrestin modulation of GPCR function 
includes termination of G protein-dependent signaling, initiation of ß-arrestin-dependent 
signaling, receptor trafficking to degradative or recycling pathways, receptor transactivation, 
transcriptional regulation, and localization of second messenger regulators. The pleiotropic 
influence ß-arrestins exert on these receptors regulates a breadth of physiological functions, 
and additionally, ß-arrestins are involved in the pathophysiology of numerous and wide-
ranging diseases, making them prime therapeutic targets. In this review, we briefly describe 
the mechanisms by which ß-arrestins regulate GPCR signaling, including the functional 
cellular mechanisms modulated by ß-arrestins and relate this to observed pathophysiological 
responses associated with ß-arrestins. We focus on the role for ß-arrestins in transducing 
cell signaling; a pathway that is complementary to the classical G protein-coupling pathway. 
The existence of these GPCR dual signaling pathways offers an immense therapeutic 
opportunity through selective targeting of one signaling pathway over the other. Finally, 
we will consider several mechanisms by which the potential of dual signaling pathway 
regulation can be harnessed and the implications for improved disease treatments.
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ß-ARRESTIN STRUCTURE AND FUNCTION

The arrestin family of proteins includes four members and a variety of splice variants. There 
are two visual arrestins, found only in the retina (Smith et  al., 2000), and two ubiquitously 
expressed arrestins named ß-arrestin1 (arrestin-2) (Lohse et al., 1990) and ß-arrestin2 (arrestin-3) 
(Attramadal et  al., 1992). The beta prefix is because their first documented receptor substrate 
was the ß2-adrenergic receptor (ß2AR) and the “arrestin” term was because their major function 
is in terminating (or ‘arresting’) signaling via G proteins (Benovic et  al., 1987). ß-arrestin 
proteins have functional and structural domains that allow them to bind to receptors as well 
as biochemical intermediates, events that are key to their function (Shenoy and Lefkowitz, 
2011; Peterson and Luttrell, 2017). Although ß-arrestins interact with several different types 
of cell surface receptors (Shenoy and Lefkowitz, 2011), this review will focus on their role in 
modulating heptahelical receptors.

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00124﻿&domain=pdf&date_stamp=2019-03-06
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00124
https://creativecommons.org/licenses/by/4.0/
mailto:RABond@uh.edu
mailto:walke082@mc.duke.edu
https://doi.org/10.3389/fphar.2019.00124
https://www.frontiersin.org/articles/10.3389/fphar.2019.00124/full
https://www.frontiersin.org/articles/10.3389/fphar.2019.00124/full
https://loop.frontiersin.org/people/650820/overview
https://loop.frontiersin.org/people/650954/overview
https://loop.frontiersin.org/people/47100/overview


Bond et al. Targeting ß-Arrestin in Disease

Frontiers in Pharmacology | www.frontiersin.org 2 March 2019 | Volume 10 | Article 124

Heptahelical receptors, also known as seven-transmembrane 
receptors (7TMRs), are characterized by seven membrane-
spanning domains and constitute the largest family of cell 
surface receptors known to date. The 7TMR superfamily is 
responsible for transducing a wide variety of extracellular signals 
into intracellular functions. More than three decades ago, it 
was shown that ligand activation of 7TMRs resulted in 
intracellular signaling through receptor coupling to heterotrimeric 
guanine nucleotide or G proteins (Rodbell et al., 1971; Northup 
et  al., 1983). Thus, 7TMRs are more commonly known as G 
protein-coupled receptors (GPCRs). Therapeutically, these GPCRs 
are a very important class of receptor since they mediate almost 
all physiological processes, and their signaling is the target of 
roughly 40% of all prescribed drugs (Wise et  al., 2002).

Numerous in vitro studies show that ß-arrestins terminate 
G protein-mediated cell signaling by translocating and binding 
to GRK-phosphorylated serine and threonine residues in the 
GPCR third intracellular loop or C terminal tail. Once bound, 
ß-arrestins sterically prevent further receptor-G-protein coupling 
(Benovic et al., 1987). This termination of G protein signaling 
is the canonical role for ß-arrestin. Later it was found that 
in addition to terminating G protein signaling, ß-arrestins also 
initiate ß-arrestin-dependent cell signaling by acting as scaffold 
proteins that couple the receptor to a growing list of signaling 
intermediates, many of which are kinases (Luttrell et  al., 1999; 
Lefkowitz and Shenoy, 2005). This receptor-ß-arrestin-kinase 
complex is internalized via endocytic vesicles thereby becoming 
an intracellular “signalosome”. Recently, this concept has been 
broadened to show that endocytic vesicles lacking the receptor, 
but containing receptor-activated ß-arrestin, can also internalize 
and activate cell signaling (Eichel et  al., 2018). In this newly 
discovered mechanism, the interaction of translocated ß-arrestin 
with the GPCR is temporary but sufficient to change the 
conformation of ß-arrestin thereby activating it. The activated 
ß-arrestin is able to bind to membrane phosphoinositides that 
link it to the cell membrane for endocytosis into signaling vesicles.

Internalization of signaling vesicles is mediated by interactions 
between the C terminal tail of GPCR-activated ß-arrestin and 
the cell membrane endocytic proteins, clathrin and AP-2 (adapter 
protein-2) (Goodman et  al., 1996; Laporte et  al., 1999). This 
adaptor function of ß-arrestin is crucially important to not only 
receptor internalization but also ß-arrestin-dependent signaling. 
ß-arrestins bind to E3 ubiquitin ligases and deubiquitinases that 
direct GPCR-ß-arrestin vesicles to degradative or recycling 
pathways within the cell, thus modulating receptor cell surface 
expression (Shenoy et  al., 2001; Shenoy, 2007). This trafficking 
function of ß-arrestins is yet another way by which these 
multifunctional proteins modulate GPCR signaling and cellular 
responses. Furthermore, ß-arrestins are also able to dampen G 
protein-mediated second messenger generation (ie., cAMP) by 
binding to second-messenger degrading enzymes, such as 
phosphodiesterases (PDE), and translocating them to the ligand-
activated receptor (Perry et al., 2002). Taken together, ß-arrestins 
are the predominant modulators of GPCR signaling. The activated 
conformation, and thus function, of ß-arrestin is influenced by 
the GPCR type to which it has translocated as well as the 

conformation of the activated receptor (reviewed in (Peterson 
and Luttrell, 2017)). The ß-arrestins are structurally flexible 
proteins which allow them to bind to a broad spectrum of 
partners and mediate a wide variety of functions (Scheerer and 
Sommer, 2017). Because biased ligands influence different 
conformational states of GPCRs, they indirectly influence 
ß-arrestin-dependent signaling, making them key therapeutic 
molecules. Additionally, biasing the structure/function of 
ß-arrestins to impact signal transduction has also been proposed 
as a novel therapeutic strategy (Chen et  al., 2018). Our review 
does not focus on the finer points of structural data and complex 
equilibria of conformational states as these have recently been 
the topics of several excellent reviews (Peterson and Luttrell, 2017; 
Scheerer and Sommer, 2017; Chen et  al., 2018).

With the development of mice deficient in either ß-arrestin1 
or ß-arrestin2 (Conner et al., 1997; Bohn et al., 1999b), evidence 
supported the in vitro experimental conclusions that ß-arrestins 
play an important role in regulating normal physiological and 
pathophysiological responses. Despite the lethality resulting 
from elimination of both ß-arrestins, single ß-arrestin-knockout 
(ß-arrestin-KO) mice are quite normal and perturbations of 
homeostasis are often required to observe an effect of the 
absence of ß-arrestin expression.

The first published study examining normal physiologic 
responses in ß-arrestin2-KO mice involved exogenous opioid 
administration as the homeostatic perturbation (Bohn et  al., 
1999a). Bohn et al. showed the immediate anti-nociceptive effect 
of opioids was enhanced in ß-arrestin2-KO mice, and the negative 
side effects of opioids, such as respiratory depression and diminished 
gastrointestinal motility, were reduced. Although signaling pathways 
were not measured, the absence of depressed respiration and 
gut motility in ß-arrestin2-KO mice suggested that ß-arrestin-
dependent signaling promoted those responses. Conversely, the 
enhanced analgesia pointed to a physiologically relevant role for 
ß-arrestin2-mediated desensitization of opioid receptor G protein-
dependent signaling in the mechanism of pain relief.

The first study demonstrating a role for ß-arrestin in disease 
pathogenesis used a murine model of asthma (Walker et  al., 
2003). This study, and our subsequent work, showed ß-arrestin2-
dependent phospho-p38 mitogen-activated protein kinase (Pp38) 
signaling to be crucial for T helper type 2 (Th2) cell chemotaxis 
(Lin et  al., 2018). Furthermore, protection from developing 
the asthma phenotype in ß-arrestin2-KO mice is associated 
with significant inhibition of CD4+ Th2 cell chemotaxis to 
the lung and marked reductions in airway epithelial cell mucin 
secretion and airway inflammation (Walker et  al., 2003).

ß-ARRESTIN MODULATION OF 
PHYSIOLOGY AND PATHOPHYSIOLOGY

ß-arrestins trigger physiological responses through scaffolding of 
cell signaling proteins such as extracellular signal-regulated kinases 
1 and 2 (ERK1/2), proto-oncogene tyrosine protein kinase Src 
(c-Src family tyrosine kinases), phosphoinositide 3-kinases, protein 
kinase B (AKT), c-Jun N-terminal kinases (JNK3) and elements 
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of nuclear factor κb (NF κb) (Shenoy and Lefkowitz, 2011; 
Peterson and Luttrell, 2017).

Although convenient to characterize GPCR signaling as two 
distinct signaling pathways, one that is G-protein dependent/ 
ß-arrestin-independent and the other that is ß-arrestin-dependent/ 
G protein-independent, the reality is more complex. We  recently 
showed that P-p38 signaling, and associated chemotaxis, of T 
helper type 2 cells is partially dependent on ß-arrestin2 and that 
this ß-arrestin2-dependent signaling is downstream of Gαi (Lin 
et  al., 2018). In that paper, we  described the dual chemotaxis 
signaling pathways as ß-arrestin dependent and ß-arrestin 
independent; of course, both pathways were G protein-dependent. 
Work from Grundmann et al. (2018) has provided further evidence 
of G protein-dependency for ß-arrestin-mediated signaling. They 
used groundbreaking CRISPR/Cas9 technology to produce HEK293 
cells that either do not express arrestins or lack all G proteins 
except Gαi, which was pharmacologically inhibited using pertussis 
toxin (PTX). Using these cell lines, dubbed “zero arrestin” and 
“zero functional G,” respectively, they showed that ß-arrestin-
dependent signaling is downstream of G proteins for several 
GPCRs including some canonical receptors where this was not 
previously believed to be  the case. Although the receptor and 
cell types were limited in their study, the results have important 
implications for drug discovery and suggest G proteins as the 
“genuine drivers of GPCR-mediated signal transduction.” However, 
whether or not ß-arrestin is a signaling molecule or a scaffolding 
protein, or is dependent or independent of G protein signaling, 
is immaterial to its extremely important regulation of cellular 
function (Gutkind and Kostenis, 2018). Thus, the lexicon used 
to describe GPCR signaling could benefit from expansion and 
clarification where descriptors of both the G protein and ß-arrestin 
involvement are listed (G protein-dependent/independent and 
ß-arrestin-dependent/independent).

As predicted by experimental findings, the ß-arrestin-
dependent signaling pathway, like its G protein (ß-arrestin-
independent) counterpart, regulates a wide variety of important 
cellular responses including cell development, growth and 
survival, immune cell function, protein translation, and neuronal 
signaling (Gu et al., 2015). The ability of ß-arrestins to desensitize 
G protein-dependent and mediate ß-arrestin-dependent GPCR 
signaling pathways uniquely positions these proteins to exert 
a major influence on physiology and pathophysiology.

The discovery that a single GPCR subtype can couple to 
different transduction proteins and produce multiple cellular 
responses has led to development of ligands that can preferentially 
“bias” the receptor toward one pathway. Some of these “biased 
ligands” preferentially target the ß-arrestin pathways (by either 
activation or inhibition) and have shown promise in drug 
development. These advances will be  discussed in the section 
titled ß-arrestin versus G-protein signaling in disease.

ß-ARRESTIN EXPRESSION IN DISEASE

Consistent with the broad range of physiological processes 
modulated by ß-arrestins, the upregulation of ß-arrestin 

expression is associated with many diseases. Whether or not 
changes in expression are adaptive or maladaptive remain to 
be  determined. For example, in a mouse model of cardiac 
dysfunction, enhanced cardiac ß-arrestin2 expression mitigated 
adverse cardiac remodeling (Grisanti et  al., 2018); whereas in 
murine asthma, T cell and lung structural cell overexpression 
of ß-arrestin2 is maladaptive (Walker et  al., 2003; Chen et  al., 
2015; Sharma and Parameswaran, 2015). Elevated ß-arrestin 
expression and concomitant anti-apoptotic effect is associated 
with fibrotic diseases (reviewed in (Gu et  al., 2015) and in 
multiple sclerosis (MS) where CD4+ T cells from patients 
have a higher expression of ß-arrestin1 (Shi et  al., 2007). 
These results implicate increased ß-arrestin1 as mediating the 
survival of CD4+ T and promoting disease pathogenesis (Shi 
et  al., 2007). Another study reported similar upregulation of 
ß-arrestin1 expression in the brains of MS patients and in 
an animal model of experimental autoimmune encephalomyelitis 
(EAE), a commonly used model of human inflammatory 
demyelinating disease (Tsutsui et  al., 2008). Other diseases 
that implicate ß-arrestin in pathophysiology include Alzheimer’s 
disease (AD), cystic fibrosis (CF) and meningitis. In AD, brain 
protein and mRNA levels of ß-arrestin1 and ß-arrestin2 are 
elevated (Liu et  al., 2011; Jiang et  al., 2013). In CF, patient 
nasal epithelial cells, as well as CF model cells, overexpress 
ß-arrestin2 (Manson et  al., 2008). With respect to immunity, 
expression of ß-arrestin2 was shown to be  elevated in PBMCs 
of patients with cryptococcal meningitis (Bochaton-Piallat 
et  al., 2016). Up and down-regulation of ß-arrestin proteins 
is clearly associated with pathology. Interestingly, disease-
associated mutations in either ß-arrestin subtype have, so far, 
not been found.

EFFECTS OF ß-ARRESTIN ON DISEASE

Inappropriate modulation of cell survival can lead to cancer 
and fibrotic diseases, while abnormalities in immune cell 
function have implications for autoimmunity, infection, and 
the inflammatory component of many diseases. For an in 
depth review of the role for ß-arrestins in disease, please 
refer to the work by Sharma and Parameswaran (2015). Below 
we  present examples of how ß-arrestin modulation of cellular 
events can become pathophysiological.

Once adhered to human brain endothelial cells, the 
meningococcus bacterium promotes endothelial cell ß2AR- 
ß-arrestin2 signaling to cSrc-mediated cytoskeletal reorganization 
(Coureuil et  al., 2010). This delocalizes endothelial junction 
proteins resulting in destruction of the blood brain barrier 
tight junctions and enhanced brain infection. Cytoskeletal 
changes also promote bacterial adhesion to endothelial cells 
(Coureuil et al., 2010). ß-arrestin2 also hinders bacterial killing 
through reducing peripheral blood mononuclear cell cytotoxic 
activity, decreasing serum levels of interferon-gamma (IFN-γ), 
an anti-bacterial cytokine, and increasing the serum level of 
IL-10, an anti-inflammatory cytokine (Bochaton-Piallat et  al., 
2016). Similarly, ß-arrestin2 inhibits the antiviral response by 
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reducing the killing effectiveness of natural killer (NK) cells 
(Yu et  al., 2008). ß-arrestin2 transgenic mice were shown to 
have higher organ viral loads following murine cytomegalovirus; 
additionally, NK cells from these mice displayed reduced 
cytotoxicity. Conversely, ß-arrestin2 knockout mice and their 
NK cells displayed lower tissue viral titers and enhanced 
cytotoxicity, respectively.

Studies have also shown that ß-arrestins are involved in 
the initiation, development, and metastasis of many types 
of cancer (Song et  al., 2018). In a murine model of chronic 
myelogenous leukemia, in which mice were transplanted 
with diseased hematopoietic stem cells, mice devoid of 
ßarrestin-2 did not succumb to the disease following 
transplantation of the diseased cells. In contrast, control 
mice died within 2 months of the transplantation of diseased 
cells. The study showed ß-arrestin2 promotes signaling via 
the wnt/beta-catenin pathway to promote cancer stem cell 
maintenance (Fereshteh et  al., 2012). Similarly, in a murine 
model of myelofibrosis, a myeloproliferative neoplasm, mice 
transplanted with donor ß-arrestin2-KO hematopoietic stem 
cells infected with a myelofibrosis retrovirus did not develop 
the disease, whereas controls uniformly succumbed to disease. 
Abolition of ß-arrestin2-mediated promotion of anti-apoptosis 
prevented ß-arrestin2-KO cells from repopulating long-term 
and decreased self-renewal of infected ß-arrestin2-KO cells 
(Rein et  al., 2017).

The role of ß-arrestins in ovarian, prostate, brain, gastric, 
lung, and breast cancers has been well established (Sobolesky 
and Moussa, 2013). One study showed ß-arrestin1 could 
be  used as a plasma biomarker to differentiate certain types 
of lung cancers (El-Khoury et  al., 2018). Ovarian cancer 
metastasis has also been reported to be mediated by ß-arrestin1 
(Purayil and Daaka, 2018). Studies also suggest ß-arrestin2 
as a prognosis marker for colorectal cancer (Ren et  al., 2018) 
and a promoter of lymph node metastasis in non–small cell 
lung cancer (Cong et  al., 2017). Both ß-arrestin1 and 2 have 
been reported as promoters of prostate cancer albeit through 
different mechanisms (Kong et  al., 2018). Numerous GPCRs 
and their downstream effectors are envisaged to provide many 
targets and novel strategies in hepatocellular carcinoma 
prevention and treatment (Peng et  al., 2018). Interestingly, 
the ß-arrestin biased ß-blocker carvedilol, a ligand that  
activates ß2AR-ß-arrestin2 signaling while inactivating canonical 
ß2AR-Gs signaling, has been found to be  beneficial in cancer 
prevention by virtue of blocking a key step in carcinogenesis, 
i.e., ERK translocation into the nucleus (Wisler et  al., 2007; 
Cleveland et  al., 2018).

Fibrosis is defined as the accumulation of excess extracellular 
matrix (ECM) components which are mainly derived from 
fibroblasts and myofibroblasts (Cox and Erler, 2011; Bochaton-
Piallat et  al., 2016). If highly progressive, the fibrotic process 
leads to organ malfunction and death (Gu et  al., 2015). Renal 
fibrosis can result in many kidney diseases (diabetic nephropathy, 
uronephrosis and polycystic kidney) and often leads to chronic 
kidney disease. ß-arrestin-deficient murine models under 
unilateral ureteral obstruction show attenuated renal interstitial 
fibrosis. Moreover, mice and human kidney tissue samples 

morphologically consistent with nephropathy show increased 
expression of ß-arrestin1 (Xu et  al., 2018). However, it is 
unknown what receptor is responsible for such a response. 
Data have implicated AT1 receptor-mediated ß-arrestin signaling 
as responsible for the observed increased extracellular matrix 
synthesis resulting in renal fibrosis (Wang et  al., 2017b). Mice 
with unilateral ureteral obstruction had increased collagen 
I  and fibronectin that correlated with the tubulointerstitial 
fibrosis and ß-arrestin upregulation. When ß-arrestin signaling 
was stimulated in a rat renal fibroblast cell line (NRK-49F 
cells) using [Sar(1), Ile(4), Ile(8)] AngII (SII), an AT1 receptor 
ß-arrestin biased ligand, increased collagen I  and fibronectin 
expression was observed, while silencing ß-arrestin expression 
had the opposite effect (Wang et  al., 2017b). Expression of 
ß-arrestin2 is upregulated in liver biopsies from patients with 
hepatitis B and C, suggesting ß-arrestin2 promotes liver fibrosis 
(Gu et  al., 2015). Taken together, the above data suggest 
ß-arrestin signaling promotes fibrosis in some tissues such as 
kidney, liver, heart, and lung (Lovgren et  al., 2011; Gu et  al., 
2015). These results support the development of G-protein 
biased ligands that may shut down the pro-fibrotic actions 
of ß-arrestin in disease.

The range of diseases in which ß-arrestins play a role is 
very broad. For example, ßarrestin plays a role in brain function. 
A positive correlation between brain ß-arrestin (ß-arrestin1 
and 2) levels (both protein and mRNA) and Alzheimer’s disease 
diagnosis, severity, and amyloid burden has been demonstrated 
by several investigators (Liu et  al., 2011; Thathiah et  al., 2012; 
Liu et  al., 2013). Also, G protein-independent signaling 
downstream of brain β2AR, delta opioid receptor, and orphan 
G protein-coupled receptor 3 promote cleavage of amyloid 
precursor protein (APP) by γ-secretase (Jiang et  al., 2013) and 
production of amyloid-β peptide, a defining pathological feature 
of AD. In a murine model of AD, neurons lacking ß-arrestin2 
demonstrate reduced amyloid-ß peptide secretion in culture 
and detection in the hippocampus and cortex (Thathiah et  al., 
2012). In brief, ß-arrestin 2 promotes the pathogenesis of AD 
through GPCR-initiated regulation of γ-secretase activity, which 
results in elevated levels of amyloid-ß peptide (Jiang et  al., 
2013). In other cell types, ß-arrestin can have a positive impact 
on brain function. For example, ß-arrestin2 promotes cofilin 
translocation to dendritic spines in response to N-methyl-D-
aspartic acid (NMDA) receptor activation, and cofilin promotes 
dendritic spine remodeling which is needed for normal learning 
and memory (Pontrello et  al., 2012).

There are also examples where the canonical role for ß-arrestins 
is involved in neuropathophysiology. In Parkinson’s disease (PD), 
a neurodegenerative illness where loss of dopaminergic neurons 
from the nigrostriatal system affects locomotion, chronic treatment 
with L-DOPA, a dopamine precursor, induces dyskinesias by 
D1 receptor overactivation (Urs et  al., 2015). These abnormal 
involuntary movements are mediated by Gs signaling as noted 
by rodent and nonhuman primate models of PD. In ß-arrestin2-KO 
mice treated with L-DOPA, such movements increased after 
L-DOPA treatment compared to controls and were prevented 
after ß-arrestin2 overexpression in both mice and monkeys (Urs 
et  al., 2015). Using PD animal models (rats and macaques), 
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others have demonstrated that using Gs-biased ligands for D1 
receptors that decrease βarrestin-2 recruitment and associated 
desensitization of G protein signaling results in sustained 
locomotive activity (Gray et  al., 2018), supporting a canonical 
role for ß-arrestin in regulating PD dyskinesias.

ß-ARRESTIN VERSUS G-PROTEIN 
SIGNALING IN DISEASE

As discussed above, data from the last 2 decades have shown 
that a single GPCR subtype can couple to different transduction 
proteins and produce multiple cellular responses. These 
observations have resulted in a new era of pharmacology where, 
relative to the endogenous hormone or neurotransmitter, ligands 
can selectively or at least preferentially activate one of the diverse 
responses produced by a single GPCR subtype. This phenomenon 
has been termed “ligand-directed trafficking of receptor stimulus” 
or “biased signaling.” In many cases, the therapeutic effect of 
a ligand is mediated by one pathway and the adverse effects 
by another pathway. Thus, rational development of biased ligands 
has become an active part of modern drug discovery.

To date, the diseases with the most clinical data in support 
of the development of biased drugs are: the use of ß-adrenergic 
receptors (ßAR) and angiotensin AT1 receptor ligands in 
congestive heart failure (CHF) (Barrese and Taglialatela, 2013; 
Lymperopoulos and Aukszi, 2017); μ-opioid receptor (μOR) 
ligands in the management of pain; and to a lesser extent, 
possibly ß2AR ligands in asthma (Dickey et  al., 2010; Forkuo 
et  al., 2016; Joshi et  al., 2017; Nguyen et  al., 2017). There is 
also strong preclinical evidence supporting the use of biased 
ligands for other diseases, such as D1 and D2 receptor ligands 
for Parkinson’s disease and schizophrenia, respectively (Park 
et  al., 2016; Gray et  al., 2018), sphingosine 1P (S1P) receptor 
ligands for multiple sclerosis (Dhar et al., 2016), and adenosine 
A1 receptor ligands for ischemic heart disease (Baltos et  al., 
2016), among others. It is important to emphasize that neither 
the canonical signaling pathway associated with the G-protein 
nor signaling via the ß-arrestin-dependent pathway (or any 
pathway for any receptor) can be termed as universally beneficial 
or detrimental. The (patho)-physiological effects of any pathway 
will always be  disease-specific, time-dependent, and indeed 
often cell-specific.

For example, in CHF and asthma, the pathways mediating 
the beneficial versus adverse effects are currently believed to 
be  the opposite for each disease. In CHF, there are data to 
support ß-arrestin signaling as anti-apoptotic and cardioprotective 
(Rojanathammanee et  al., 2009; Carr et  al., 2016b). This is 
not only true for ß-arrestin activation by the FDA-approved 
“ß-blocker,” carvedilol, in CHF, but also ß-arrestin activation 
in other GPCRs such as the angiotensin AT1 receptor (Kim 
et  al., 2012; Monasky et  al., 2013). In CHF, the angiotensin 
AT1 receptor can activate both its canonical G-protein pathway 
(in this case, Gq) and the ß-arrestin-dependent pathway (Noor 
et  al., 2011; Monasky et  al., 2013; Teixeira et  al., 2017). 
Considerable data implicated a clear division between the 
detrimental effects of AT1 receptor signaling via Gq and the 

protective effect of signaling via ß-arrestin and led to the 
development of the biased antagonist, TRV-120027 that 
preferentially inhibits Gq signaling (Boerrigter et  al., 2011; 
Boerrigter et  al., 2012). Thus, the ideal ligand profiles for both 
the ß2AR and AT1 receptor, when used in CHF, appear to 
be  ligands that antagonize the G-protein pathway (Gs and Gq 
respectively), and either stimulate, or at least not antagonize 
the receptor conformation that promotes ß-arrestin-dependent 
signaling. Perhaps the most compelling evidence for the advantage 
of this ligand profile as ideal is the observed therapeutic 
advantage of carvedilol in CHF (Wisler et  al., 2007). In this 
regard, it is important to point out a study using a mutated 
ß2AR (ß2ARTYY) where the mutation renders the ß2AR unable 
to bind G proteins; carvedilol was the only beta-blocker that 
retained the ability to activate ERK1/2 (Shenoy et  al., 2006). 
However, more recent findings show that initiation of ERK1/2 
activation by ß2AR involves a signaling route that is independent 
of ß-arrestins (O’Hayre et  al., 2017). Examination of the role 
for ß-arrestins in ß1AR signaling to ERK1/2 shows that all 
ERK1/2 signaling downstream of the ß1AR requires Gαi protein 
activation (Wang et  al., 2017a), including that induced by 
carvedilol, but that loss of ß-arrestin2 results in reduced ERK1/2 
signaling (Eichel et al., 2016). Future studies are required before 
we  fully understand how carvedilol’s superior clinical efficacy 
may be  related to its unique signaling profile and the role for 
ß-arrestins. For now, O’Hayre et  al. posit that re-interpretation 
of original findings with respect to the impact of the scaffolding 
function of ß-arrestins, which may control the localized activation 
of ERK, versus the ß-arrestin-promoting activation of ERK1/2 
may explain some discrepancies (O’Hayre et  al., 2017).

In the management of pain, μ opioid receptors (μOR) mediate 
pain relief through Gi/o activation, while ß-arrestin-dependent 
signaling induces respiratory depression and constipation (Bohn 
et  al., 1999b; Raehal et  al., 2005; DeWire et  al., 2013; Altarifi 
et  al., 2017). For example, compared to their wild type controls, 
ß-arrestin2-KO mice treated with morphine, a μOR agonist, 
exhibited increased antinociception using a tail-flick and hotplate 
models of pain (Bohn et al., 1999b). In addition, the ß-arrestin2-KO 
mice exhibited less of a reduction in gastrointestinal transit, 
and no respiratory suppression was observed compared to wild 
type mice (Raehal et  al., 2005). These and other findings led 
to the development of TRV130, also known as oliceridine, a 
Gi/o-biased ligand (DeWire et  al., 2013; Altarifi et  al., 2017) 
for the μOR. Clinical trials using TRV130 for phase II (Viscusi 
et  al., 2016; Singla et  al., 2017) and III studies (APOLLO-1 and 
-2) have been completed, and while the results are not yet 
published, TRV-130 displayed greater analgesia and less 
gastrointestinal and respiratory side effects compared to morphine 
(Fossler et  al., 2018). Currently, an open-label safety study is 
underway (ATHENA trial).

Thus, clinical development of biased ligands is now an 
active area of research by several pharmaceutical companies 
and academic laboratories. However, to date, no new chemical 
entities have made it to FDA-approval, and some have failed 
in Phase II trials (Pang et  al., 2017). While this may cause 
diminished enthusiasm that pursuing the development of 
biased ligands may only work theoretically, it is important 
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to emphasize that biased ligands such as carvedilol have 
already shown superior clinical efficacy (Wisler et al., 2007). 
There are also data showing, famotidine, a histamine H2 
receptor antagonist used to reduce gastric acid secretion 
in acid-peptide disorders, may have greater therapeutic 
efficacy compared to other H2 receptor antagonists (Campoli-
Richards and Clissold, 1986). A suggested explanation is 
that famotidine, besides working as a G protein signaling 
antagonist by decreasing cAMP, also stabilizes the H2 receptor 
conformation that induces desensitization, likely through 
ß-arrestin (Alonso et  al., 2015).

The second generation antipsychotic cariprazine, a dopamine 
D2 and D3 receptor partial agonist in most systems, was recently 
approved for the treatment of schizophrenia and exhibited 
increased safety and tolerability profiles compared to first 
generation antipsychotics (Durgam et  al., 2015). Although not 
a selective drug, biased signaling towards Gi has been suggested 
to confer cariprazine with less side effects (i.e. cognitive 
impairment, hyperprolactinemia, weight gain) (Solmi et  al., 
2017). Conversely, preclinical data also suggest that ß-arrestin 
biased ligands for the D2 receptor can also contribute to 
schizophrenia treatment by resetting the balance of the excitation 
inhibition in the prefrontal cortex (Urs et  al., 2016). Therefore, 
both signaling pathways are highly important in the therapeutics 
for this pathology and reinforce the idea that both targets are 
equally valuable in drug discovery.

As noted above, some recent attempts to rationally develop 
biased ligands have failed at various stages of development. 
However, this should not be interpreted as a failure that biased 
ligands can be  developed. Indeed, one of the major societal 
and scientific benefits of the pharmaceutical industry’s 
development of dozens of generic drugs for major diseases 
and symptoms, is that biased ligands have already been 
developed. For example, the scientific community has already 
thoroughly screened, using in vitro assays, dozens of ß2AR 
and μOR ligands already in clinical use for their activity at 
several pathways (Wisler et  al., 2007; Molinari et  al., 2010; 
Stallaert et  al., 2012; Vezzi et  al., 2013; van der Westhuizen 
et  al., 2014); and as described above, other drugs are now 
retroactively being implicated as being biased ligands as a 
means of explaining their different therapeutic outcome from 
other members of the same class of drugs (Wisler et  al., 2007; 
Shonberg et  al., 2013; Alonso et  al., 2015).

To further develop the hypothesis that biased ligands can 
be  rationally designed, it may be  useful to view the strategy 
as not dissimilar from one previously used to produce dozens 
of therapeutically improved ligands. The last half of the 20th 
century saw a proliferation of the discovery of receptor subtypes. 
In many ways, biased ligand synthesis can be viewed as analogous 
to the development of more receptor subtype selective ligands. 
The different conformational states that are thermodynamically 
required to activate different pathways can be  viewed in the 
same way as the different receptor conformations associated 
with different receptor subtypes.

Alternative or complementary ways to bias GPCR signaling 
include allosteric modulation of GPCR as well as the use of 
pepducins and/or nanobodies. Nanobodies, camelid antibody 

fragments, have been developed that preferentially bind to and 
stabilize the human ß2AR in various conformations (Rasmussen 
et  al., 2011; Staus et  al., 2016). Rasmussen et  al. produced 
nanobody 80 (Nb80) that, when bound to receptor, stabilizes 
the conformation of the receptor producing Gs signaling. Staus 
et al developed four families of nanobodies that stabilized active 
or inactive ß2AR conformations and found biased inhibition 
of either G protein activation or ß-arrestin recruitment (Staus 
et al., 2014). They identified Nb60, a negative allosteric nanobody, 
to modulate and stabilize inactive β2AR state (Staus et  al., 
2016). As nanobodies can modulate biased ß2AR signaling, 
they can be  potential therapeutic agents regulating various 
pathological processes involving ß2AR. Interestingly, Martin 
et al. synthesized a set of peptidomimetics which are structurally 
similar to the complementarity-determining region 3 (CDR3) 
of the nanobody Nb80, and inhibit ß2AR-G protein coupling 
(Martin et  al., 2017).

Another approach to biasing receptor signaling involves 
pepducins, first developed by Covic et al. (2002a,b). Pepducins 
are the lipid-peptide conjugates with sequences derived from 
the intracellular loops of the targeted GPCR (Carr and Benovic, 
2016). By penetrating cells, pepducins can access receptor 
conformations not accessible to extracellular ligands that must 
rely on extracellular receptor binding (Carr et  al., 2016b). 
Pepducins regulate the activity of GPCRs by allosteric modulation 
(Quoyer et  al., 2013). Pepducins for several GPCRs have been 
reported in the last decade (Covic et  al., 2002a; Licht et  al., 
2003; Remsberg et  al., 2007; Tchernychev et  al., 2010; Carr 
et  al., 2014, 2016b). For example, intracellular loop1–9, a 
ß-arrestin–biased pepducin for the β2AR, has been reported 
to be  completely ß-arrestin–biased in primary adult murine 
cardiomyocytes, possibly enhancing cardioprotective effects for 
CHF therapy (Carr et  al., 2016b). Intracellular loops 3–9, a 
pepducin modulator of Gs-biased ß2AR signaling, has been 
shown to be a potential asthma therapy candidate as ß-arrestins 
are believed to be  responsible for the symptoms associated 
with asthma (Walker et al., 2003; Dickey et al., 2010; Thanawala 
et  al., 2013; Carr et  al., 2014; Lin et  al., 2018). Another Gi-
biased pepducin, ATI-2341, has been developed for the 
chemokine receptor CXCR4 (Quoyer et  al., 2013). It is 
noteworthy that successful use of pepducins in vivo is currently 
constrained because pepducins lack a targeting mechanism 
in multilayered tissues and thus are limited to cells in close 
proximity to the circulating pepducins (Carr et  al., 2016a). 
However, pepducins can potentially share sequences in the 
intracellular loops of closely-related GPCRs and may have 
enhanced therapeutic effects mediated by various GPCRs 
(“polypharmacology”) (Carr and Benovic, 2016).

CONCLUDING REMARKS

Given the functional versatility of ß-arrestins, they are aptly 
suited to effectively and broadly regulate cell signaling and 
resultant physiological and pathophysiological processes. 
The therapeutic potential of targeting ß-arrestins is enormous, 
since disease-specific treatments could increase the safety 

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Bond et al. Targeting ß-Arrestin in Disease

Frontiers in Pharmacology | www.frontiersin.org 7 March 2019 | Volume 10 | Article 124

and efficacy of GPCR-targeted therapeutics. On the other 
hand, given that a single ß-arrestin subtype can modulate 
dozens of GPCRs, this may pose problems in drug discovery. 
The search for ß-arrestin modulators will not be  easy given 
the complexity of GPCR signaling pathways and the pleiotropy 
of ß-arrestin functions making precise targeting of paramount 
importance. Despite these challenges, there are several ligands 
preferentially targeting ß-arrestin signaling now in clinical 
trials and more in development. Thus, we  will hopefully 
soon have answers as to the impact of these ligands in 
future therapies.
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