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Abstract. Platycladi cacumen (PC) is derived from the dry 
twigs and leaves of Platycladi orientalis (L.) Franco and exerts 
anti‑epileptic effects. However, its mechanism of action remains 
unknown. The present study explored the potential anti‑epileptic 
components and mechanisms of PC. The primary active 
components and targets of PC were analyzed using network 
pharmacology and a lipopolysaccharide (LPS)‑induced murine 
microglial cell line (BV2) was used to confirm anti‑epileptic 
effects by detecting reactive oxygen species (ROS), apoptosis, 
inflammatory markers, cell migration and signaling pathways. 
A total of 13 core active components showed druggable prop‑
erties, of which deoxypicrop odophyllotoxin, hinokinin and 
isopimaric acid (IPA) were predicted to cross the blood‑brain 
barrier. In total, 255 potential targets of these three compounds 
were predicted using SwissTargetPrediction and Similarity 
Ensemble Approach websites and 150 were associated with 
epilepsy. In vitro experiments confirmed that IPA significantly 
inhibited LPS‑induced microglial oxidative stress and inflam‑
mation by decreasing the migration area, cellular ROS content, 
lactate dehydrogenase release and early phase of apoptosis. IPA 
also increased the mRNA expression of anti‑oxidative enzymes 
(superoxide dismutase‑1 and ‑2) and suppressed inflammatory 

cytokines (interleukin‑1β and tumor necrosis factor‑α). 
Furthermore, IPA phosphorylated AKT and mTOR proteins. 
Taken together, the present findings suggested that IPA is a 
potential anti‑epileptic compound derived from PC.

Introduction

Epilepsy is a common neurological disorder caused by 
abnormal brain discharge, characterized by recurrent limb 
twitching and loss of consciousness. It affects ~1% of the 
global population. Currently, antiseizure medication (ASM) is 
the primary treatment for epilepsy (1). However ~30% of cases 
remain medically intractable, resulting in a heavy economic 
burden on patients and society (2). Therefore, it is necessary to 
develop novel ASMs that effectively control seizures.

Platycladi cacumen (PC), a widely used traditional Chinese 
medicine, is derived from dry twigs and leaves of Platycladi 
orientalis (L.) Franco. It is traditionally used to cool blood, 
stanch bleeding, dispel pathogenic winds, remove dampness, 
eliminate phlegm and raise hair and blacken hair (3). Recently, 
PC was shown to exert anti‑inflammatory, antioxidative and 
neuroprotective effects (4). Aqueous extracts of PC suppress 
lipopolysaccharide (LPS)‑induced intestinal inflammation by 
increasing colon length and inhibiting fecal occult blood, severe 
diarrhea and enteritis (5). PC carbonisata‑derived nanoparticles 
inhibit ulcerative colitis induced by 2,4,6,‑trinitrobenzene‑
sulfonic acid in rats by decreasing tumor necrosis factor‑α 
(TNF‑α) and interleukin‑6 and upregulating interleukin‑10 (4). 
Furthermore, denuded mice treated with water extract of PC for 
4 weeks exhibit increased hair growth with increasing hair bulb 
size and dermis and epidermal thickness (6). A similar effect 
was found with volatile oil extracts of PC (7). Furthermore, PC 
exerts renoprotective effects by targeting renal organic anion 
transporters 1 and 3 to inhibit protein activity (8). A total of 
43 compounds have been extracted and separated by 75% 
methanol from PC and grouped as organic acids, flavonoids, 
phenylpropanoids, volatile oils and tannins (9). Among them, 
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myricitrin, quercitrin and amentoflavone are the primary 
compounds  (10) that ameliorate liver ischemia‑reperfusion 
and (11) kidney injury (11) and inhibit platelet activation in 
arterial thrombosis (12) and human breast cancer (13).

The efficacy of PC against epilepsy has been reported 
in ‘Effective Prescription for Epilepsy Treatment’  (14). 
However, its anti‑epileptic components and underlying 
mechanisms remain unclear. Therefore, in the present study, 
the anti‑epileptic compound PC was explored using network 
pharmacology and in vitro experiments.

Materials and methods

Construction of an ‘Herbs‑Components‑Targets’ (H‑C‑T) 
network. The Traditional Chinese Medicine System 
Pharmacology Database (TCMSP) was used to identify 
the active ingredients of PC (15), of which, the components 
whose toxicokinetic absorption, distribution, metabolism 
and excretion (ADME) adhered to oral bioavailability (OB) 
≥30% and drug‑likeness (DL) ≥0.18 were defined as the 
main compounds. Druggable compounds that may cross the 
blood‑brain barrier (BBB) as predicted by SwissADME (swis‑
sadme.ch/index.ph) were further used to identify targets on the 
SwissTargetPrediction (SWISS; new.swisstargetprediction.
ch/) and similarity ensemble approach (SEA; sea.bkslab.org/) 
websites by using relative Canonical Simplified Molecular 
Input Line Entry System (SMILES) numbers.

Genes associated with epilepsy were obtained from 
GeneCards (version  4.9.0; genecards.org/). Overlapping 
genes between targets of the druggable compounds and 
epilepsy‑associated targets were retrieved using VENN 
map (bioinformatics.psb.ugent.be/webtools/Venn/). The 
protein‑protein interaction (PPI) network was analyzed using 
the protein‑protein interaction networks functional enrich‑
ment analysis online tool (STRING; string‑db.org/) and core 
genes were obtained using the CytoNCA of Cytoscape3.9.1 
(cytoscape.org/) with the criteria of two‑fold the median 
value of degree centrality (DC), median values of between‑
ness centrality (BC) and closeness centrality (16). The H‑C‑T 
network of PC was constructed using Cytoscape3.9.1.

Gene functions and pathway analysis. Gene Ontology (GO) 
biological process, cellular component and molecular function 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways were analyzed among the overlapping genes using 
the web‑based tool DAVID v6.8 (david.ncifcrf.gov/tools.
jsp) (17). P<0.05 (Bonferroni‑corrected) was considered to 
indicate statistical significance.

Cell culture and proliferation assay. The murine microglial 
cell line BV2 was purchased from Procell Life Science & 
Technology Co., Ltd. and cultured in high‑glucose Dulbecco's 
modified Eagle's medium (DMEM; Gibco; Thermo Fisher 
Scientific, Inc.) with 10% fetal bovine serum (Clark Bioscience) 
and 1% streptomycin/penicillin (Biosharp Life Sciences) in a 
humidified incubator with 5% CO2 at 37˚C.

Cell proliferation was assessed using Cell Counting 
Kit‑8 (CCK8; Dojindo Molecular Technologies, Inc.). 
Briefly, cells (1x104/ml) were seeded and cultured in 96‑well 
microplates for 24  h. Cells were treated with isopimaric 

acid (IPA, Sigma‑Aldrich; Merck KGaA; 0.1, 1.0, 10.0, 
100.0 and 1,000.0 µM) for 24 h, followed by incubation with 
10 µl CCK8 reagent for 1  h all at  37˚C. Absorbance was 
measured by a microplate reader (BioTek Instruments, Inc.; 
EPOCH2NS) at  450  nm. Survival rate was calculated as 
follows (18): Survival rate %=absorbance of IPA/absorbance 
of control x100%.

Wound healing assay. Confluent BV2 cells (90%) were 
scratched using a pipette tip and washed three times with PBS 
to remove non‑adherent cells. The cells were incubated with 
LPS (1 µg/ml; Sigma‑Aldrich; Merck KGaA) in the presence 
or absence of 0.0, 0.1, 1.0, 10.0 or 100.0 µM IPA for 24 h ay 
37˚C. Images of the central cell‑free zone before and after 
treatment were obtained by light field microscopy (magnifica‑
tion, x200; Zeiss X‑Cite; Carl Zeiss AG) (19). The migratory 
area was calculated as follows: Migratory area (%)=[(area 
at 0 h ‑ area at 24 h)/area at 0 h] x100%.

LDH assay. The medium of cells treated with LPS in the pres‑
ence or absence of IPA was collected to determine the released 
LDH content using assay kits (no. A020‑2‑2; Nanjing Jiancheng 
Bioengineering Institute) as previously described (20).

Flow cytometric analysis of cellular reactive oxygen species 
(ROS). Following treatment with LPS in the presence or 
absence of IPA for 24 h, cells were incubated at 37˚C with 
10 µM 2',7'‑dichlorofluorescin diacetate (MedChemExpress) 
diluted in DMEM for 30  min in the dark. Images were 
captured using a fluorescence microscope (Zeiss X‑Cite; Zeiss 
AG) and mean intensity was measured using a flow cytometer 
(NovoCyte; Agilent Technologies, Inc.) in the fluorescein 
isothiocyanate (FITC) channel.

Annexin Ⅴ‑FITC/propidium iodide (PI) analysis for apoptosis. 
BV2 cells were digested 37˚C for 5 min using trypsin, followed 
by incubation with Annexin‑FITC and PI for 5 min at room 
temperature (Boster Biological Technology). Fluorescence 
intensities were detected using a flow cytometer (NovoCyte) 
with FITC and PI channels, as previously described (21). A 
total of four populations of cells were distinguished: Viable 
(no staining), early apoptosis (Annexin Ⅴ+PI‑), late apoptotic 
cells (Annexin Ⅴ+PI+), and necrotic (Annexin Ⅴ‑PI+) cells. 
Apoptosis was determined as early + late apoptosis.

Determination of mitochondrial membrane potential (MMP). 
Cells were treated with IPA and LPS for 24 h, followed by 
incubation with 500 µl JC‑1 working solution in the dark 
(Beyotime Institute of Biotechnology) for 20 min at 37˚C. 
Images were obtained using a fluorescence microscope in the 
FITC and PI channels (magnification, x200; Zeiss X‑Cite; Carl 
Zeiss AG).

Reverse transcription‑quantitative (RT‑q)PCR. Total RNA 
from BV2 cells was extracted using TRIzol (Invitrogen; 
Thermo Fisher Scientific, Inc.) and reverse‑transcribed to cDNA 
using MonScript Reverse Transcriptase (cat. no. MR05101; 
Monad Biotech Co., Ltd.), followed by SYBR Green PCR 
(cat. no. MQ00401; Monad Biotech Co., Ltd.), according to the 
manufacturer's protocol as previously described (21). Relative 
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expression levels of target genes were calculated based on 
the 2‑∆∆Cq method using actin as a reference housekeeping 
gene (22). The primer sequences are listed in Table Ⅰ.

Western blotting. Total protein was extracted from BV2 cells 
using a cell lysis buffer (cat. no. P0013, Beyotime Institute 
of Biotechnology) with a phosphatase inhibitor, while 
concentrations of proteins were determined by bicinchoninic 
acid method (Wuhan Boster Biological Technology, Ltd.). 
Protein lysates (50 µg) were resolved by 10% sodium dodecyl 
sulfate‑polyacrylamide gel electrophoresis and transferred 
onto a polyvinyl difluoride membrane (MilliporeSigma) 
via electroblotting. Each blot was blocked by QuickBlock 
(cat.  no.  P0256; Beyotime Institute of Biotechnology) for 
15 min at room temperature and incubated with primary anti‑
bodies overnight at 4˚C (Table Ⅱ). Membranes were incubated 
with horseradish peroxidase‑conjugated secondary anti‑
bodies (Proteintech Group, Inc.; cat. no. 20000858; 1: 2,000; 
cat. no. 20000757; 1:5,000) for 1 h at 37˚C. The blots were 
visualized by the ChemiDoc XRS imaging system (Bio‑Rad 
Laboratories, Inc.) with BeyoECL kit (cat. no. 081723240119; 
Beyotime Institute of Biotechnology) and quantified using 
ImageJ Software (v1.52a; National Institutes of Health).

Molecular docking. The crystallographic structure of AKT was 
obtained from the Protein Data Bank (PDB code: 4GV1) (23) 
and docking by using Schrödinger (version 2015) (24). Briefly, 

the Protein Preparation Wizard and Receptor Grid Generation 
modules were used to prepare the proteins. Ionization‑generated 
possible states of the LigPrep module were set at a target pH of 
7.0±2.0 to prepare IPA to dock flexibly into the ligand site 
using a Ligand Docking module in standard precision mode, 
as previously described (25).

Statistical analysis. Data are presented as the mean ± SD. 
Normally distributed data were analyzed using the 
Shapiro‑Wilk test and one‑way ANOVA followed by Dunn's 
post hoc test for multiple groups using GraphPad Prism 
(version 9.0.0; Dotmatics) (26). Non‑normally distributed data 
were analyzed using Kruskal‑Wallis test. P<0.05 was consid‑
ered to indicate a statistically significant difference.

Results

Targets prediction of PC and visualization of H‑C‑T network. 
A total of seven primary compounds were obtained from the 
TCMSP, of which hinokinin, IPA and deoxypicropodophyllo‑
toxin (DPT) exhibited the potential to cross the BBB (Table Ⅲ; 
Fig. 1A). Based on SMILES numbers of these three components, 
255 potential targets of PC were identified by target fishing from 
the SWISS and SEA databases, of which 150 were associated 
with epilepsy (Fig. 1B). These composite targets were input into 
STRING to construct a PPI network with connected targets 
(combined score >0.7), including 259 nodes and 308 edges 

Table Ⅰ. Sequence and length of primers.

Gene	 Forward, 5'→3'	 Reverse, 5'→3'	 Length, bp

Actin	 CCACAGCTGAGAGGGAAATC	 AAGGAAGGCTGGAAAAGAGC	 193
SOD‑1	 CCATCAGTATGGGGACAATACA	 GGTCTCCAACATGCCTCTCT	 109
SOD‑2	 GACCCATTGCAAGGAACAA	 GTAGTAAGCGTGCTCCCACAC	 69
IL‑1β	 TGCCACCTTTTGACAGTGATG	 GGAGCCTGTAGTGCAGTTGT	 351
TNF‑α	 GTAGCCCACGTCGTAGCAA	 GTGAGGAGCACGTAGTCGG	 191
Arg‑1	 GAACACGGCAGTGGCTTTAAC	 TGCTTAGCTCTGTCTGCTTTGC	 155

SOD, superoxide dismutase; Arg, arginase.

Table Ⅱ. Antibody information.

Antibody	 Supplier	 Cat. no.	 Dilution 

Rabbit anti‑TNF‑1α	 Cell Signaling Technology, Inc.	 8184	 1:1,000
Rabbit anti‑IL‑1β	 Cell Signaling Technology, Inc.	 12703S	 1:1,000
Mouse anti‑AKT	 Proteintech Group, Inc.	 60203-2	 1:5,000
Rabbit anti‑p‑AKT	 Proteintech Group, Inc.	 80455-1-RR	 1:5,000
Rabbit anti‑mTOR	 Abcam	 ab2732	 1:5,000
Mouse anti‑p‑mTOR	 Proteintech Group, Inc.	 67778-1	 1:2,000
Mouse anti‑PI3Kα	 Proteintech Group, Inc.	 67071-1-lg	 1:1,000
Mouse anti‑PI3Kβ	 Proteintech Group, Inc.	 67644‑1‑lg	 1:5,000
Rabbit anti‑GAPDH	 Proteintech Group, Inc.	 10494‑1-AP	 1:6,000

PI3K, phosphatidylinositol 3‑kinase; p‑, phosphorylation.

https://www.spandidos-publications.com/10.3892/etm.2024.12637
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(Fig. 1C). A total of 13 targets, including TNF, tumor protein 
(TP53), estrogen receptor 1 (ESR1), prostaglandin‑endoperoxide 
synthase 2 (PTGS2), microtubule affinity regulating kinase 3 
(MARK3), peroxisome proliferative activated receptor gamma 
(PPARG), caspase 3 (CASP3), B‑cell lymphoma‑2 (BCL2), 
glycogen synthase kinase 3 beta (GSK3B), mammalian target of 
rapamycin (mTOR), protein tyrosine phosphatase non‑receptor 
type11 (PTPN11), sirtuin1 (SIRT1) and murine double minute 2 
(MDM2) exceeded the values (two‑fold of DC, median of BC 
and closeness centrality; Fig. 1D). Among these, BCL2, GSK3B, 
and mTOR are potential anti‑epileptic targets for hinokinin; 
CASP3, mTOR, and SIRT1 for DPT; and TNF, TP53, ESR1, 
PTGS2, MAPK3, PPARG, PTPN11, and MDM2 for IPA. In 
particular, TNF showed the highest subgraph centrality value.

GO and KEGG enrichment analysis. GO and pathway enrich‑
ment analyses were performed for overlapping targets (150 
genes) that were significantly enriched ‘protein phosphoryla‑
tion’, ‘negative regulation of apoptotic process’, ‘response 
to xenobiotic stimulus’, ‘protein autophosphorylation’ and 
‘peptidyl‑serine phosphorylation’ in the biological processes. 
In terms of cellular component, the overlapping targets were 
enriched in the ‘membrane raft’, ‘macromolecular complex’, 
‘dendrite’, ‘cell surface’, and ‘receptor complex’. With respect 
to molecular function, the core targets were enriched in 
‘protein serine/threonine/tyrosine kinase activity’, ‘protein 
serine/threonine kinase activity’, ‘kinase activity’, ‘protein 
tyrosine kinase activity’, and ‘RNA polymerase Ⅱ transcrip‑
tion factor activity, ligand‑activated sequence‑specific DNA 
binding’ (Fig. 1E). A total of 150 genes were enriched in 140 
pathways, of which ‘pathways in cancer’, ‘PI3K‑Akt signaling 
pathway’, ‘pathways of neurodegeneration‑multiple diseases’, 
‘cAMP signaling pathway’ and ‘MAPK signaling pathway’ 
were the most enriched (Fig. 1F).

IPA inhibits elevation of ROS production and migration 
of murine microglia cells induced by glutamate and LPS. 
IPA serves a role in pathological processes, including anti‑
bacterial activity (27) and anti‑NLR family, pyrin domain 
containing protein 3 (NLRP3) inflammasome  (28) and 
anti‑Alzheimer's disease effects  (29,30). IPA activates 
large‑conductance Ca2+‑activated K+ channels  (31,32) by 

targeting gamma‑aminobutuyric acid (GABA) receptors to 
induce chloride ion currents (33). Therefore, it was hypoth‑
esized that IPA may be a might be a target compound to treat 
epilepsy. Hence, glutamate‑ and LPS‑induced excitotoxicity 
and neuroinflammation in murine microglia cells BV2 were 
examined to determine the anti‑epileptic effects of IPA, as 
previously described (34).

IPA (0.1‑1,000.0 µM) was used to verify its effect on the 
survival of BV2 cells. Concentrations of IPA from 0.1 to 
100.0 µM did not affect the survival rate of BV2 cells and were 
applied in subsequent experiments (Fig. 2A and B). BV2 cells 
treated with glutamate (5 mM) for 12 h and LPS (1 µg/ml) for 
24 h notably suppressed the survival rate. However, co‑admin‑
istration of IPA did not improve the survival of BV2 cells 
(Fig. 2C and D) but significantly suppressed the production 
of ROS induced by glutamate (Fig.  2E  and  F) and LPS 
(Fig. 2G and H).

IPA significantly inhibited the wound closure of BV2 
induced by LPS (0.1, 1.0, 10.0 and 100 µM IPA corresponded 
to 88.10±20.17, 91.55±28.29, 83.03±11.79 and 70.55±29.71%, 
respectively, compared with 146.60±7.19% migration area in the 
LPS group; Fig. 2I and J) and decreased LDH release (0.1, 1.0, 
10.0 and 100.0 µM IPA doses corresponded to 352.93±72.37, 
389.63±75.72, 319.76±40.31, and 244.11±31.44, respectively, 
compared with 495.12±47.63 U/l in the LPS group; Fig. 2K).

IPA suppresses LPS‑induced apoptosis in BV2 cells. 
Treatment with IPA in the range of 0.1‑100.0 µM prevented 
the LPS‑induced late phase of apoptosis (LPS, 9.94±6.05%; 
0.1 µM, 3.47±1.30%; 1 µM, 4.19±1.58%; 10 µM, 4.40±2.10%; 
100 µM, 4.33±2.88%; Fig. 3A‑C). It was confirmed by MMP 
that BV2 cells treated with IPA showed decreased JC‑1 mono‑
mers compared with the LPS group (Fig. 3D).

IPA suppresses mRNA expression of anti‑oxidative 
genes including superoxide dismutase( SOD)‑1 and 
SOD‑2, inf lammatory genes (IL‑1β and TNF‑α) and 
M2‑polarization genes (Arg‑1) in LPS‑treated BV2 cells. To 
explore the mechanism of action of IPA, mRNA expression 
of SOD‑1 and SOD‑2, which indicate ROS overload (35), 
was assessed. IPA at concentrations of 1, 10, and 100 µM 
significantly increased mRNA expression of SOD‑1 and 

Table Ⅲ. Characteristics of seven active constituents derived from PC.

ID no.	 Molecule	 MW (g/mol)	 DL	 OB, %	 BBB‑permeable

MOL000098	 Quercetin	 302.25	 0.28	 46.43	 No
MOL000358	 β‑sitosterol	 414.79	 0.75	 36.91	 No
MOL000422	 Kaempferol	 286.25	 0.24	 41.88	 No
MOL002005	 Hinokinin	 354.38	 0.64	 56.5	 Yes
MOL002032	 DNOP	 390.62	 0.40	 40.59	 No
MOL002034	 (5aR,8aS,9R)‑9‑(3,4,5‑trimethoxyphenyl)‑5a,6,8a,9‑	 398.44	 0.83	 52.70	 Yes
	 tetrahydro‑5H‑isobenzofurano[5,6‑f][1,3]benzodioxol‑8‑				  
	 one (Deoxypicropodophyllotoxin)				  
MOL002039	 Isopimaric acid	 302.45	 0.28	 36.20	 Yes

MW, molecular weight; DL, drug‑like; OB, oral bioavailability; BBB, blood‑brain barrier; DNOP, dioctyl phthalate.
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Figure 1. Network pharmacological study on the anti‑epileptic effect of Platycadi cacumen. (A) Analysis of druggable compounds. A total of 86 compounds 
were obtained from TCMSP database, of which seven fulfilled the criteria OB ≥30% and DL ≥0.18. Hinokinin, DPT and IPA were predicted to cross 
BBB. (B) Predicted targets of hinokinin, DPT and IPA from SwissTarget and SEA database. (C) Venn diagram of overlapping target genes of compounds 
and epilepsy‑associated genes. (D) Hub gene analysis by CytoNCA of 150 overlapping genes. (E) GO functional enrichment from 150 overlapping genes. 
(F) Pathways analysis of 50 overlapping genes. TCMSP, Traditional Chinese Medicine System Pharmacology Database; OB, oral bioavailability; DL, 
drug‑likeness; DL, deoxypicropodophyllotoxin; IPA, isopimaric acid; BBB, blood‑brain barrier; SEA, similarity ensemble approach; BP, biological processes; 
CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.

https://www.spandidos-publications.com/10.3892/etm.2024.12637
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SOD‑2 (Fig. 4A and B). LPS induced significant increases 
of the mRNA expression of inflammatory genes including 
IL‑1β (Fig.  4C) and TNF‑α (Fig.  4D), while 100 µM of 

IPA significantly decreased the mRNA expression of 
IL‑1β and TNF‑α. Furthermore, it was demonstrated that 
LPS suppressed the mRNA expression of Arg‑1, a specific 

Figure 2. Anti‑epileptic effects of IPA in LPS‑induced BV2 cells. (A) Compound structure of IPA. (B) Survival rate of BV2 cells treated in the presence or 
absence of IPA for 24 h, compared with the 0 µM group. (C) Survival rate of BV2 cells treated with glutamate without or with IPA for 12 h. (D) Survival 
rate of BV2 cells treated with LPS without or with IPA for 24 h. (E) DCFH staining of the BV2 cells induced by glutamate without or with IPA for 12 h. 
(F) DCFH staining of the BV2 cells induced by LPS without or with IPA for 24 h. (G) Migration of BV2 cells induced by LPS without or with IPA for 24 h. 
(H) Analysis of ROS content in BV2 cells induced by glutamate without or with IPA. (I) ROS content in BV2 cells induced by LPS in the presence or absence 
of IPA. (J) Migration area and (K) LDH release of BV2 cells induced by LPS in the presence or absence of IPA. n=4‑7. *P<0.05, ***P<0.001 vs. control; #P<0.05, 
##P<0.01, ###P<0.001 vs. LPS or glutamate group. IPA, isopimaric acid; LPS, lipopolysaccharide; ROS, reactive oxygen species; LDH, Lactic dehydrogenase; 
ns, no significance.
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surface phenotype marker of M2 (36). IPA at concentra‑
tions of 1, 10, and 100  µM significantly increased the 

mRNA expression of Arg‑1, indicating that IPA induced the 
polarization of BV2 to M2 (Fig. 4E).

Figure 3. IPA inhibits LPS‑induced late apoptosis of BV2 cells. (A) Representative flow cytometry. (B) Early and (C) late apoptotic rate. (D) Representative 
JC‑1 staining. n=4 or 5. *P<0.05 vs. control; #P<0.05 vs. LPS. IPA, isopimaric acid; LPS, lipopolysaccharide; ns, no significance.

Figure 4. mRNA expression of genes associated with anti‑oxidation, inflammation and polarization. mRNA expression of (A) SOD‑1(B) SOD‑2 (C) IL‑1β, 
(D) TNF‑α and (E) Arg‑1. n=3‑9, *P<0.05, **P<0.01, ***P<0.001 vs. control; #P<0.05, ##P<0.01 ###P<0.001 vs. LPS. SOD, superoxide dismutase; Arg, arginase; 
IPA, isopimaric acid; LPS, lipopolysaccharide.

https://www.spandidos-publications.com/10.3892/etm.2024.12637
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IPA suppresses protein expression of IL‑1β and TNF‑α by 
inhibiting the phosphorylation of hyperactive mTOR and 
AKT. Protein expression of hub (TNF‑α and mTOR) and 
PI3K/AKT signaling pathway genes (AKT and p‑AKT; Fig. 5A) 
were assessed. IPA inhibited protein expression of IL‑1β 
(Fig. 5B) and TNF‑α (Fig. 5C) compared with the LPS group. 
IPA also suppressed phosphorylation of mTOR (Fig. 5D) and 
AKT (Fig. 5E) but not of phosphatidylinositol 3‑kinase (PI3K)
α and β (Fig. 5F and G). Furthermore, molecular docking 
results confirmed that two oxygen atoms of carboxyl in IPA 
docked on the key Phe161 and Gly162 residue of AKT, which 
may interrupt the phosphorylation of AKT (37) (Fig. 5H).

Discussion

A total of ~40 antiepileptic drugs have been used to treat 
epileptic patients in clinical settings  (38). However, most 
control the occurrence of acute seizures and do not exert a 
true antiepileptogenic effect. Currently, ~30% of patients with 
epilepsy experience uncontrollable seizures (39). Therefore, 
exploring novel antiepileptic drugs that impede epileptogen‑
esis is vital for treating refractory epilepsy. Chinese herbal 
medicines including Gastrodia elata, Uncaria rhynchophylla, 

Acrori tatarinowii, Paeonia lactiflora, Bupleurum Chinese 
and PC have been used to treat seizures and epilepsy for thou‑
sands of years (40‑42). The present study demonstrated that 
three compounds from PC, hinokinin, DPT and IPA showed 
druggability in crossing the BBB. In total, 150 predicted targets 
were associated with epilepsy, suggesting that hinokinin, DPT 
and IPA are potential components of PC against epilepsy.

Microglia are the primary glial cells in the central nervous 
system and act as immune protectors to maintain stability of 
the nerve cell microenvironment. Upon abnormal stimula‑
tion, microglia are transformed, exhibiting cellular structures 
varying from ramified to amoeboid, and enhancing migra‑
tion to the injured region  (43), where they induce release 
of inflammatory cytokines (IL‑1β and TNF‑α), and cause 
inflammation (44). Microglial activation and inflammation 
have been observed in the brain of patients with refractory 
epilepsy (45,46), which increases neuronal excitability and 
contributes to epileptogenesis (47). In the present study, IPA, 
a diterpenoid compound separated from PC (48), alleviated 
glutamate‑ and LPS‑induced oxidative stress and inflamma‑
tion in BV2 cells, confirming previous studies where IPA not 
only inhibited production of inflammation protein NF‑κB 
in HBEC3‑KT (Homo sapiens lung and bronchial epithelial 

Figure 5. Protein expression of potential targets. (A) Representative blots for IL‑1β, TNF‑α, AKT, p‑AKT, mTOR, p‑mTOR, PI3Kα and PI3Kβ. Protein 
expression analysis of (B) IL‑1β (C) TNF‑α, (D) ratio of mTOR and p‑mTOR, (E) ratio ofAKT and p‑AKT, (F) PI3Kα and (G) PI3Kβ. (H) Binding model 
of IPA with active pocket of AKT. n=4‑7, *P<0.05, **P<0.01 vs. control; #P<0.05, ##P<0.01 vs. LPS. IPA, isopimaric acid; LPS, lipopolysaccharide; PI3K, 
phosphatidylinositol 3‑kinase; p‑, phosphorylation.
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cells), MRC‑5 (Homo sapiens lung fibroblasts), and THP‑1 
cells (Homo sapiens peripheral blood monocyte) (49), but also 
suppressed the proliferation and metastasis of breast cancer 
cells including (MDA‑MB‑231 and MCF‑7) via mitochon‑
drial oxidative phosphorylation signaling pathways (50). In 
particular, IPA significantly increased mRNA expression of 
anti‑oxidative kinases (SOD‑1 and SOD‑2) and decreased 
gene expression of inflammatory factors (IL‑1β and TNF‑α), 
suggesting an anti‑inflammation role in microglia.

An increasing number of studies have confirmed that 
hyperactive mTOR is involved in inflammation and apoptosis 
of microglia during epileptogenesis and is a potential target for 
epileptic treatment (51,52). Somatic mTOR variants, including 
p.C1483Y and p.C1483R, have been identified in patients with 
refractory epilepsy and focal cortical malformation (53), while, 
kainic acid‑ and LPS‑induced seizures significantly activate 
mTOR in rats (54,55). The activation of mTOR in microglia 
enhances inflammatory responses  (56). Furthermore, the 
PI3K/Akt pathway is key for mTOR‑involved cell survival and 
migration (57,58). The present study demonstrated that IPA 
significantly inhibited phosphorylation of mTOR, confirming 
a previous study showing that inhibiting the PI3K/Akt/mTOR 
pathway prevents microglial apoptosis  (59). As previous 
studies have demonstrated that protein expression of PI3Kα 
and β is significantly increased in acute and chronic epilepsy, 
independent of phosphorylation levels  (60,61), the present 
study only analyzed the protein expression of PI3Kα and β. 
However, the present study did not find any changes to PI3Kα 
and β. Further analysis by molecular docking suggested 
that IPA may directly combine with AKT at the Phe161 and 
Gly162 residues and suppress activation of AKT, in line with 
a previous study that demonstrated residue Phe161 serves a 
vital role on AKT (37). Overall, the present study suggested 
that IPA inhibited LPS‑induced neuroinflammation via the 
Akt/mTOR pathway. However, lack of data on the selectivity 
and specificity of IPA for AKT and mTOR in anti‑epileptic 
activity is a limitation of the present study. Hence, their direct 
association should be investigated in the future.

In summary, IPA may be a potential anti‑epileptic 
compound in PC that acts by suppressing neuroinflammation, 
apoptosis and polarization via the Akt/mTOR pathway. These 
findings indicate that IPA may be a novel anti‑epileptic drug.
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