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Abstract: Chronic kidney disease (CKD) is one of the severe side effects of type 1 diabetes mellitus
(T1DM). However, the detection and diagnosis of CKD are often delayed because of its asymptomatic
nature. In addition, patients often tend to bypass the traditional urine protein (urinary albumin)-based
CKD detection test. Even though disease detection using machine learning (ML) is a well-established
field of study, it is rarely used to diagnose CKD in T1DM patients. This research aimed to employ and
evaluate several ML algorithms to develop models to quickly predict CKD in patients with T1DM
using easily available routine checkup data. This study analyzed 16 years of data of 1375 T1DM
patients, obtained from the Epidemiology of Diabetes Interventions and Complications (EDIC) clinical
trials directed by the National Institute of Diabetes, Digestive, and Kidney Diseases, USA. Three
data imputation techniques (RF, KNN, and MICE) and the SMOTETomek resampling technique
were used to preprocess the primary dataset. Ten ML algorithms including logistic regression
(LR), k-nearest neighbor (KNN), Gaussian naïve Bayes (GNB), support vector machine (SVM),
stochastic gradient descent (SGD), decision tree (DT), gradient boosting (GB), random forest (RF),
extreme gradient boosting (XGB), and light gradient-boosted machine (LightGBM) were applied to
developed prediction models. Each model included 19 demographic, medical history, behavioral, and
biochemical features, and every feature’s effect was ranked using three feature ranking techniques
(XGB, RF, and Extra Tree). Lastly, each model’s ROC, sensitivity (recall), specificity, accuracy, precision,
and F-1 score were estimated to find the best-performing model. The RF classifier model exhibited
the best performance with 0.96 (±0.01) accuracy, 0.98 (±0.01) sensitivity, and 0.93 (±0.02) specificity.
LightGBM performed second best and was quite close to RF with 0.95 (±0.06) accuracy. In addition
to these two models, KNN, SVM, DT, GB, and XGB models also achieved more than 90% accuracy.

Keywords: chronic kidney disease; prediction model; machine learning; type 1 diabetes mellitus

1. Introduction

Diabetes mellitus (DM) is currently one of the most severe health issues facing the
world, and it affects around 463 million individuals worldwide [1]. DM is considered one
of the most prevalent endocrine and metabolic disorders, causing substantial damage to
various organs, including the kidney [2,3]. As a result, persons with diabetes mellitus
are more likely to develop chronic renal disease. According to the International Diabetes
Federation (IDF), around 10% of DM patients have Type 1 diabetes mellitus (T1DM).
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In the T1DM population, the lifetime risk of kidney impairment is estimated to be 50%
and could be as high as 70% [4]. According to the 2016 Annual Data Report of the US
Renal Data System, diabetic kidney disease is one of the leading causes of end-stage
renal disease (ESRD) in North America [5]. However, although ESKD has stabilized or
declined in patients with type 1 diabetes over the past decades [6,7], most likely due to the
increased use of renin–angiotensin system (RAS) blockers [8], it remains a life-threatening
complication. Chronic kidney disease (CKD) is linked to higher morbidity and mortality in
T1DM patients, and ESRD significantly increases mortality [9].

The presence of a chronic decline in renal function and structural kidney damage is
diagnosed as CKD [10]. Glomerular filtration rate (GFR), which represents the amount of
fluid our kidney filters per unit time, is the most precise indicator of overall kidney func-
tion [11]. Normal renal function can be defined using estimated glomerular filtration rate
(eGFR), and this definition is age-dependent. An eGFR of more than 90 mL/min/1.73 m2

is considered as normal renal function. Although the eGFR value decreases with age,
an eGFR value lower than 90 mL/min/1.73 m2 indicates that the kidney is not working
properly. Although CKD diagnosis and classification have changed over time, according
to KDIGO 2012 and current international standards, a person with an eGFR less than
60 mL/min/1.73 m2 for more than 3 months is considered a CKD patient [12]. Weariness,
fluid retention, abnormalities in the urine, limb edema, nausea, vomiting, and neurological
and cognitive impairment are the symptoms of CKD, although it can be asymptomatic in
many cases [13]. Thus, there is typically a chance of a delay in recognizing, diagnosing,
and treating the many etiologies of CKD, since people can be asymptomatic and need a
specific laboratory-based test to identify CKD.

Furthermore, in the conventional urine protein (urinary albumin)-based CKD diag-
nosis technique, 24 h urine collection specimen analysis is considered the gold standard.
Although the urinary albumin-to-creatinine ratio (uACR) and urinary protein-to-creatinine
ratio (uPCR) currently represent excellent alternatives to the gold-standard analysis of a
24 h urine collection [14], there is still a tendency to bypass the urine albumin test. Accord-
ing to Medicare (a national health insurance program in the USA) claims data for diabetic
patients, only half of these patients conduct tests for urine albumin [5]. However, early
detection of CKD can benefit patients in receiving effective treatment because there are
therapy options for slowing the progression of renal disease [15]. As CKD is ubiquitous in
patients with T1DM and can be asymptomatic, an accurate prediction model that operates
on easily available features can be helpful to recognize patients at higher risk of kidney
function decline who may benefit from more intensive management.

The use of machine learning (ML) algorithms in addressing various disease clas-
sification problems has recently expanded due to remarkable advancements in related
technologies [16–18]. Although there are some examples of using ML tools in kidney
disease prediction [13,19–22], their use in developing CKD prediction models for type
1 diabetes mellitus patients is scarce. For example, Segal et al. [13] employed a gradient
boosting tree algorithm (extreme gradient boosting implementation) to construct a model
for predicting ESRD. Another study [20] established and compared nine ML models to
estimate the 24 h urinary protein result response to detect CKD. These two studies did not
emphasize diabetic patients.

On the other hand, Makino et al. [22] used artificial intelligence (AI) to design a
prediction model for diabetic kidney diseases (DKD) based on electronic medical records
(EMRs) with a 0.74 AUC score at maximum. Another research conducted by Dagliati
et al. [19] applied four machine learning methods to create prediction models to identify
complications of type 2 diabetes mellitus (T2DM) and achieved an accuracy of up to 0.838.
Low et al. [23] used stepwise multivariable logistic regression to design a CKD progression
prediction model for T2DM, where sensitivity and specificity were 75.6% and 72.3%. Some
other studies also developed kidney disease prediction models in T2DM patients [24,25].

Outside some common factors, type 1 diabetes is different from type 2 diabetes [26].
Moreover, type 1 diabetes patients are diagnosed at a younger age than those with type
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2 diabetes and are subjected to diabetes-related risk factors for a more extended period.
Thus, adult patients with T1DM have an overall greater risk of CKD and ESKD than
patients with T2DM [27,28]. However, unfortunately, limited research has been conducted
to develop prediction models for CKD in T1DM patients. Vistisen et al. [8] used Poisson
regression analysis to develop an ESKD prediction model in T1DM patients with C-statistics
between 0.88 and 0.96. Colombo et al. [6] employed ridge regression to create a model
for predicting renal disease progression in T1DM patients. To our knowledge, no other
prediction models have been built to identify CKD in the type 1 diabetic population. Here,
none of these models used traditional machine learning algorithms. In addition, both
models included albuminuria as one of the most vital features, which is increased excretion
of urinary albumin (urine protein) and a kidney damage marker. However, according
to National Kidney Foundation, USA, 24 h urine collection is needed to properly detect
albuminuria [29], which is inconvenient in many cases and can be overlooked easily by
many asymptomatic CKD patients [5].

This study aimed to construct and compare CKD prediction models for T1DM pa-
tients utilizing 10 traditional supervised ML algorithms: logistic regression (LR), k-nearest
neighbor (KNN), Gaussian naive Bayes (GNB), support vector machine (SVM), stochastic
gradient descent (SGD), decision tree (DT), gradient boosting (GB), random forest (RF),
extreme gradient boosting (XGB), and light gradient-boosted machine (LightGBM). Here,
we included only demographic, behavioral, medical history, and biochemical blood fea-
tures, which are easily available during routine follow-up of T1DM patients to predict
CKD. We also applied three feature ranking techniques, random forest (RF), k-nearest
neighbor (KNN), and extremely randomized trees classifier (Extra Tree), to find the relative
importance of these features. In summary, this study provides a reliable machine learning-
based CKD prediction model dedicated to the T1DM population. The model can operate
using simple routine checkup data of T1DM patients and deliver results in no time. As a
result, when a 24 h urine protein-based laboratory test is not feasible, this model can be
used to predict CKD. Furthermore, all T1DM patients may utilize this model to make an
educated guess on their CKD state during their regular checkups, and this will increase the
likelihood of detecting asymptomatic CKD patients at an earlier stage.

2. Materials and Methods
2.1. Overall Process

This study followed a pipeline of seven steps: primary data selection, data imputation
to fill missing data, data augmentation to balance target classes, feature ranking to identify
most important features, machine learning algorithms to develop models, model evaluation,
and best model selection. Figure 1 illustrates the overall working procedure of training
and testing different machine learning models for CDK prediction in T1DM patients.

2.2. Data Collection

This study used the GFR dataset from the Epidemiology of Diabetes Interventions
and Complications (EDIC) clinical trial. The National Institute of Diabetes, Digestive, and
Kidney Diseases (Bethesda MD, Montgomery, Maryland, USA) conducted this trial to
observe the impact of intensive diabetes treatment on the T1DM population [30,31]. The
EDIC study started with 1375 T1DM patients in 1994 and is still going [32]. Here 48% of
patients were female, and 52% of them were male.

The EDIC study collects data at 28 EDIC clinic sites across the US and Canada; this
ensured diversity in patient types. This study is a longitudinal study, whereby the patients’
initial age range was between 19 years and 57 years, and, after decades of data collection,
this study had patient’ information from age 19 years to 80 years. According to the
International Diabetic Federation (IFD), most T1DM patients are adults aged 20–79 years [1].
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Figure 1. Block diagram of the overall working procedure for training and testing different machine learning models for
CDK prediction in T1DM patients.

In the EDIC study, serum creatinine levels were measured annually throughout the
period at the EDIC Central Biochemistry Laboratory, University of Minnesota [31], using an
automated kinetic modification of the Jaffe reaction on a Beckman Synchron CX3 Clinical
C System [33,34]. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)
formula was used to calculate estimated GFR (eGFR) using data on serum creatinine levels,
age, sex, and race [31,35]. A sustained eGFR value <60 mL/min/1.73 m2 on at least two
consecutive collections was considered an abnormal eGFR.

During the EDIC trial, participants’ body mass index (BMI), blood pressure (BP), and
glycated hemoglobin (HbA1c) levels were all measured yearly [36]. The presence of systolic
BP ≥ 140 and/or diastolic BP ≥90 mmHg on two successive yearly visits was considered
as incident hypertension. Pulse pressure (PP) was calculated using the difference between
systolic and diastolic pressure [36]. The albumin excretion rate (AER) and fasting lipid
levels (cholesterol, triglycerides, HDL, and LDL) were measured every 2 years [31]. That
study also included other physical (sex, age, weight), behavioral (smoking, drinking),
medication use (use of antihypertensive medications, ACE inhibitors, and lipid-lowering
agents), and diabetes-specific (daily insulin dose and duration of diabetes) information [36].

Demographic and behavioral data were assessed by self-report, whereas experienced
persons checked blood pressure, and medication use was assessed yearly by self-report [35].
All laboratory measurements were carried out using standardized methods in the EDIC
central biochemistry laboratory, and long-term quality control mechanisms were in place
to guard against measurement drift [36,37].
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In our research, we considered data of 1375 participants over 16 years of the EDIC
study from 1994 to 2010. After removing all duplicate data, we finally selected 3184 samples
in total. In our dataset, the target variable had two classes: CKD represented as 1 and
non-CKD represented as 0. We used an eGFR value of less than 60 mL/min/1.73 m2

on at least two consecutive collections to define CKD as defined by KDIGO 2012 [12].
Furthermore, other studies utilized the same measurement to indicate substantial GFR
deterioration [33,36–40], and it is considered evidence of CKD [10,11].

In our study, along with medical history, demographics, and behavioral information,
we only considered laboratory data available through routine checkups of a T1DM pa-
tient. In total, we included 19 parameters: age, sex, BMI, smoking and drinking habit,
hypertension, use of ACE inhibitors and antihypertensive medicine, daily insulin dose, hy-
percholesterolemia, duration of insulin-dependent diabetes mellitus (IDDM), glycated
hemoglobin (HbA1c) levels, total cholesterol, triglycerides, high-density lipoproteins
(HDL), low-density lipoproteins (LDL), systolic blood pressure (SBP), diastolic blood
pressure (DBP), and mean blood pressure. These parameters were considered essential
for CKD detection in other studies [13,19,20,38–40]. To avoid overfitting problems, we
did not consider parameters such as albumin excretion rate (AER), serum creatinine, and
current GFR because serum creatinine is used to calculate eGFR, and AER is a CKD iden-
tifier [10,24,35]. Moreover, 24 h urine is necessary to calculate albumin [29], whereas this
study aimed to develop a prediction model which would quickly predict CDK with easily
available routine checkup data.

2.3. Data Imputation

Our primary dataset had 3184 samples, with 68 missing values in five features: sex,
smoking and drinking habit, use of ACE inhibitors, and daily insulin dose. We used three
data imputation techniques, random forest (RF), k-nearest neighbors (KNN), and multiple
imputation by chained equations (MICE), to fill missing values [41–43]. Thus, we created
three datasets using three different imputation methods: Dataset RF, Dataset KNN, and
Dataset MICE. Figure 2 represents the correlation heatmap of Dataset KNN. Other datasets
also provided similar correlation heatmaps (Supplementary Figures S1 and S2).

2.4. Data Augmentation

Our datasets were imbalanced; a total of 391 of 3184 subjects had CKD. Therefore,
we used the SMOTETomek technique, which combines the synthetic minority oversam-
pling technique (SMOTE) and the Tomek links undersampling techniques to balance the
dataset [44,45].

2.5. Feature Ranking

To find feature importance, we applied three feature ranking models to each dataset.
We developed these models using extreme gradient boosting (XGB), random forest (RF),
and extremely randomized trees classifier (Extra Tree) [41,46,47]. Then, we rearranged all
19 features on the basis of their relative importance. Thus, in combination, we had three
datasets with three feature rankings for each dataset.

2.6. ML Model Development

This research examined the performance of conventional ML algorithm-based CKD
classifiers on T1DM patients. Here, we applied 10 traditional supervised ML algorithms:
logistic regression (LR), k-nearest neighbor (KNN), Gaussian naïve Bayes (GNB), support
vector machine (SVM), stochastic gradient descent (SGD), decision tree (DT), gradient
boosting (GB), random forest (RF), extreme gradient boosting (XGB), and light gradient-
boosted machine (LightGBM) to develop 10 different prediction models. We used all three
datasets with three different feature ranking strategies for each model to find out the
best combination of data imputation technique, feature ranking technique, and number
of features.
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In-house-built Python 3.7 codes using the Scikit-learn machine learning library [48]
were applied to develop all ML models for prediction, data imputation, augmentation,
and feature ranking. To train and test the developed ML models, we used stratified k-fold
cross-validation where the value of k was 10. In this work, a multiclass SVM model was
considered. The KNN model was created for 25 nearest neighbors, and the RF model used
a 100-bagged decision tree.

2.7. Statistical Analysis

All statistical analyses for baseline EDIC patient characteristics were performed con-
trasting the CKD and Non-CKD groups. Our data had both continuous and categorical
parameters. We calculated the mean ± standard deviation (SD), standard error of the mean
(SEM), maximum and minimum value, 95% confidence interval, and correlation for contin-
uous features. An independent t-test was used to find out the 95% confidence intervals,
and the correlation between different variables and CKD was evaluated using Pearson’s
correlation coefficient with p-values. Table 1 shows the baseline factors of continuous
features of EDIC patients to better understand the patients’ characteristics.

Figure 2. Features correlation heatmap of Dataset KNN.
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On the other hand, Table 2 presents the baseline characteristics of categorical parame-
ters. Here, all categorical features had binary values (0 or 1). We used the same method
to calculate the correlation coefficient. In-house build Python 3.7 codes were applied to
perform all statistical analyses.

Table 1. Baseline Characteristics of The EDIC Patients (Continuous Features).

N = 1375 Mean SEM Min Max
95% Confidence Interval Pearson Correlation

Lower
Limit

Upper
Limit r p

Age
(years) 35.093 ± 6.98 0.18 19.00 57.00 34.72 35.45 0.039 0.13

BMI
(kg/m2) 26.09 ± 4.04 0.11 16.62 66.01 25.88 26.30 −0.02 0.33

Diabetic duration
(years) 13.64 ± 4.94 0.13 6.00 28.00 13.38 13.90 0.08 <0.05

Hba1c (%) 8.14 ± 1.39 0.03 4.40 15.10 8.07 8.22 0.03 0.25

HDL cholesterol
(mg/dL) 52.50 ± 13.06 0.35 25.00 103.00 51.81 53.18 −0.03 0.18

LDL cholesterol
(mg/dL) 114.02 ± 30.52 0.81 26.00 310.00 112.42 115.62 0.03 0.14

Total cholesterol
(mg/dL) 183.71 ± 35.87 0.96 85.00 444.00 181.83 185.59 0.04 0.11

Triglycerides
(mg/dL) 86.79 ± 64.30 1.72 17.00 1110.00 83.42 90.16 0.05 <0.05

Systolic BP
(mm Hg) 117.35 ± 12.61 0.33 82.00 172.00 116.69 118.01 0.07 <0.05

Diastolic BP
(mm Hg) 74.99 ± 9.27 0.25 40.00 116.00 74.50 75.47 0.04 0.07

Mean BP
(mm Hg) 89.11 ± 9.36 0.25 59.33 134.00 88.62 89.60 0.06 <0.05

Table 2. Baseline characteristics of EDIC patients (categorical features).

N = 1375 Number of
Positive Outcomes

Number of
Negative Outcomes

Pearson Correlation

r p

Female 659 716 −0.01 0.47

ACE inhibitors 87 1288 0.20 1.44

Hypertension 228 1147 0.11 1.10

Hypercholesterolemia 402 973 0.03 0.26

Smoking 273 1102 −0.01 0.84

Drinking 486 889 −0.02 0.33

Daily insulin dose 255 1120 0.00 0.90

Antihypertensive medicine 128 1247 0.16 5.04
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3. Results
3.1. Preparing Datasets

In the first year, the average age of EDIC patients was 35.093 (±6.98) years, with a
mean diabetes duration of 13.64 (±4.94) years. Initially, we had only four patients with
CKD. However, across the 16 years of EDIC study, another 66 patients got CKD. We
considered data over the 16 years of the EDIC study, 20,394 samples in total, and finally
selected 3184 participants, with 391 of them having CKD. After processing the primary
dataset using three data imputations and the SMOTETomek augmentation technique, each
of the final three datasets was prepared with 2790 (±10) samples per class.

We applied three different feature ranking algorithms (XGB, RF, Extra Tree) on aug-
mented datasets to create three separate feature rankings for each dataset. Here, we found
hypertension, antihypertensive medication, and duration of IDDM as the three most im-
portant features in most cases. All three algorithms returned hypertension as the most
important feature in all datasets. Other significant characteristics were triglycerides, ACE
inhibitors, age, SBP, HDL, LDL, total cholesterol, drinking, mean BP, BMI, drinker, daily
insulin dose, and HbA1c. However, the position of different features and their relative im-
portance value varied significantly in these lists. Figure 3 represents the relative importance
of features using the Extra Tree, XGB, and RF techniques on Dataset KNN. We observed
that each feature ranking model returned almost identical results on every dataset (Dataset
RF, Dataset KNN, and Dataset MICE); details can be found in the Supplementary Materials
(Supplementary Figures S3–S5).

3.2. Performance Evaluation of ML Models

After applying three different data imputation techniques, we had three different
datasets (Dataset RF, Dataset KNN, and Dataset MICE), and we applied three different
feature ranking methods (XGB, RF, Extra Tree) to these three datasets. In total, we had
nine combinations of different data imputation techniques and feature ranking models,
and we implemented different machine learning algorithms to construct CKD prediction
models using all these combinations. For each combination, we trained and evaluated
every ML model using the top feature, then the top two features, the top three features,
etc., continuing for all 19 features, to identify the best combination of feature ranking
model, data imputation technique, and minimum number of features to achieve the best
performance. We applied 10 conventional ML algorithms, LR, KNN, GNB, SVM, SGD,
DT, GB, RF, XGB, and LightGBM, to develop CKD prediction models and used 10-fold
stratified cross-validation to train and test every model, with a 9:1 training/test data ratio.

No significant difference was found in performance using different data imputation
techniques. We had very few missing values, which could explain why alternative data
imputation techniques had a minimal effect on model performance. On the other hand, the
minimum number of features required to achieve the optimal model performance varied
significantly between feature ranking techniques.

The RF classifier model achieved the highest result with the XGB feature ranking
method. This model used 11 features to reach 0.96 (±0.01) accuracy with 0.98 (±0.01)
sensitivity and 0.93 (±0.02) specificity. For this model, selected variables were hypertension,
antihypertensive medicine, triglycerides, duration of IDDM, drinker, daily insulin dose,
age, ACE inhibitors, BMI, HbA1c, and LDL. Figure 4 shows the ROC curve of the RF model
using 1–19 features ranked by the XGB feature ranking technique on Dataset KNN. The
ROC curves for the best models of the other algorithms can be found in the Supplementary
Materials (Supplementary Figures S6–S14).
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Figure 3. Feature ranking on Dataset KNN: (a) Extra Tree algorithm; (b) XGB algorithm; (c) RF algorithm.
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Figure 4. ROC curve of RF model with different features ranked by XGB.

LightGBM came in second place and was pretty close to RF in terms of accuracy,
with 0.95 (±0.06). In addition to these two models, KNN, SVM, DT, GB, and XGB models
obtained greater than 90% accuracy. Despite having a lower sensitivity than several
algorithms, SVM had the best specificity. The performance of the best models for each of
the 10 ML algorithms employing three feature ranking approaches is shown in Table 3. The
overall best model is shaded. Details of these models can be found in the Supplementary
Materials (Supplementary Tables S1–S10). In Table 3, we only considered the KNN data
imputation technique. The outcomes of the other two data imputation approaches were
nearly identical.
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Table 3. Comparative performance analysis of different ML models.

Algorithm Data
Imputation

Feature Selection
Models

Number of
Features

Sensitivity
(Recall) Specificity Accuracy Precision F1_Score

Non-CKD CKD

True Negative False Positive False Negative True Positive

LR KNN

XGB 11 0.90 (±0.02) 0.76 (±0.04) 0.83 (±0.01) 0.79 (±0.03) 0.84 (±0.01) 2124 657 290 2500

RF 16 0.89 (±0.03) 0.76 (±0.05) 0.83 (±0.01) 0.79 (±0.03) 0.84 (±0.01) 2115 666 300 2490

Extra Tree 8 0.93 (±0.04) 0.72 (±0.04) 0.83 (±0.01) 0.77 (±0.02) 0.84 (±0.01) 1999 782 187 2603

KNN KNN

XGB 17 0.99 (±0.01) 0.80 (±0.04) 0.90 (±0.02) 0.83 (±0.03) 0.91 (±0.01) 2229 553 24 2766

RF 9 0.99 (±0.01) 0.81 (±0.03) 0.90 (±0.02) 0.84 (±0.02) 0.91 (±0.01) 2242 540 32 2758

Extra Tree 9 0.99 (±0.02) 0.81 (±0.03) 0.90 (±0.01) 0.84 (±0.02) 0.91 (±0.01) 2240 542 33 2757

GNB KNN

XGB 15 0.93 (±0.03) 0.75 (±0.05) 0.84 (±0.02) 0.79 (±0.03) 0.85 (±0.01) 2074 708 203 2587

RF 16 0.91 (±0.03) 0.75 (±0.04) 0.83 (±0.01) 0.78 (±0.02) 0.84 (±0.01) 2083 699 264 2526

Extra Tree 17 0.90 (±0.02) 0.75 (±0.04) 0.82 (±0.02) 0.78 (±0.02) 0.84 (±0.01) 2085 697 289 2501

SVM KNN

XGB 9 0.88 (±0.06) 0.94 (±0.01) 0.91 (±0.02) 0.93 (±0.01) 0.90 (±0.03) 2603 179 335 2455

RF 4 0.92 (±0.04) 0.82 (±0.05) 0.87 (±0.01) 0.84 (±0.03) 0.87 (±0.01) 2284 498 233 2557

Extra Tree 5 0.92 (±0.03) 0.83 (±0.04) 0.88 (±0.01) 0.84 (±0.03) 0.88 (±0.01) 2301 481 210 2580

SGD KNN

XGB 4 0.96 (±0.01) 0.72 (±0.28) 0.81 (±0.02) 0.74 (±0.02) 0.83 (±0.01) 1822 961 104 2686

RF 2 0.96 (±0.01) 0.69 (±0.06) 0.80 (±0.02) 0.60 (±0.60) 0.83 (±0.03) 1892 891 205 2585

Extra Tree 3 0.96 (±0.01) 0.65 (±0.03) 0.81 (±0.02) 0.74 (±0.02) 0.83 (±0.01) 2013 770 642 2148

DT KNN

XGB 17 0.94 (±0.03) 0.91 (±0.01) 0.93 (±0.02) 0.91 (±0.02) 0.93 (±0.02) 2533 249 153 2637

RF 15 0.94 (±0.05) 0.90 (±0.02) 0.92 (±0.03) 0.90 (±0.02) 0.92 (±0.03) 2504 278 170 2620

Extra Tree 10 0.93 (±0.09) 0.91 (±0.03) 0.92 (±0.04) 0.91 (±0.03) 0.92 (±0.05) 2525 257 212 2578

GB KNN

XGB 15 0.93 (±0.07) 0.87 (±0.02) 0.90 (±0.04) 0.87 (±0.01) 0.90 (±0.04) 2411 371 207 2583

RF 11 0.93 (±0.06) 0.86 (±0.02) 0.90 (±0.02) 0.87 (±0.01) 0.90 (±0.03) 2403 379 198 2592

Extra Tree 9 0.93 (±0.08) 0.86 (±0.02) 0.90 (±0.03) 0.87 (±0.02) 0.90 (±0.04) 2395 387 195 2595

RF KNN

XGB 11 0.98 (±0.01) 0.93 (±0.01) 0.96 (±0.01) 0.94 (±0.01) 0.96 (±0.01) 2593 189 59 2731

RF 15 0.99 (±0.01) 0.93 (±0.03) 0.96 (±0.01) 0.93 (±0.02) 0.96 (±0.01) 2585 197 40 2750

Extra Tree 12 0.99 (±0.01) 0.93 (±0.02) 0.96 (±0.01) 0.93 (±0.02) 0.96 (±0.01) 2588 194 41 2749

XGB KNN

XGB 13 0.95 (±0.04) 0.88 (±0.03) 0.92 (±0.02) 0.89 (±0.02) 0.92 (±0.02) 2439 343 127 2663

RF 12 0.96 (±0.04) 0.87 (±0.02) 0.92 (±0.02) 0.88 (±0.01) 0.92 (±0.02) 2432 350 120 2670

Extra Tree 10 0.96 (±0.03) 0.87 (±0.02) 0.92 (±0.02) 0.88 (±0.01) 0.92 (±0.02) 2409 373 98 2692

Light
GBM KNN

XGB 12 0.96 (±0.16) 0.94 (±0.04) 0.95 (±0.06) 0.95 (±0.03) 0.95 (±0.07) 2626 157 119 2671

RF 13 0.96 (±0.16) 0.94 (±0.03) 0.95 (±0.06) 0.94 (±0.03) 0.95 (±0.07) 2617 166 125 2665

Extra Tree 12 0.96 (±0.16) 0.94 (±0.04) 0.95 (±0.06) 0.95 (±0.03) 0.95 (±0.07) 2626 157 125 2665
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4. Discussion

At present, one of the fastest-growing diseases is diabetes mellitus (DM), with approx-
imately 463 million people suffering worldwide [1]. DM patients have a higher risk of
developing serious health problems that can affect the heart, eyes, kidneys, nerves, and
teeth. According to the International Diabetes Federation (IDF), the leading cause of kidney
failure in developed countries is diabetes [3]. Furthermore, IDF estimates that around 10%
of these DM patients suffer from type 1 diabetes mellitus (T1DM). Although T1DM can
affect people at any age, it generally develops among young adults. As a result, they are
exposed to diabetes-related risk factors for a more extended period. Chronic kidney disease
(CKD) is one of the most significant complications of T1DM, and about half of the patients
with T1DM have a lifetime risk of developing CKD [4].

The most important accessible indicator of overall kidney function is the glomerular
filtration rate (GFR). It represents the amount of fluid filtered through the kidney per unit
of time [11]. The estimated glomerular filtration rate (eGFR) can be used to define the
normal renal function, and this definition is age-dependent. The eGFR value decreases
with age, but it needs to be greater than 90 mL/min/1.73 m2 to be considered normal renal
function, whereas people with eGFR less than 60 mL/min/1.73 m2 for more than 3 months
are considered CKD patients [12,15].

Moreover, CKD is hard to detect, as it can be asymptomatic in many cases. People with
CKD for a long period may not exhibit any symptoms, and, because of this asymptomatic
nature, there is a typical chance of delay in its recognition [13]. Furthermore, there is a
tendency to bypass the traditional urine protein (urinary albumin)-based CKD diagnostic
approach. According to Medicare (a national health insurance program in the United
States), barely half of the diabetes individuals get a urine albumin test [5]. Early detection
of CKD can be helpful to prevent the risk of end-stage kidney disease (ESKD) through
intensive management. As T1DM patients have an enormous risk of developing CKD, a
prediction model that can predict CKD from patients’ routine checkup data would greatly
help them.

Machine learning (ML) approaches are now being explored in various medical systems.
Due to the recent boost in related technology, applying ML techniques has become easier.
Health professionals are more enthusiastic about using their advantages of flexibility and
self-learning capacity as an aiding system for reliable performance. Intelligent systems
based on ML algorithms have been intensively investigated for various biomedical systems,
focusing on disease detection and risk reduction [16–18,49,50]. Like other severe diseases,
CKD has piqued the interest of researchers in creating ML-based diagnosis systems for
CKD [3,13,18,20–22]. However, their application in developing prediction models for CKD
in type 1 diabetic mellitus patients is rare.

In the literature, several ML-based kidney disease classifier models have been reported;
however, most of them did not focus on diabetes mellitus patients. For example, Segal
et al. [13] used the extreme gradient boosting algorithm to build a prediction model to
identify end-stage renal disease (ESRD) progression for patients who already have CKD.
In addition, Xiao et al. [20] targeted predicting 24 h urinary protein outcomes to detect
CKD by applying different ML models. They included logistic regression, Elastic Net,
lasso regression, ridge regression, support vector machine, random forest, XGBoost, neural
network, and k-nearest neighbor and got the highest AUC of 0.873.

Some studies only considered type 2 diabetes mellitus (T2MD) patients to develop
kidney disease prediction models. Low et al. [23] applied multivariable logistic regression
to design a CKD progression prediction model in patients with T2DM, where both sen-
sitivity and specificity were below 80%. In another study, Dunkler et al. [25] designed a
multinomial logistic model to predict CKD risk in individuals with type 2 diabetes.

Although type 1 diabetes and type 2 diabetes share some common characteristics, they
are different [26]. Nevertheless, T1DM occurs at a younger age and stays for a longer period
than T2DM. As a result, T1DM patients have a greater risk of kidney diseases (including
CKD) than T2DM patients. Thus, a CKD prediction model solely concentrating on T1DM
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patients would be more appropriate. Unfortunately, we found only two studies focused on
developing kidney disease prediction models for T1DM patients.

Vistisen et al. [8] developed and evaluated an ESKD prediction model in T1DM pa-
tients using Poisson regression analysis and achieved C-statistic values between 0.88 and
0.96. Their study used albuminuria, smoking status, physical activity, alcohol intake, an-
tihypertensive treatment, lipid-lowering treatment, RAS-blocker treatment, eGFR, and
previous cardiovascular disease as variables and achieved a C-statistic of 0.888 (95% CI
0.849–0.927) in the derivation cohort. In another study conducted by Colombo et al. [6],
ridge regression was implemented to build a model to predict renal diseases in T1DM
patients. That study included serum creatinine, urinary albumin/creatinine ratio (ACR),
age, sex, diabetes duration, follow-up time, HbA1c, and prior cardiovascular disease
information to predict final eGFR with an r2 of 0.745 (p < 10−16). Both studies used albu-
minuria as a parameter, which designates increased excretion of one kind of urine protein
(urinary albumin). Albuminuria is generally used as a marker of kidney damage, but
its measurement is lengthy. National Kidney Foundation, USA recommends using 24 h
urine to measure albuminuria [29], which is not convenient for many patients, and barely
half of the USA diabetes patients get this urine protein-based test [5]. Asymptomatic
CKD patients in particular can exclude this test from their routine checkup due to this
inconvenience. Moreover, traditional machine learning algorithms were not considered in
these two studies.

This study applied and evaluated 10 traditional machine learning algorithms to build
prediction models to quickly predict CKD in T1DM patients from easily available rou-
tine follow-up data. We used 16 years of data of 1375 type 1 diabetes mellitus patients
from the clinical trials of the Epidemiology of Diabetes Interventions and Complications
(EDIC) [30,31]. Our study included age, sex, BMI, smoking and drinking habit, hyperten-
sion, hypercholesterolemia, duration of insulin-dependent diabetes mellitus (IDDM), use
of ACE inhibitors and antihypertensive medicine, daily insulin dose, glycated hemoglobin
(HbA1c) levels, total cholesterol, triglycerides, high-density lipoproteins (HDL), low-
density lipoproteins (LDL), systolic blood pressure (SBP), diastolic blood pressure (DBP),
and mean blood pressure. These parameter values are easily available through routine
checkups of a T1DM patient and have been considered in other clinical models for pre-
dicting renal function decline in diabetes patients [13,19,20,38–40]. We used the KDIGO
2012 [12] definition of CKD; an eGFR value of less than 60 mL/min/1.73 m2 for more
than three months was considered as CKD. We did not include serum creatinine, albumin
excretion rate (AER), and current GFR to avoid overfitting, as serum creatinine is the most
important parameter to calculate eGFR and AER is itself a CKD identifier. In addition, 24 h
urine analysis is necessary to measure AER.

Our data had missing values and class imbalance. Three AI-based data imputation
techniques, random forest (RF), k-nearest neighbors (KNN), and multiple imputation by
chained equations (MICE), were used to fill missing values [41–43]. In addition, we used a
combination of oversampling and undersampling techniques SMOTETomek to address
class imbalance [51]. We used extreme gradient Boosting (XGB), random forest (RF), and
extremely randomized trees classifier (Extra Tree) for feature ranking and to select the
10 most significant features [41,46,47]. Thus, we had nine distinct combinations of different
data imputation approaches and feature ranking models. We used 10 machine learning
algorithms, logistic regression (LR), k-nearest neighbor (KNN), Gaussian naive Bayes
(GNB), support vector machine (SVM), stochastic gradient descent (SGD), decision tree
(DT), gradient boosting (GB), random forest (RF), extreme gradient boosting (XGB), and
light gradient-boosted machine (LightGBM), to develop different prediction models for
classifying CKD utilizing all nine combinations. We trained and assessed each ML model
using the top feature, then the top two features, the top three features, and so on, until
we found the optimum combination of feature ranking model, data imputation technique,
and number of features to achieve the best performance. We employed 10-fold stratified
cross-validation to evaluate different models, with a 9:1 training/test data ratio.
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Hypertension, antihypertension medicine, and duration IDDM were the top three
features in most feature ranking techniques. Triglycerides, ACE inhibitors, age, SBP, HDL,
LDL, total cholesterol, drinking, mean BP, BMI, drinker, daily insulin dose, and HbA1c
were other top features, but their positions and relative importance values were different
for different models. We had few missing values, and different data imputation techniques
showed no significant difference in performance.

With the XGB feature ranking technique and top 11 features, the RF classifier algorithm
produced the best CKD prediction model with 0.96 (±0.01) accuracy, 0.98 (±0.01) sensitivity,
and 0.93 (±0.02) specificity. LightGBM came in second with 0.95 (±0.06) accuracy. In
addition to these two models, the accuracy of KNN, SVM, DT, GB, and XGB models was
more than 90%. SVM had the greatest specificity while having a lower sensitivity than
several algorithms.

In this study, conventional machine learning algorithms were used to develop a CKD
prediction model in T1DM patients for the first time. Here, the suggested model showed
reliable performance with more than 95% accuracy. Moreover, to operate this model, we
do not need to collect 24 h urine protein or other critical values. Only general data from
routine follow-up of a T1DM patient is enough to produce an accurate result without any
delay. Consequently, this model can be used to predict CKD when critical laboratory tests
are not possible. In addition, all T1DM patients may use this model to make an educated
prediction of their CKD status during a regular checkup, and this can improve the chances
of discovering asymptomatic CKD patients at an earlier stage.

5. Conclusions

CKD is one of the most common diabetes-related complexities, and almost 50% of
T1DM patients have a lifetime risk. Diagnosis of CKD is complicated because it can be
asymptotic even in the late stages. Although there are some prediction models to detect
CKD in T2DM patients, this is a rare approach in T1DM patients, and none of them use
traditional ML algorithms. Nevertheless, the application of ML in several biomedical fields
has shown a positive influence on enhancing performance over conventional methods. This
study investigated the performance of various common ML approaches (LR, KNN, GNB,
SVM, SGD, DT, GB, RF, XGB, and LightGBM) in the diagnosis and stratification of CKD in
T1DM patients. We used general features available from a routine checkup. This analysis
found that the models developed by the random forest (RF) algorithm with all 19 variables
worked better in CKD classification. Therefore, a random forest or LightGBM-based CKD
prediction technique can help healthcare professionals to identify potential CKD patients
in T1DM patients and refer them for further investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11122267/s1: Figure S1. Feature correlation heatmap of Dataset RF; Figure S2.
Feature correlation heatmap of Dataset MICE; Figure S3. Feature ranking using Extra Tree algorithm:
(a) Dataset KNN; (b) Dataset MICE; (c) Dataset RF; Figure S4. Feature ranking using RF algorithm:
(a) Dataset KNN; (b) Dataset MICE; (c) Dataset RF; Figure S6. ROC curve of LR model with different
features ranked by Extra Tree on Dataset KNN; Figure S7. ROC curve of KNN model with different
features ranked by Extra Tree on Dataset KNN; Figure S8. ROC curve of GNB model with different
features ranked by XGB on Dataset KNN; Figure S9. ROC curve of SVM model with different
features ranked by XGB on Dataset KNN; Figure S10. ROC curve of SGD model with different
features ranked by Extra Tree on Dataset KNN; Figure S11. ROC curve of DT model with different
features ranked by XGB on Dataset KNN; Figure S12. ROC curve of GB model with different features
ranked by XGB on Dataset KNN; Figure S13. ROC curve of XGB model with different features
ranked by Extra Tree on Dataset KNN; Figure S14. ROC curve of LightGMB model with different
features ranked by XGB on Dataset KNN; Table S1. Performance analysis of LR algorithm using KNN
data imputation and Extra Tree feature ranking; Table S2. Performance analysis of KNN algorithm
using KNN data imputation and Extra Tree feature ranking; Table S3. Performance analysis of GNB
algorithm using KNN data imputation and XGB feature ranking; Table S4. Performance analysis
of SVM algorithm using KNN data imputation and XGB feature ranking; Table S5. Performance
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analysis of SGD algorithm using KNN data imputation and Extra Tree feature ranking; Table S6.
Performance analysis of DT algorithm using KNN data imputation and XGB feature ranking; Table S7.
Performance analysis of GB algorithm using KNN data imputation and Extra Tree feature ranking;
Table S8. Performance analysis of RF algorithm using KNN data imputation and XGB feature ranking;
Table S9. Performance analysis of XGB algorithm using KNN data imputation and Extra Tree feature
ranking; Table S10. Performance analysis of LightGBM algorithm using KNN data imputation and
XGB feature ranking.
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