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G-quadruplex dynamics contribute 
to regulation of mitochondrial gene 
expression
M. Falabella1, J. e. Kolesar2, C. Wallace3, D. de Jesus1, L. sun1, Y. V. taguchi2, C. Wang2, 
t. Wang4, I. M. Xiang5, J. K. Alder6, R. Maheshan7, W. Horne8, J. turek-Herman5, p. J. pagano1, 
C. M. st. Croix3, N. sondheimer7, L. A. Yatsunyk  5, F. B. Johnson  9 & B. A. Kaufman  1

single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known 
as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are 
enriched on the heavy-strand and have been associated with formation of deletion breakpoints. 
Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional 
roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells 
remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily 
to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage 
response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory 
complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in 
cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-
parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the 
conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate 
a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and 
respiratory function in normal cells.

Mitochondria are flexible organelles that play a crucial metabolic role in stress and disease resilience. 
Mitochondria are bigenomic, with subunits of the multimeric oxidative phosphorylation (OXPHOS) complexes 
encoded by both nuclear and mitochondrial DNA (mtDNA). Genetic lesions arising in either the Mendelian 
nuclear genome or the matrilineal multicopy mtDNA can result in mitochondrial dysfunction. Mammalian 
mtDNA is a circular genome characterized by strand asymmetry with guanine enrichment in the “heavy” strand. 
During first strand mtDNA replication, the heavy strand is displaced from the replicating light strand1, increasing 
the potential for its damage. Importantly, the primary driver of age-acquired mutations is thought to be cytosine 
deamination and not guanine oxidation in mtDNA2,3. The heavy-strand guanine enrichment may thus reduce the 
incidence of cytosine to thymidine transitions on this strand and the probability of mutations4,5.

One effect of guanine enrichment in the heavy strand is the increased potential for intramolecular 
G-quadruplex (G4) formation during replication. G-quadruplex structures can form in sequences that have four 
proximal runs of two or more consecutive guanines. The frequency of sequences with G4-forming potential in 
mtDNA appears to be non-random6, with many potential G4s conserved among species and verified to form G4 
structures in vitro6,7. In cancer cells, there is a strong association between the positions of nuclear genome deletion 
breakpoints and the sequences predicted to form G4 structures, suggesting that the stalling of replication machin-
ery induced by unresolved G4s is a contributing factor in deletion formation8. Our group and others have also 
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shown that potential G4-forming sequences are associated with mtDNA deletion breakpoints found in patients 
with mitochondrial disorders6,7,9.

The association of predicted G4-forming sequences with mtDNA deletions does not prove that G4 structures 
cause nucleic acid instability per se, nor does it define the potential roles that G4s have on biological function. A 
biological effect of mitochondrial G4 was suggested when we and our collaborators described a subtle increase 
in age-associated mtDNA deletion burden in the skeletal muscle of mice ablated for the PIF1 G4-helicase10. 
However, the small increase in mtDNA deletions was not commensurate with the notable respiratory complex 
deficiency in the skeletal muscle of those mice10 or in PIF1 knockdown cells11. Intriguingly, it has been shown that 
in in vitro mitochondrial transcription assays, hybrid G4 structures are formed at specific sites early in the nascent 
transcript to cause transcript termination, suggesting that G4s could alter gene expression12–14. In mtDNA, there 
are many other non-randomly distributed and well-conserved sequences with G4-forming potential, which com-
pelled further investigation into their potential biological impact on mitochondrial function.

To this end, we sought to identify approaches that alter mitochondrial G-quadruplex stability and assess the 
effect on mtDNA metabolism and respiratory function in normal cells15. The presence of G4-forming sequences 
at telomeres and oncogene promoters has made G4 structures a potential target in anticancer therapies16. Hence, 
in the past years a great number of small molecules have been designed to bind and stabilize the G4 structures 
to damage cancer cells. As such, the development of G4 ligands is a growing field17. The large number of G4 
binding molecules has been used both as a tool to gain new insights in the G4 biology (e.g. Yang et al.18) and as 
potential anticancer agents (e.g. Asamitsu et al.19). Recently, the small G4 binding molecule 3,6-bis(1-methyl-4-v
inylpyridinium) carbazole diiodide (BMVC), has been shown to localize to mitochondria and induce apoptosis in 
cancer cell lines20. Another compound, 3,11-Difluoro-6,8,13-trimethylquino[4,3,2-kl]acridinium methylsulfate 
(RHPS4), was reported to be a G4-selective ligand21–23 with nuclear localization24,25 that preferentially affected 
the viability of cancer cell lines (Supplementary Dataset S1). Here, we show that RHPS4 preferentially localizes to 
mitochondria in non-cancerous mouse embryonic fibroblast cell lines (MEFs) and affects mitochondrial genome 
content, transcription elongation, and respiratory function. We also find that RHPS4 causes differential effects on 
mitochondrial function in genome variants associated with alterations in the G4-forming potential. Leveraging 
the ability of RHPS4 to cause transcription or replication defects depending on concentration, we identify novel 
gene expression pathways that distinguish between these processes. Together, these results strengthen the notion 
that mitochondrial G-quadruplex dysregulation affects mitochondrial nucleic acid synthesis and mitochondrial 
function beyond association with mtDNA deletion formation.

Results
Identification of RHPS4 as a mitochondrial G4 ligand that affects mtDNA replication. Our 
objective was to stabilize G4 structures in mitochondria to determine their impact on mitochondrial DNA, gene 
expression and respiratory function. In the nucleus, ligand-mediated G4 stabilization is known to affect DNA 
replication leading to genome instability26. By extension, we expected that small molecules that increase G4 sta-
bility in mitochondria would also cause replication defects, leading to mtDNA depletion15. We tested four known 
G4 ligands (Braco-19, NMM, Phen-DC3, and RHPS4) for their ability to induce mtDNA depletion in cultured 
mouse embryonic fibroblast (MEF) cells (Fig. 1a). Because mitochondrial localization of small molecules has 
been observed with both neutral and positively charged lipophilic compounds, these compounds were selected 
as representatives of different scaffold structures or charge. The positively charged compound RHPS4 induced 
significant and reproducible depletion of mtDNA content. We further established that the RHPS4-mediated 
decrease of mtDNA levels was reversible (Fig. 1b) and time-dependent (Fig. 1c). Supporting the notion that G4 
stabilization would interfere with replication, we found that 2 µM RHPS4 treatment reduced the ratio of circular 
to linear mtDNA content (Fig. 1d,e; Supplementary Dataset S2), a feature previously observed in dideoxycytosine 
(ddC) and hydrogen peroxide-induced mtDNA damage and depletion27.

We next confirmed that RHPS4 preferentially binds G4 structures vs. double-stranded (ds) DNA, which is 
crucial to the interpretation of the biological data. Toward that end, F21D, which is a widely used, G4-forming 
human telomere sequence, was subjected to fluorescence resonance energy transfer (FRET)-melting assays28 in 
the presence of increasing amounts of RHPS4. We found that sub-micromolar RHPS4 concentrations were suf-
ficient to increase the melting temperature of F21D by at least 15 °C (Supplementary Fig. S1a). This stabilization 
was poorly competed by 480 equivalents of non-specific dsDNA (Supplementary Fig. S1b). These data demon-
strate that RHPS4 binding stabilizes G4 structures and confirm the strong selectivity of RHPS4 for G4 structures 
over dsDNA consistent with previous reports21–23.

To exclude that the mtDNA depletion observed at 2 µM RHPS4 was caused by induction of nuclear DNA 
damage response (DDR), we investigated the effect of RHPS4 (at 2 and 10 µM) on MEFs viability (Fig. 1f), tel-
omere length (Supplementary Fig. S2a) and γ-H2AX abundance; the latter is a well-established marker of nuclear 
DNA damage29 (Fig. 1g, Supplementary Fig. S2b and Supplementary Dataset S3). In cells treated with 2 µM 
RHPS4 for 24 hrs, we did not observe any effect on cell proliferation, γ-H2AX abundance, or telomere length 
assessed by fluorescent in situ hybridization. On the contrary, 10 µM RHPS4 did not induce telomere shortening 
(Supplementary Fig. S2a) but had a mild effect on cell proliferation (Fig. 1f) and γ-H2AX abundance (Fig. 1g). 
We confirmed the increase of γ-H2AX levels by in situ imaging (Supplementary Fig. S2b). Taken together, our 
data demonstrate that RHPS4 at low dose (2 µM) interferes with mtDNA copy number in cells, in the absence of 
detectable nuclear DDR. To avoid the influence of nuclear DNA damage, we used 2 µM RHPS4 treatment for 24 h 
to study the effect of G4 stabilization on mitochondrial function.

To further corroborate that nuclear DNA damage was not involved in the mtDNA alterations observed at low 
dose of RHPS4 (2 µM), we used an in organello replication assay30,31 on isolated mouse liver mitochondria (Fig. 2). 
Isolated mitochondria retain the ability to synthesize DNA without any input from the nucleus or cytoplasm. In 
this system, we observed that 2 µM RHPS4 was sufficient to inhibit the radiolabelled dCTP incorporation into 
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full-length mtDNA (Fig. 2a) as well as prevent the increase of full-length mtDNA over time (Fig. 2b). This exper-
iment demonstrates that RHPS4 is sufficient to inhibit mtDNA synthesis and RHPS4-nuclear DNA interaction is 
not required to mediate the replication defect.

To determine whether RHPS4 can bind to mtDNA G4 sequences, we next tested mtDNA sequence amplifica-
tion by a Taq-based PCR stop assay20 using total DNA isolated from HeLa cells (Fig. 2d,e). Importantly, this assay 
showed decreased amplification efficiency at sites that form mtDNA G4 sequences (COX1 and ND3) and a very 
mild effect on a non-G4 mtDNA sequence. These results support the hypothesis that RHPS4 interferes preferen-
tially with G4 sequences relative to non-G4 forming sequences to block the synthesis of mtDNA. Together, the in 
organello labelling and the PCR stop data strongly suggest that RHPS4 can recognize mitochondrial sequences 
and does not require nuclear DNA damage to impact mitochondrial nucleic acid synthesis.

Live cell imaging microscopy reveals RHPS4 localizes primarily into mitochondria. We next 
incubated MEF cells with increasing concentrations of RHPS4 (1, 2, and 10 µM) overnight and found that nucle-
olar localization was apparent only after extended exposure of the treated cells to epifluorescence light sources 
(demonstrated in Supplementary Fig. S3 movie). This result was consistent with the fluorescence localization 
previously reported in A549 and MCF-7 cells22. Our microscopy data obtained using MEF, 143B and HeLa cells 

Figure 1. G4-ligand exposure causes reversible mtDNA depletion. (a) Determination of mouse embryonic 
fibroblasts (MEFs) sensitivity to different G-quadruplexes ligands. mtDNA depletion analysed by qPCR in WT 
MEFs cultured in the presence of Braco-19, NMM, Phen-DC3, or RHPS4 at the indicated concentrations for 
24 hours (untr.; untreated). Each treatment set is normalized to untreated control. All data are mean +/− SEM 
(n = 4; p-values calculated by one-way ANOVA with Dunnett’s posthoc analysis: **< 0.01, ***<0.001). (b) 
Reversibility of mtDNA depletion in WT MEFs. Cells were exposed to 10 µM RHPS4 for 4 days and followed 
by recovery (rec.) for the indicated time. (c) Time-dependent mtDNA depletion as analysed by qPCR. (d) 
Alterations in the relative abundance of mtDNA catenanes, relaxed circles, and linear molecules from panel C 
time course. (e) RHPS4 decreases the mtDNA circular to linear ratio (C:L). (f) Crystal violet assay on MEFs 
treated with RHPS4 for 24 hours. (g) Western blot analysis of phospho-γ-H2AX of protein extracts from MEFs 
treated with RHPS4 for 24 hours. β-actin is shown as the loading control. All data are mean +/− SEM (n = 3–8; 
p-values calculated by one-way ANOVA with Dunnett’s posthoc analysis: *<0.05, **<0.01, ***<0.001).
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suggest that extended confocal light source exposure causes RHPS4 delocalization from mitochondria to nucleoli. 
We also found that a combination of nucleolar and diffuse cellular localization occurred in MEF cells after expo-
sure to 30 µM RHPS4 for 30 min followed by methanol fixation (Supplementary Fig. S4a), a method previously 
reported using A549 and MCF-7 cells24. To avoid prolonged confocal light source exposure time and prevent 
nucleolar localization of RHPS4, we rapidly acquired the images using Swept field confocal microscopy. The fast 
data acquisition of the Swept field method represents a more physiological condition for RHPS4 localization 
studies.

To test whether RHPS4 localizes to mitochondria, we performed live cell imaging microscopy using lower 
doses of RHPS4 compared to the previous studies (Fig. 3). In our hands, overnight exposure to 1 µM RHPS4 was 

Figure 2. RHPS4 reduces mtDNA replication or polymerization in vitro. (a,b) DNA replication in isolated 
mouse liver mitochondria in the presence or absence of 2 µM RHPS4. (a) Radiolabel incorporation into full-
length mtDNA across a 30–120 min time course. (b) Total full-length mtDNA determined by hybridization 
probing and autoradiography. (c) Raw radiographic images of full-length mtDNA. (d,e) Taq-based PCR stop 
assay using untreated HeLa cellular DNA amplifying mt-COXI (G4 amplicon; d) or mt-ND3 (G4 amplicon; e) 
and mt-non G4 (no G4 in amplicon). Amount of RHPS4 in PCR reaction as indicated. Data are shown as mean 
+/− SEM (n = 3). P-values determined by 2-way (a,b) or 1-way ANOVA (d, e; *<0.05; **<0.01; ***<0.001).
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sufficient to achieve fluorescence using 470 nm (green) and 550 nm (red) excitation (emissions at 510 nm and 
570 nm, respectively), matching expected spectral characteristics, without signal in the far-red wavelengths. To 
determine whether the red population localized to mitochondria, we co-stained mitochondria with MitoTracker 
Deep Red and acquired live cells images in both the red (λex/em = 550/570) and far red (λex/em = 640/670) chan-
nels (Fig. 3a). The RHPS4 fluorescence pattern was not altered by the addition of MitoTracker, and 100% of the 
RHPS4 volume was positive for MitoTracker Deep Red. Similarly, 96% of the mitochondrial volume (defined 
by MitoTracker) contained RHPS4. The mitochondrial localization was also confirmed using a commer-
cial source of RHPS4 (Tocris, Bristol, UK, data not shown). Strong mitochondrial localization was observed 
in three-dimensional renderings of RHPS4 and MitoTracker Deep Red with no discernible nuclear staining 
in live cells (Supplementary Fig. S5 movie). Unfortunately, attempts to co-localize RHPS4 with mitochondrial 
sub-compartments using in situ immuno co-localization of fixed samples were unsuccessful due to RHPS4 dif-
fusion during processing. Taken together, we provide strong evidence for a mitochondrial localization of RHPS4 
at a low dose in live MEFs cells, and we can recapitulate the non-mitochondrial RHPS4 localization by both pro-
longed fluorescent light source exposure and post-staining fixation.

We next investigated the mechanism of RHPS4 localization to mitochondria. In recent work focused on the 
study of mitochondrial G4 in cancer cells, the potential G4 ligand BMVC was suggested to localize to mito-
chondria through the mitochondrial permeability transition pore (PTP)20. The PTP is an inner mitochondrial 

Figure 3. RHPS4 localizes to mitochondria by membrane potential and is retained by binding nucleic acids. (a) 
Single confocal plane images of live MEFs treated with RHPS4 (red) detected in the red channel (λex/em =  
550/570), co-stained by MitoTracker Deep Red (green), detected in the far red channel (λex/em = 640/670) and 
their merge (yellow) obtained by using high speed confocal microscopy (Nikon Sweptfield). Digital zoom of 
images shown on right of each panel. Scale bar in panel a is 10 µm. (b) Time course of live cell confocal images 
of 143B ρ+ (upper) and 143B ρ0 (lower) cells incubated with 1 µM RHPS4 overnight. After the medium was 
changed, the cells were treated with 1 µM FCCP and multiple individual fields imaged over 15 min. Overlay 
(yellow) of the endogenous RHPS4 fluorescence detected in the green red (λex/em = 470/510) and red (λex/em =  
550/570) channels. Scale bars in panel b are 20 µm.
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membrane channel known to increase the access of ions and small molecules to the mitochondrial matrix32 
and it can be blocked by cyclosporin A (CsA). To investigate if RHPS4 also localized to the mitochondrial 
matrix through the PTP, we incubated the cells with a nontoxic concentration of CsA (1 µM) (Supplementary 
Fig. S6a) overnight as previously described20. To confirm that the CsA treatment blocked the PTP, we used the 
CoCl2-calcein fluorescence-quenching assay33. Calcein-AM is a fluorophore able to diffuse to several subcel-
lular compartment, including mitochondria. Upon PTP opening, the cobalt (Co2+) enters the mitochondrial 
matrix and quenches the calcein inducing a rapid decrease of mitochondrial calcein fluorescence. When the 
PTP is blocked, Co2+ is not able to enter the mitochondrial matrix and quench mitochondrial calcein fluores-
cence. We found that the calcein fluorescence was higher in MEFs pre-treated with CsA, compared to control 
(Supplementary Fig. S6b,c), confirming the PTP blockage. To further test the effect of CsA pre-treatment, we 
measured the ΔΨm using the Tetramethylrhodamine methyl ester (TMRM) method. The TMRM fluorescence 
was increased in the cells treated with CsA (Supplementary Fig. S6d,e), indicating an increase in mitochondrial 
membrane potential. After having validated the PTP blockage, we treated the cells with RHPS4 and found that 
1 µM CsA pre-treatment increased RHPS4 fluorescence intensity measured in the red channel by live cell imaging 
(Supplementary Fig. S6f,g). This suggests that RHPS4 localizes to mitochondria without PTP opening and that 
increased mitochondrial membrane potential facilitates mitochondrial uptake of RHPS4.

We next tested whether mitochondrial membrane potential was essential for RHPS4 uptake. Numerous pos-
itively charged compounds localize to mitochondria via membrane potential, which has been used to target 
small molecules to the mitochondrial compartment through moieties such as triphenylphosphonium (TPP)34. 
The targeting of TPP-coupled molecules to mitochondria is blocked by dissipation of the mitochondrial mem-
brane potential. We first preloaded 143B ρ+ (normal mtDNA) or ρ0 (devoid of mtDNA) cells with 1 µM RHPS4 
overnight. After confirming the photostability of the RHPS4 under short repeated measurements (Supplementary 
Fig. S4b), we followed the effect of the mitochondrial uncoupler FCCP on the RHPS4 localization in live cells 
(Fig. 3b). We observed a loss of RHPS4 mitochondrial localization after FCCP treatment only in 143B ρ0 cells, 
indicating that membrane potential is sufficient for localization. Because RHPS4 is retained in 143B ρ+ cells after 
FCCP, we suggest an interaction between RHPS4 and mitochondrial nucleic acids. Unfortunately, we were not 
able to perform an experiment using the reverse exposure order (FCCP then RHPS4) because the cells cannot be 
maintained in FCCP overnight. Taken together, our data indicates RHPS4 can successfully localize to mitochon-
dria by membrane potential independently of PTP opening.

RHPS4-mediated respiratory complex depletion occurs through a mitochondrial transcription 
inhibition mechanism. To determine the impact of RHPS4 exposure on mitochondrial respiratory func-
tion, we first examined the abundance of representative subunits of the mitochondrial OXPHOS complexes in 
MEFs exposed to varying concentrations of RHPS4 (Fig. 4 and Supplementary Dataset S4). MEFs showed signif-
icant subunit depletion from Complexes III (UQCRC2) and IV (COX1) at 2 µM RHPS4, whereas the abundance 
of Complex II subunits (SDHA and SDHB), which are all encoded by the nuclear DNA, and the mitochondrial 
DNA binding protein TFAM were not affected. We were not able to detect Complex I expression by Western blot 
in MEF cells. To confirm this observation, we repeated the experiment using murine C2C12 myotubes and found 

Figure 4. Low-dose RHPS4 exposure causes depletion of representative subunits of complexes III and IV, but 
not II and V. (Left) Fluorescent western blot analysis of OXPHOS proteins in MEFs cultured in presence 0, 2, 
and 10 µM RHPS4 for 24 hrs. Transferred membranes were probed for ATP5 (Complex V; CoV), UQCRC2 
(Complex III; CoIII), COXI (Complex IV; CoIV), SDHA and SDHB (Complex II; CoII), TFAM, and GAPDH 
(loading control). Complex I subunits were not detected in MEFs. (Right) Bar graph of OXPHOS proteins 
and TFAM normalized to GAPDH and control cell exposure levels (0 µM RHPS4). Shown are mean values 
+/− SEM (n = 3; p-values calculated by one-way ANOVA with Dunnett’s posthoc analysis: *<0.05, **<0.01, 
***<0.001).
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that at 2 µM RHPS4 the abundance of Complex III, IV and I subunits was decreased, but not TFAM or Complex II 
subunits (Supplementary Fig. S7a). In line with the data obtained in MEF cells (Fig. 1d,e), an increase in the ratio 
of linear to circular mtDNA forms was also observed in myotubes (Supplementary Fig. S7b,c). These data suggest 
that RHPS4 effects on mitochondria are general across analysed cell types, not specific to cancer cells as reported 
in previous studies35, and support the hypothesis that low concentrations of RHPS4 induce mitochondrial gene 
expression defects without affecting the genomic DNA stability.

We next examined alterations in the steady-state transcript levels of mitochondria-encoded genes. 
Mitochondrial transcription is initiated by three promoters, the Light Strand Promoter (LSP), Heavy Strand 
Promoter 1 (HSP1), and Heavy Strand Promoter 2 (HSP2; reviewed in36). Transcription initiated at these pro-
moters forms polycistronic RNAs that are then efficiently cleaved and processed into mature RNAs (Fig. 5a)37,38. 
Our initial studies used commercial TaqMan probes to detect the relative abundance of the mature RNAs 
encoded by the two ribosomal and the 13 protein coding genes (non-tRNA RNAs) (Fig. 5b). We noted that LSP 
and HSP1-derived transcripts (ND6 and RNR1, respectively) were significantly reduced at 2 µM RHPS4 expo-
sure without mtDNA depletion; however, we found that RNAs specific to the HSP2 promoter activity showed 
greater depletion as distance from HSP2 increased, evidenced from relative effects on ND1 (early transcript) and 
CYTB (late transcript). The relative abundance of ND6, RNR1, ND1, and CYTB was confirmed by evaluating 
strand-specific levels of steady-state mitochondrial mRNAs by RNA-Seq (Supplementary Fig. S8). Effects on 
the HSP2-derived tRNAs loosely recapitulated the promoter distance effect in mRNA; however, the number of 
sequencing reads was too low for a robust result across all sequences. We also confirmed the RHPS4-mediated 
effect on ND6, RNR1, ND1 and CYTB by qRT-PCR in cultured C2C12 myotubes (Supplementary Fig. S7d). 
Using mouse cultured cells, these data indicate that the stabilization of G4 structures alters mitochondrial RNA 
abundance without having a secondary effect of mtDNA depletion.

Given the decrease in abundance of transcripts with more distance from the HSP2 promoter, we hypothesized 
that G4s might be interfering with the elongation of transcripts by RNA polymerase. To examine elongation 
defects in unprocessed mitochondrial RNAs, new assays were required. Standard TaqMan assays are intragenic, 
detecting both mature and nascent unprocessed RNAs, with unprocessed transcripts typically contributing to a 
tiny portion of the total mitochondrial RNA38,39. To detect the nascent RNA levels, we developed strand-specific 
intergenic TaqMan assays that measure unprocessed RNAs only (Fig. 5a). Assays for LSP early (E-ND6), HSP1 
only (D-F-RNR1-V), and HSP2 early (L1-ND1-IM) showed similar abundance at 2 µM RHPS4 (Fig. 5c) to corre-
sponding mature RNAs (Fig. 5b). As with the mature RNAs, we observed reduced abundance of HSP2 late unpro-
cessed RNA (ND6-as-E-CYTB) relative to HSP2 early sequence (Fig. 5c). The number of potential G4-forming 
sequences encountered by an elongating polymerase increases with the distance from the promoter, whose cumu-
lative probability would cause a greater decrease in late transcripts. We therefore suggest that the observed HSP2 
transcription elongation defect is caused by RHPS4-binding to G4 structures in the template strand because of 
the limited number of G4 predicted in the RNA (Fig. 5d), but we cannot exclude RHPS4 acting on G4-RNA18,40 or 
potential interactions with other non-canonical structures, such as i-Motifs on the light strand41. These alterna-
tive RHPS4 targets may contribute to the reduced abundance of ND6 and RNR1/2 mature RNA levels, which are 
generated by non-HSP2 promoters and appear to be affected by an unprocessed transcript alteration 5′ to those 
sequences.

Due to the relationship between transcription and replication priming1, we also examined potential 
RHPS4 effects on transcripts associated with replication priming from the RNA-Seq data. Notably, decreased 
strand-specific RNA abundance at the D-loop (the site of first strand replication initiation) and OL (the site of sec-
ond strand replication initiation) was detected at 10 µM, but not 2 µM, RHPS4 (Supplementary Fig. S8c), suggest-
ing that the formation of replication-associated transcripts was not impeded at the lower levels of RHPS4, which 
do not cause mitochondrial genome depletion. We noted that at 10 µM RHPS4 exposure, the distribution of RNA 
transcripts around CSBI, a typical RNA-DNA transition site, was altered (Supplementary Fig. S8d), suggesting 
that the robust mtDNA depletion at this high level of RHPS4 could involve effects within the D-loop region. In 
contrast, the mtDNA damage detected at 2 µM RHPS4 (Fig. 1d,e) apparently occurs independent of direct effects 
within the D-loop priming RNA.

Mitochondrial transcription defects induced by RHPS4 are distinct from dsDNA intercala-
tion effects. To test the potential for RHPS4-dsDNA interactions as a cause of the observed transcription 
defect, we tested ethidium bromide (EtBr), a dsDNA intercalating compound that causes mtDNA depletion, for 
effects on mitochondrial transcription (Fig. 6). We identified EtBr concentrations that recapitulated the extent 
of mtDNA depletion observed during 2 and 10 µM RHPS4 exposure at 24 hours (Fig. 6a). In contrast to RHPS4, 
EtBr exposure was only able to cause transcript decrease in the context of mtDNA depletion (Fig. 6b). Notably, 
the relative abundance of mature CYTB mRNA was not lower than ND1 mRNA (Fig. 6b), there were no differ-
ences in the abundance of 5′ and 3′ unprocessed HSP2 sequences (Fig. 6c), and the four unprocessed RNAs from 
both transcripts were only decreased with mitochondrial genome depletion (Fig. 6c). Thus, at the concentrations 
tested, EtBr and RHPS4 show distinct effects on mtDNA transcription.

Differential nuclear transcriptional responses to mitochondrial transcription inhibition and 
mtDNA depletion. We next examined global cellular transcriptional responses to RHPS4 exposure by 
RNA-Seq using MEF cells treated with 0, 2, and 10 µM RHPS4 (Fig. 7). Interestingly, the low and high RHPS4 
treatment groups showed discrete, differentially expressed genes (DEGs) by cluster analysis (Fig. 7a). A Venn 
diagram of DEGs, using fold change > 1.5 and adjusted p-value < 0.01 demonstrates the potential for differential 
effects at the low and high RHPS4 doses (Fig. 7b), as some genes increase expression at one dose and decrease in 
the other (Supplementary Dataset S5). By analyzing a subset of DEGs for nuclear DNA damage responsive sig-
naling genes (used in Qiagen PAMM-029Z), we did not detect gene expression changes at 2 µM, consistent with 
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Figure 5. MEF exposure to low-dose RHPS4 causes transcript elongation defects prior to significant mtDNA 
depletion. (a) Schematic representation of mouse mitochondrial polycistronic transcripts and novel specific 
qRT-PCR assays. Transcription and processing of RNA proceeds from top (L-strand DNA template) or bottom 
(H-strand DNA template) of panel toward middle as indicated by black arrows. Below the genes there are 
indicated promoters (Light Strand Promoter, LSP [in red]; Heavy Strand Promoter 1, HSP1 [in blue]; Heavy 
Strand Promoter 2, HSP2 [in blue]). Transcription from the HSP2 promoter reads the H-strand template DNA 
(G-rich) to generate L-strand polycistronic RNA (G-poor), proceeding from left to right as a single transcript 
that is rapidly processed into mRNAs. (b) RHPS4 exposure decreases steady-state mature RNA levels assessed 
by qRT-PCR more extensively with distance from the promoter (HSP2 mRNA late) compared. Each transcript 
is normalized to GAPDH levels, which were unaffected by RHPS4 exposure. (c) HSP2-derived unprocessed 
transcript assays L-ND1-M and ND6as-E-CYTB confirm elongation defect in the presence of RHPS4. In 
contrast, LSP early and HSP1 early transcript assays, E-ND6 and D-F-RNR1-V respectively, show potential 
early transcription interference. (d) Model of progressive interference in HSP2-derived unprocessed transcript. 
All data are mean +/− SEM (n = 3–6; p-values calculated by one-way ANOVA: *<0.05, **<0.01, ***<0.001). 
Mouse mtDNA sequence was used to predict quadruplex forming potential (QFP; Supplementary Dataset S4) 
using G4 Hunter45.
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our Western blot (Fig. 1g) and in situ (Supplementary Fig. S2) results. Only the p53 target genes GADD45A and 
PPR1R15A were upregulated at 10 µM RHPS4, suggesting a modest nuclear DNA damage effect by exposure to 
10 µM RHPS4. These data support the use of 2 µM RHPS4 to study the G4 effects in mitochondria.

Enrichment analysis of the DEGs in KEGG pathways showed specific pathway transitions from low to high 
dose of RHPS4 (Fig. 7c). The significant pathway alterations support that the DEGs are a response to mitochon-
drial changes. Of potential relevance to mitochondrial disorders, genes in the oxidative phosphorylation, glycoly-
sis/gluconeogenesis and cytosolic DNA sensing/Toll-like receptor signaling are altered in both RHPS4 conditions. 
AMPK and HIF1 signaling, steroid biosynthesis, and fatty acid metabolism, among others, showed significant 
changes in gene expression at the high dose of RHPS4. Interestingly, we detected decreased gene expression 
affecting serine/glycine, folate, and one-carbon metabolism at 10 µM RHPS4 exposure and concomitant mtDNA 
depletion, which have been demonstrated to be altered in response to mtDNA replication disorders42,43. The 
molecular determinants of the differential pathway activation between low and high RHPS4 exposure are 
unknown at this time.

Sequence variation that increases G4 formation potential increases RHPS4-mediated res-
piratory defects. We tested whether mtDNA sequence could influence RHPS4-mediated effects on mito-
chondrial function (Fig. 8). To this end, we used the mtDNA variant m.10191T > C in the ND3 gene, which is 
associated with Leigh syndrome44. This sequence variant has one extra G in one of the G-rich stretches of the 
predicted G4-forming sequence of the heavy strand45 (Fig. 8a). The proximal region is present in the ND3 ampli-
con shown to be sensitive to RHPS4 in the PCR stop assay (Fig. 2e). We found that the presence of one extra G in 
m.10191T > C variant increased its thermal stability (Tm) from 34.8 to 43.0 °C (Fig. 8a). In addition, the mutation 
leads to an increase in the antiparallel character of the resulting G4-structure as indicated by the increased signal 
at 295 nm (Fig. 8b).

We next tested for RHPS4-mediated alterations to G4 structure and stability using two mtDNA G4 forming 
sequences, oligo A and B (Supplementary Fig. S9). We previously demonstrated that oligo A and B form predomi-
nantly parallel G4 structures as signified by the peak at 262 nm in circular dichroism (CD) spectra in the presence 
of 5 mM K+. K+ was chosen because it enhances G4 stability relative to Na+ or Li+ 46. The addition of 5 µM RHPS4 

Figure 6. Ethidium bromide treatment does not induce mitochondrial transcription defects prior to mtDNA 
depletion. (a) mtDNA levels were measured in MEF cells treated for 24 hours with 0, 25 and 250 ng/ml EtBr. 
Concentrations were selected to match mtDNA depletion observed in RHPS4 experiments. (b) EtBr treatment 
does not induce any change in the ND1 and CYTB steady-state transcript levels at concentrations below those 
that cause mitochondrial genome depletion (25 ng/ml). (c) EtBr treatment does not alter parental L-strand 
transcript ND6 and the H-strand transcript RNR1, ND1 and CYTB levels prior to mtDNA depletion. All data 
are mean normalized to untreated sample values +/− SEM (n=3; p-values calculated by one-way ANOVA: 
*<0.05, **<0.01, ***<0.001).
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Figure 7. Low and high dose RHPS4 reveals differences in cellular response to mitochondrial transcription 
inhibition and mtDNA depletion. (a) Cluster analysis of differential expressed genes (DEGs) determined by 
RNA-Seq shows discrete patterns among control (light blue), 2 µM RHPS4 (yellow), and 10 µM RHPS4 (green) 
treated cells. (b) Venn diagram of the number of DEG up regulated (red) or down regulated (blue) in low and 
high RHPS4 exposure (>1.5 fold, p < 0.01). Subset of DEGs that are nuclear encoded genes and further subset 
of genes whose products are localized in mitochondria (based on the Mitocarta 2.0 database) are shown in 
parenthesis. (c) Enrichment of DEGs using KEGG pathways. Pathways are separated by low RHPS4 specific, low 
and high RHPS4 activated, and high RHPS specific changes.
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induced a marked antiparallel conformation in both oligo A and B sequences (Supplementary Fig. S9a,d), signi-
fied by the increase in peak intensity at 295 nm (and decrease of 264 nm peak). Oligo B was more sensitive to the 
presence of RHPS4. Consistent with our data, RHPS4 induced antiparallel G4 conformation in human telomeric 
DNA in the presence or absence of K+ 21. Thermodynamic stability of oligo A and B was tested in the presence of 
2 eq of RHPS4 by CD. RHPS4 significantly increased melting temperatures of G4 structures formed by oligo A 
and B by 7.2 and 14.9 °C, respectively (Supplementary Fig. S9b,e). Our data are in agreement with the previous 
observation that RHPS4 stabilized human telomeric DNA and c-kit oncogene promoter sequences by ∼20 °C in 
similar experiments21.

To determine the strength of binding of RHPS4 to oligo A and to oligo B, we performed UV-Vis spectral 
titrations (Supplementary Fig. S9c,e). Curve fitting yielded binding constants (Ka) of 0.5 × 106/M, similar for 
both oligos with [G4]/[RHPS4] ratios of 1:3 for oligo A and 1:2 for oligo B. These rations suggest that up to three 
molecules of RHPS4 bind to oligo A and two molecules of RHPS4 bind to oligo B. We also observed significant 
red shift of 11.5 nm at 510 nm wavelength and enhancement of hyperchromicity by ∼22%, which demonstrate 
close, direct contact between G4 and RHPS4 (Supplementary Fig. S9c,f), consistent with end-stacking of RHPS4 
onto the terminal G4-tetrad described previously23.

To test whether RHPS4 preferentially affects the m.10191T > C variant sequence in cells, we used cultured 
patient fibroblasts harbouring the m.10191T > C variant, the m.13513G > A variant (a non-G4 sequence) or 

Figure 8. Cells harbouring a mtDNA variant that increases the G4 thermal stability and antiparallel 
characteristics show oxygen consumption defects upon RHPS4 exposure. (a) CD melting curves for control 
(CTR; black line) oligonucleotide sequence m.10184–10207 and m.10191T > C variant (red line) from heavy 
strand mtDNA. Arrow indicates the increase of melting temperature in the 10191T > C variant (b) CD spectra 
for CTR (black line) or the m.10191T > C variant (red line) show differences in parallel (peak at ~260 nm) and 
antiparallel (peak at ~295 nm) character. Arrow indicates the direction of change of the 10191T > C variant. All 
experiments were performed in 5 K+ buffer. (c) Example Seahorse Xf24 oxygen consumption rate (OCR) profile 
for control and m.10191T > C cell lines cultivated for 24 h in presence or absence of 1 µM RHPS4 (n = 5 well/
line/RHPS4 condition). Treatments were as follows: (i) oligomycin; (ii) dinitrophenol; and (iii) rotenone. (d) 
Effects of RHPS4 exposure on basal and maximal oxygen consumption relative to control. Included are results 
from cells carrying the m.13513G > A variant, whose sequence change is not expected to alter G4 formation. 
No wells were excluded. All bar graph data are mean +/− SEM (p-values calculated against the untreated 
equivalent by one-way ANOVA with Sidak’s multiple comparison test: ***<0.001).
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normal control fibroblasts. We determined whether RHPS4 exposure differentially affected OXPHOS activity 
in these cells by measuring oxygen consumption under basal or maximal (uncoupled) conditions (Fig. 8c,d). 
RHPS4-untreated cells did not demonstrate significant differences in basal or maximal respiration among the 
different cell lines (Fig. 8c,d). However, low dose RHPS4 treatment (1 µM for 24 hrs) caused specific and profound 
decreases in oxygen consumption in the m.10191T > C variant fibroblasts with no effects observed in either con-
trol or m.13513G > A variant cell lines. In additional experiments, we selected m.10191T > C fibroblast cell lines 
whose mtDNA variant load (heteroplasmy) more closely matched a m. 13513G > A variant control line (~50%). 
We found that these m.10191T > C heteroplasmic lines also showed preferential OCR sensitivity when exposed 
to RHPS4 (Supplementary Fig. S10). Taken together, these data demonstrate the RHPS4-mediated effect on OCR 
in three distinct patient cell lines and highlight the potential susceptibility of specific mtDNA sequences to form 
G4 structures after RHPS4 treatment and to regulate mitochondrial function.

Discussion
In this study, we used a well-established G4 ligand, RHPS4, to probe the roles of potential mitochondrial 
G-quadruplexes in mitochondrial gene expression. Based on the data presented here, we propose that RHPS4 
translocates preferentially to the mitochondria most probably due to its positive charge, where it binds and is 
retained by mitochondrial G4 structures to interfere with transcription, replication, and as a result, impacts res-
piratory complex abundance. The differences between our observations of mitochondrial RHPS4 localization and 
the localization previously reported24,25 may be explained by microscopy artefacts described in the supporting 
data (Supplementary Figs S3 and S4); in addition, differences in cell lines used and exposure concentrations 
may also contribute. We reported that some nuclear localization occurred at higher RHPS4 concentrations, as 
we detected a mild activation of the DNA damage response at 10 µM. Gene expression responses consistent with 
nuclear DNA damage were absent at 2 µM RHPS4 exposure, dissociating nuclear DNA damage effects from the 
observed changes in mitochondria. Importantly, at 2 µM RHPS4 exposures, a decrease in the mtDNA abundance 
was observed, suggesting that nuclear DNA damage response was not a component of the mtDNA-related effects. 
This notion was further supported by mtDNA replication inhibition assays in a cell-free system with isolated 
mitochondria. All together, these findings suggest that low dose RHPS4 is a useful condition to study the effect of 
G4 stabilization on mitochondrial nucleic acids.

Although the specific sequences bound by RHPS4 in living cells are not known, clues arise from the data 
presented here. Our results demonstrate that RHPS4 preferentially interferes with polymerase amplification of 
specific regions of the mitochondrial genome, notably ND3. This region contains a predicted G4 that we demon-
strated can fold in vitro into a G4 structure. A pathological variant in that ND3 G4 structure, m.10191T > C, 
increased G4 thermal stability and antiparallel character (Fig. 8a,b). We expect that a sequence with higher 
G4-forming potential, such as m.10191T > C, would form G4 more frequently in vivo thus would be more 
subject to RHPS4 binding. The antiparallel fold may also serve as a preferred substrate for RHPS4. Indeed, the 
m.10191T > C variant also enhances the cell sensitivity to RHPS4, exacerbating the mitochondrial respiratory 
defects, but the molecular alterations caused by RHPS4 remains the subject of speculation. It may be that RHPS4 
stabilized the G4 structures that it binds to, but it is equally possible that the higher level of G4 formed by the 
variant sequence provides more opportunity for RHPS4 to have effects that extend beyond G4 stabilization, per-
turbing the G4 biology. Our combined results provide strong evidence that low concentrations of RHPS4 can be 
used to alter mitochondrial G4 structures.

Other mtDNA G4-forming sequences are likely to be involved in the RHPS4 effects on mitochondria. G4 
structures can potentially form in single-stranded nucleic acids, which exist naturally during first strand repli-
cation of mtDNA. In contrast, the light strand that contains the potential i-Motif forming sequences is generally 
double-stranded throughout mtDNA replication. We predict that the compound binds to the displaced heavy 
strand, which occurs in the major arc region between the heavy and light strand origins (OH and OL, respectively) 
containing two-thirds of the genome during first strand replication15. This same region acts as the template for 
HSP2-derived transcription, which is also affected by RHPS4. This region also contains the majority of mtDNA 
deletion breakpoints, which are associated with G4-forming sequences6, and targeted single-strand breaks in a 
G4-forming sequence downstream of OL are sufficient to cause mtDNA deletions11. The spontaneous formation 
of G4 at that sequence may similarly arrest replication and increase deletion events. Further studies are required 
to reliably detect G4 structures in situ and identify sequences that form G4 with high-efficiency in normal and 
variant mtDNA sequences. Taken together, our current data suggest that conserved mtDNA strand asymmetry 
and consequent G4 sequence distribution can play a role in replication and gene expression.

The RNA priming of first strand mtDNA replication is thought to occur through mitochondrial RNA poly-
merase POLRMT-based LSP synthesis, where the nascent RNA can either elongate to generate full transcripts 
or terminate at the three conserved sequence blocks (CSB I, II, and III) that have been described in vitro47 to 
provide a 3′-OH for initiation of DNA replication. Recently, transcription termination at the human CSBII has 
been shown to depend on the formation of a DNA-RNA hybrid G4 structure12,13, which is opposed by the tran-
scription factor TEFM48,49. As such, it might be expected that G4 stabilization would lead to transcription arrest 
at CSBII and LSP transcript depletion. Indeed, we observed a decrease in mature and unprocessed ND6 LSP 
transcripts at the low RHPS4 dose. Furthermore, the absence of RHPS4 effects at the mouse CSBII region may be 
due to the shorter central guanine run, consistent with the observation that the shorter central run causes RNA 
pausing less frequently than the longer variant48. Further investigations and the development of site-directed 
mtDNA mutagenesis technologies may be required to test the function of individual G4 sequences in the 
replication-transcription switch.

In our working model, formation of G4 structures may be a stochastic process, but their stability mandates 
dedicated activities for their resolution. Importantly, there are a number of G4-resolving helicases that can 
reduce formation of G4 structures. Among the most efficient G4 helicases is PIF150. PIF1 G4-helicase activity is 
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conserved from bacteria to mammals, and is essential for mtDNA stability in yeast51. PIF1 localizes both to the 
nucleus and mitochondria through alternative translation initiation mechanisms in both yeast and mammals52,53. 
Interestingly, skeletal muscle tissue isolated from PIF1 knockout mice shows precocious mtDNA deletions and 
decreased enzymatic activity in OXPHOS complex I10, whose subunits are encoded by 44% of the mitochondrial 
genome sequence. We do not yet understand the mechanisms underlying these phenotypes and the role of G4 
structures in these processes.

Although the association of G4-forming sequences with mtDNA deletion breakpoints has been demon-
strated6,7,9, the natural function of these structures in mitochondrial biology remains elusive15. Using a specific G4 
ligand that stabilizes G4 structures in mitochondria, we have begun to understand the impact of these sequences 
on mitochondrial function. While our approach likely increases both the number and stability of G4 structures, 
other in vivo events could modulate G4 formation, thereby enabling G4 dynamics to act as a mitochondrial reg-
ulatory mechanism. Such modulators could involve ATP-dependent helicases (such as PIF110), oxidative modi-
fication (8-oxoguanine and hydantoin54,55), or mtDNA variant (this study). This work will enable future studies 
to identify, quantify, and eventually target G4-forming sequences to increase our understanding of processes that 
regulate mtDNA transcription and replication as part of mitochondrial biogenesis and function.

Materials and Methods
Chemicals, Cell culture and treatments, Cell viability measurement, Western blotting analysis, Interphase fluo-
rescence in situ hybridization (FISH), RNA-Seq analysis, Live cell imaging, Fixed cell microscopy, Identification 
of mitochondrial sequences with G-quadruplex forming potential, and Oligonucleotides are located in 
Supplementary Information with appropriate references. All cell experiments were performed in accordance 
with appropriate approvals from the University of Pennsylvania, the University of Pittsburgh, or the University 
of Toronto.

mtDNA measurements. Total genomic/mitochondrial DNA was isolated by sodium dodecyl sulfate lysis 
and proteinase K digestion from MEFs, HeLa, and C2C12 as previously described56. DNA was gently resus-
pended at 37 °C in Tris-EDTA (TE) buffer supplemented with RNAse A to remove the RNA contamination and 
DNA concentration was measured using an AccuBlue Broad range kit (Biotium, Fremont, CA). For measuring 
relative mouse mtDNA abundance, we designed TaqMan primer/probes for mitochondrial ND1 (VIC-labeled; 
primer:probe of 1:1) and nuclear TBP (FAM-labeled; primer:probe of 3:1), screened candidates for in silico 
primer compatibility, and validated the multiplex reaction by template serial dilution. The multiplex assessment 
of the relative abundance content of mtDNA was conducted by qPCR using TaqMan Fast Advanced Master Mix 
(ThermoFisher Scientific), 4.6 ng/reaction DNA and 5 μM of primer/probes in 10 μL final reaction volume and 
calculated by the ΔΔCq method57. The qPCR amplification profile was: one cycle (95 °C for 20 sec) and 40 cycles 
(95 °C for 1 sec and 60 °C for 20 sec).

Measurement of major mitochondrial topoisomers was performed as previously reported27,56,58,59. In brief, 
total DNA was isolated as above, quantified by Nanodrop 1000 (ThermoFisher Scientific), and 2 µg of DNA 
resolved on 0.7% gel in 0.5X Tris/Borate/EDTA (TBE) buffer for 17 h at 40 V. DNA in gel was nicked, dena-
tured, neutralized, and capillary transferred onto positively charged nylon (Hybond N+; GE Healthcare, 
Marlborough, MA). Membrane was rinsed, UV crosslinked, and air-dried. MtDNA isoforms were detected after 
random-hexamer probing and quantifying bands by phosphorimager analysis.

For the in organello replication assay, mitochondria were isolated from WT mouse liver by differential centrif-
ugation60 and protein determined by the Qubit fluorescent assay (ThermoFisher Scientific). Mitochondria were 
pelleted and resuspended at 4 mg/ml protein concentration in incubation buffer (10 mM Tris-HCl pH 8.0, 20 mM 
sucrose, 20 mM glucose, 65 mM sorbitol, 100 mM KCl, 10 mM K2HPO4, 50 µM EDTA, 1 mM MgCl2, 5 mM gluta-
mate, 5 mM malate, 1 mg/ml fatty acid free BSA, and 1 mM ADP)30. The mitochondrial preparation was divided 
into six 1 mL tubes, three for treatment with 2 µM RHPS4 and three without treatment. A dNTP mix containing 
30 µL of each 10 mM dCTP, 10 mM dGTP, and 10 mM dTTP, as well as 12 µL α-32P-dCTP (3000 mmol/Ci), was 
then added at 17 µL per tube. Samples were gently rotated at 37 °C, collected at 30, 60, 90, and 120 min, spun 
down, and lysed in proteinase K/SDS buffer and total DNA isolated as described above. DNA was then resus-
pended in 50 µL of TE buffer with RNase A and dimethylurea antioxidant overnight, 25 µL was digested with Sac I 
restriction enzyme, and resolved on 0.6% agarose in 0.5X TBE for 2 h at 100 V/hr. DNA within the gel was nicked, 
denatured and transferred onto membrane, UV crosslinked, and exposed to phosphorimager for 24 h. Label 
incorporation into full-length mtDNA was determined using ImageQuant software package (GE Healthcare, 
Pittsburgh, PA). Total mtDNA was determined by random hexamer probing of full-length mtDNA.

FRet melting assay. RHPS4 stabilization and selectivity for G4 DNA was determined using FRET assay 
with F21D as previously described28. In brief, F21D was annealed 24 h before the FRET study by heating the 
0.25 μM F21D to 95 °C for 10 min in 5 K buffer (10 mM Li cacodylate pH 7.2, 5 mM KCl, and 95 mM LiCl) then 
slowly cooled to room temperature over three hours and stored at 4 °C overnight. RHPS4 was added in the con-
centration range from 0.4 to 4.0 µM bringing the final F21D concentration to 0.2 μM. Samples were thoroughly 
mixed and equilibrated at least for one hour before FRET measurements. Fluorescence measurements were taken 
every 1 °C from 15 °C to 95 °C, with temperature rate of 1 °C/min on a MJ research Chromo4 (now Bio-Rad, 
Hercules, CA). Melting temperature was determined from the first derivative of melting data. For FRET-based 
competition studies, 0.2 μM F21D sample incubated with 1.6 μM RHPS4 was supplemented with 4.8 to 96.0 μM 
calf thymus (CT) DNA as non-specific, double stranded DNA competitor. Negative control experiment included 
0.2 μM F21D with 16 µM CT DNA in the absence of ligand. Melting temperature (Tm) was determined as a 
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maximum of a peak of a first derivative of the melting data (associated error ± 0.5 °C). All samples were measured 
in technical duplicate per experiment and each experiment was repeated three times.

Circular dichroism experiments. Circular dichroism (CD) wavelength scans were collected on oligos con-
taining the 10191T and 10191T > C sequences to determine the extent and type of the folding in 5K buffer. The 
experiments were performed using AVIV 410 or 435 spectrometer equipped with a Peltier heating unit, with 
the following parameters: 2 nm bandwidth, 220–330 nm window, 1 sec average time, 10 °C temperature, and 3 
scans. Resulting data were treated as described in our previous work61. CD melting experiments were performed 
by heating the samples from 4 to 90 °C and then back to test reversibility of the melting process. CD melting was 
performed using the following parameters: wavelength, 264 nm; bandwidth, 4 nm; T range: 4–95 °C; T step: 1 °C; 
dead band: 0.33 °C; equilibrating time, 0.5 min; averaging time, 20–30 sec. CD scans were collected after comple-
tion of the CD melt to assure that the samples had returned to equilibrium. Melting experiments were repeated at 
least three times. Data were analysed as described above for FRET melting.

pCR stop assay. Polymerase stop assay was performed as reported20. Briefly, the experiment was conducted 
adding RHPS4 (0; 1; 2; 5; 10 µM) to a 25 µl reaction containing DreamTaq DNA Polymerase (ThermoFisher 
Scientific), 4.6 ng/reaction DNA, 0.2 mM dNTPs and 0.4 μM of each primer. The PCR was performed in a ProFlex 
thermal cycler (ThermoFisher Scientific) with the following PCR amplification profile: one cycle of 95 °C for 
2 min; 30 cycles of 95 °C for 30 sec, 56 °C for 30 sec, and 72 °C for 30 sec. Products of amplification were run on a 
2% agarose gel and detected with ethidium bromide fluorescence on a Bio-Rad ChemiDoc MP Imaging System 
(Bio-Rad, Carlsbad, CA). Quantitation was performed on three or more independent experiments.

Measurement of mitochondrial ptp opening and mitochondrial membrane potential. The 
state of mitochondrial PTP was assessed using the quenching of calcein-AM fluorescence by cobalt chloride 
exposure33. Briefly, MEFs were treated with CsA 1 μM for 24 h, the media replaced and the cells pre-loaded 
with CoCl2 1 mM for 30 min. Then cells were washed and incubated with 1 μM Calcein-AM (Thermo Fisher 
Scientific) for 30 min in the dark. MEFs were washed and resuspended in Hank’s Balanced Salt Solution (HBSS) 
prior analysis.

The mitochondrial membrane potential (ΔΨm) was assessed using Tetramethylrhodamine methyl ester 
(TMRM) detection. Briefly, cells treated with CsA 1 μM for 24 h were washed and then incubated with TMRM 
(Thermo Fisher Scientific) 100 nM for 30 min. The fluorescence of 10,000 cells was measured by flow-cytometer 
(BD LSRFortessa Cell Analyzer, San Jose, CA). Data were analysed using FlowJo v7.6.5 software (Treestar, 
Ashland, OR).

transcript analysis. To quantify gene expression by real-time quantitative polymerase chain reaction 
(qRT-PCR), RNA was isolated from cell pellets with the RNeasy Mini Kit (Qiagen, Germantown, MD) and 
genomic DNA contamination was removed using DNA-free DNA Removal kit (ThermoFisher Scientific). Quality 
of the extracted RNA was assessed by 1% agarose gel electrophoresis and from the A260nm/A280nm absorbance 
ratio (Nanodrop 1000, ThermoFisher Scientific). Next, cDNA was synthesized using the High Capacity cDNA 
Kit (ThermoFisher Scientific) with either random (provided by manufacturer) or specific primers (see Primers 
and probes section below). Finally, processed and unprocessed RNA expression levels were assessed using 
the ΔΔCq method57. The primer/probe sets were designed, and their compatibility validated in silico. A serial 
dilution approach was used to validate the multiplex reaction. All qPCR reactions were carried out on either a 
StepOnePlus or QuantStudio 5 thermal cycler (ThermoFisher Scientific). All experiments were run in triplicate 
and the gene expression levels normalized to the B2M results.

Measurement of oxygen consumption rate (oCR). OCR of control and patient primary human fibro-
blasts treated with 0 or 1 μM RHPS4 for  24 h was measured using the XF-24 of XFe96 Seahorse system (Seahorse 
Bioscience, Billerica, MA). After  24 h incubation with vehicle (DMSO) or 1 µM RHPS4, cells were washed with 
pre-warmed assay medium and seeded at 5 × 103 cells/well, five wells per group. For XFe96 experiments, 2.5 × 105 
cells per well were plated then incubated for 24 h with vehicle or 1 µM RHPS4. The basal respiration data were 
collected and the cells sequentially treated with 1 µM oligomycin, 150 µM dinitrophenol, and 160 nM rotenone 
as previously optimized for this system62. All experiments were performed in unbuffered DMEM supplemented 
with 5 mM glucose. In Fig. 8, the cell lines used were: normal human primary fibroblast; patient fibroblast car-
rying ~50% heteroplasmic variant load for m.13513G > A; patient fibroblast carrying ~90% variant load for 
m.10191 T > C. In Supplementary Fig. S10, the cell lines were from patients different from Fig. 8: m.13513G > A 
(~50% heteroplasmy), m.10191T > C (~50% heteroplasmy), and m.10191T > C (~55% heteroplasmy).

UV-Vis binding studies. UV-Vis studies were performed to demonstrate direct ligand-DNA inter-
action between mtDNA oligo A or oligo B and RHPS4 using a Cary 300 Varian spectrophotometer with a 
Peltier-thermostated cuvette holder (error of ± 0.3 °C) in 5 K buffer. The advantage of this experiment over FRET 
assay is the absence of fluorescence tag on DNA. Titrations were performed by stepwise additions of annealed 
oligo A or oligo B to a 0.3 mL solution of 20 µM RHPS4 in a 1 cm quartz cuvette. Resulting solution was mixed and 
equilibrated for two min. UV-Vis spectra were acquired in 350–670 nm range. Titration was deemed complete 
when the spectra collected after three successive additions of G4 oligonucleotides were nearly superimposable. At 
this point, typical [G4]/[RHPS4] was ~ 3. Spectra were corrected for dilution effects and the resulting data were 
treated as described in detail in our earlier work61. Direct fitting of UV-Vis data (assuming two-state equilibrium) 
was used to obtain the values of binding constant, Ka. Hypochromicity (% H, decrease in signal intensity) and 
red shift (change in peak position) were extracted from UV-Vis data as described in61. Titrations were repeated 
at least three times.

https://doi.org/10.1038/s41598-019-41464-y


1 5Scientific RepoRts |          (2019) 9:5605  | https://doi.org/10.1038/s41598-019-41464-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

primers and probes. For the mature RNA assay, standard qPCR thermal parameters were used: one cycle of 
95 °C for 20 sec then 40 cycles of 95 °C for 1 sec and 60 °C for 20 sec. For the parental RNA assays, the optimized 
conditions were as follows: L-ND1 or F-RNR1-V-RNR2 mouse gene expression, one cycle of 95 °C for 10 min 
then 40 cycles of 95 °C for 20 sec, 56 °C for 20 sec and 60 °C for 20 sec; ND6-E-CYTB or E-ND6 mouse gene 
expression, one cycle of 95 °C for 10 min then 40 cycles of 95 °C for 20 sec, 60 °C for 20 sec and 60 °C for 20 sec.

statistical analysis. Statistical analysis was performed by one-way ANOVA with Dunnett’s posthoc analy-
sis or Student two-tailed test using GraphPad Prism software (GraphPad, La Jolla, CA). P-values of < 0.05 were 
accepted as a significant difference. All data are expressed as mean +/− standard error of the mean (SEM).

Animals. Balb/cJ mice were purchased from Jackson Laboratories with institutional animal care and use com-
mittee (IACUC) approval from the University of Pennsylvania or the University of Pittsburgh. All methods were 
performed in accordance with Guide for the Care and Use of Laboratory Animals.

Data Availability
RNA-Seq data are available from GEO using the token GSE103116.
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