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Abstract

Simulations of neural activity at different levels of detail are ubiquitous in modern neurosci-

ences, aiding the interpretation of experimental data and underlying neural mechanisms at

the level of cells and circuits. Extracellular measurements of brain signals reflecting trans-

membrane currents throughout the neural tissue remain commonplace. The lower frequen-

cies (≲ 300Hz) of measured signals generally stem from synaptic activity driven by

recurrent interactions among neural populations and computational models should also

incorporate accurate predictions of such signals. Due to limited computational resources,

large-scale neuronal network models (≳ 106 neurons or so) often require reducing the level

of biophysical detail and account mainly for times of action potentials (‘spikes’) or spike

rates. Corresponding extracellular signal predictions have thus poorly accounted for their

biophysical origin.

Here we propose a computational framework for predicting spatiotemporal filter kernels

for such extracellular signals stemming from synaptic activity, accounting for the biophysics

of neurons, populations, and recurrent connections. Signals are obtained by convolving

population spike rates by appropriate kernels for each connection pathway and summing

the contributions. Our main results are that kernels derived via linearized synapse and mem-

brane dynamics, distributions of cells, conduction delay, and volume conductor model allow

for accurately capturing the spatiotemporal dynamics of ground truth extracellular signals

from conductance-based multicompartment neuron networks. One particular observation is

that changes in the effective membrane time constants caused by persistent synapse acti-

vation must be accounted for.

The work also constitutes a major advance in computational efficiency of accurate, bio-

physics-based signal predictions from large-scale spike and rate-based neuron network

models drastically reducing signal prediction times compared to biophysically detailed net-

work models. This work also provides insight into how experimentally recorded low-
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frequency extracellular signals of neuronal activity may be approximately linearly dependent

on spiking activity. A new software tool LFPykernels serves as a reference implementa-

tion of the framework.

Author summary

Understanding the brain’s function and activity in healthy and pathological states across

spatial scales and times spanning entire lives is one of humanity’s great undertakings. In

experimental and clinical work probing the brain’s activity, a variety of electric and mag-

netic measurement techniques are routinely applied. However interpreting the extracellu-

larly measured signals remains arduous due to multiple factors, mainly the large number

of neurons contributing to the signals and complex interactions occurring in recurrently

connected neuronal circuits. To understand how neurons give rise to such signals, mecha-

nistic modeling combined with forward models derived using volume conductor theory

has proven to be successful, but this approach currently does not scale to the systems level

(encompassing millions of neurons or more) where simplified or abstract neuron repre-

sentations typically are used. Motivated by experimental findings implying approximately

linear relationships between times of neuronal action potentials and extracellular popula-

tion signals, we provide a biophysics-based method for computing causal filters relating

spikes and extracellular signals that can be applied with spike times or rates of large-scale

neuronal network models for predictions of population signals without relying on ad hoc
approximations.

Introduction

Extracellular electric recordings of neuronal activity, either by embedding sharp electrodes in

neural tissue [1] or by placing electrodes on top of cortex [2] or on the scalp (electroencepha-

lography—EEG [3]), have a long history in the experimental and clinical neurosciences. The

same applies to magnetic recordings outside of the head (magnetoencephalography—MEG

[4]). However, the link between the measured brain signals and the underlying neuronal activ-

ity remains poorly understood due to the inherent ill-posed inverse problem: The number of

contributing sources is large compared to the limited number of discrete locations in- and out-

side of the brain tissue where one can measure. However, the forward problem is well-posed,

given the transmembrane currents in all neurons setting up the activity. Different electric and

magnetic signals can be computed by means of so-called volume conductor (VC) theory map-

ping source currents to each signal type, thus models accounting for the biophysical properties

of neurons and networks thereof can now be used to study the link between activity and mea-

surements [5, 6].

Dynamics of biophysically detailed neurons and synaptically coupled networks thereof are

typically modeled by solving sets of coupled, linear and non-linear ordinary or partial differen-

tial equations describing the dynamics of the neuronal membranes, ion channel conductances,

synapses, and so forth (see e.g., [7]). Multicompartment (MC) models have for decades been

the go-to tool for geometrically detailed conductance-based neuron models as tailored soft-

ware solvers are readily available such as NEURON [8], GENESIS [9], and Arbor [10]. For the

purpose of computing extracellular electric and magnetic signals, transmembrane currents

from the MC neuron simulation are then combined with the appropriate forward model
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derived using linear volume conductor theory, as incorporated in software interfacing the neu-

ral simulator like LFPy [11, 12], NetPyNe [13], and BMTK [14]. For brain tissues, a linear rela-

tionship between transmembrane currents and extracellular electric potentials as well as

magnetic fields appears well established [3, 15–17].

Illustrated in Fig 1A, neuronal network models may account for different levels of detail,

ranging from biophysically detailed MC neuron networks (top level), simplified spiking point-

neuron networks (middle level) and population type models accounting for population-aver-

aged activity (bottom level). The different levels may at times be bridged with appropriate

mapping of parameters. As illustrated, MC models may be directly combined with VC theory

for extracellular signal predictions as these models account for the spatiotemporal distribution

of transmembrane currents, while the less detailed models, in particular point-neuron net-

works and mean-field type population models, do not. Thus in order to relate their activity in

terms of spike times or spike rates of the different populations to extracellular signals addi-

tional steps are required, here illustrated by some ‘black box’ model taking spikes or equivalent

spike rates of each population as input while outputting approximated extracellular signals.

Illustrated in Fig 1B, we shall approach this black box problem by models that account for

key properties of the biophysically detailed network models (mainly cell model membrane

dynamics, spatial distributions of cells and synapses, network connectivity, temporal synapse

dynamics), properties which could also be constrained by experimental data. Through a sys-

tematic reductionistic approach, we first apply the so-called ‘hybrid scheme’ for extracellular

signal predictions [18] which entails that presynaptic spike events are first simulated in the

actual network in Fig 1B. The spike times are used for synapse activation times in correspond-

ing populations of MC neurons as they would occur in the actual network. We shall approxi-

mate synaptic and ion-channel conductances by linearized variants as this allows for

simulating approximated extracellular signals using fully linear models. The hybrid scheme

predictions are validated against ground truth signals predicted by the true network models.

The setup is also used to compute averaged causal spike-signal impulse response functions,

‘kernels’, for each connection pathway. Such hybrid scheme kernels shall be applied with

population firing rates to approximate extracellular signals [18, 19]. Expanding on this kernel-

based scheme, we here present a novel method to efficiently compute such kernels directly

accounting for the biophysics and description of the putative network model and neurons.

Their prediction relies on the same linearization steps introduced for the hybrid scheme but

may bypass the hybrid scheme altogether. All kernel-based signal predictions are validated

against corresponding ground truth signals. The computational schemes investigated here are

applicable for predictions of the low-frequency content (≲ 300 Hz or so) of the signals usually

associated with population activity and network interactions. The final kernel-based predic-

tions can also readily be combined with spike- and rate-based network simulation

frameworks.

In the above context, we in part consider observations and assumptions of near-linear rela-

tionships between times of neuronal action potentials (APs) as well as their extracellularly

recorded correlates (‘spikes’), and low-frequency parts (below a few hundred hertz) of extracel-

lularly recorded population signals like local field potential (LFP), EEG, and MEG signals [20–

23]. For synaptically coupled neuronal networks, one may consider two main direct neuronal

contributors to extracellular population signals. The first is due to presynaptic neurons gener-

ating APs observed as extracellular spikes nearby each active neuron in recordings using inva-

sive microelectrodes. The second is due to evoked synaptic currents and associated membrane

currents throughout postsynaptic populations following presynaptic APs. AP durations are on

the order of milliseconds, APs occur with relative sparsity (low spike rates) and irregularity in

single-neuron spike trains [24], observed pairwise spike train correlations are on average weak
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Fig 1. Levels of detail for neuronal network models and roadmap for approximated brain signal predictions. (A) Biophysically detailed MC neuron

network models at the microscopic scale allow for simulating synaptic connectivity and whole-cell dynamics, including APs, spike trains and

extracellular signals (e.g., the extracellular potential) using forward models derived via VC theory. Neither less detailed spiking point-neuron network

models nor continuous population type models (neural mass models, mean-field models, neural field models) towards the mesoscopic scale facilitate

extracellular signal predictions. They require a model translating spike events or spike rates into representative extracellular signal approximation, here

illustrated by the black box. (B) (1) Detailed networks provide ground truth signals and spiking activity for successive reduction steps, given a set of

neuron and network parameters (box). (2) The ‘hybrid scheme’ setup [18] relies on simulating MC neuron populations but omits recurrent network

connections. Predictions are governed by spike times of recurrent networks and may use linearized neural dynamics. (3) The ‘kernel predictor’ setup

relies on a subset of MC neuron simulations and accounts for the underlying statistics (synapse densities, etc.) of the network, and computes

spatiotemporal spike-to-signal impulse response functions. (4) Firing rates of presynaptic populations ν(t) are convolved by precomputed kernels H(R,

τ) for signal approximations.

https://doi.org/10.1371/journal.pcbi.1010353.g001
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[25, 26], and extracellular spike amplitudes decay quickly with distance [27, 28]. Extracellular

spikes also carry more power toward higher frequencies [27]. The latter synaptic contributions

can be small in amplitude per pair of pre- and postsynaptic neurons relative to currents related

to each presynaptic AP itself, but each neuron typically targets many neurons via hundred or

even thousands of synapses, and recurrent interactions may affect the times of subsequent acti-

vations across large neural populations. The dynamics of synapse currents are also relatively

slow and can thus be assumed to shape extracellular signals around lower frequencies than

presynaptic contributions. We may then assume that mainly synaptic activity governs the low-

frequency content of extracellular signals, in part, via a boosting effect on the compound sig-

nals by even weak pairwise spike train correlations [18].

Dynamics of neuronal activity are typically nonlinear, one prime example is the model for

APs by [29] which also provided a mathematical formalism that remains commonly used to

describe different ion-channel dynamics (e.g., [30]). Extracellularly recorded postsynaptic

responses following presynaptic AP events can not initially be assumed to be linear, as synaptic

currents following activation are not linearly dependent on the synaptic conductance due to

membrane potential changes. Furthermore, there may be active (voltage- and calcium-depen-

dent) ion channels present across dendrites resulting in non-linear integration even below AP

threshold, and contributions by different activations of multiple synapses may not sum linearly

[31]. Synaptic activity may also result in dendritic Ca2+- and NMDA spikes [32].

Thus to explain experimental data implying approximately linear relationships between

times of presynaptic spikes and different electric signals, the direct signal contribution by both

pre- and postsynaptic activity must sum approximately linearly. Furthermore, for synaptic cur-

rents across postsynaptic populations the different contributions by nonlinear synapse and

membrane dynamics must be negligible or well explained by linear components around typical

working points (e.g., average membrane potentials and spike rates). Still, a number of compu-

tational studies assume linearity between presynaptic spike events and corresponding times of

synaptic activations and resulting extracellularly recorded signals [18, 19, 33–38]. Others

assume linearity between transmembrane input current and extracellular potentials [39], in

part justified by model work wherein dynamics of active ion channels are approximated by lin-

ear dynamics [40, 41]. Analyses of experimental recordings by [42] also show synaptic currents

and the LFP to be strongly coupled using a linear regression model.

Henceforth, we shall examine the validity of models that either explicitly or implicitly

assume linear relationships between neuronal spiking and extracellular signals. We will do so

by comparing the extracellular signals that these models predict with corresponding predic-

tions obtained with biophysically detailed MC neuron networks. Hereby we test the following

approaches (hypotheses): (1) Linearized model setups can accurately capture the spatiotempo-

ral features of ground truth extracellular potential and current dipole moment computed from

recurrent networks of inherently non-linear constituents. For this testing, we first apply the

hybrid prediction scheme [18]. (2) If the linear hybrid scheme implementation accurately cap-

tures the ground truth signals, we test whether or not the output extracellular signal predic-

tions can be well captured as a linear and time-invariant causal system, taking population

spike rates as input filtered by suitable spatiotemporal causal filters. These sets of filters or ‘ker-

nels’ represent postsynaptic spike-signal impulse responses averaged over pairs of pre- and

postsynaptic populations, and are initially computed via the hybrid scheme. (3) Knowledge of

the underlying distributions of cells and synapses, conduction delays, linearized cell, and syn-

apse dynamics, and corresponding population spike rates is sufficient information to predict

these spatiotemporal causal kernels accurately.

The kernel-based approach can be applied with recurrent neuronal network descriptions

using much-simplified neuron representations, like leaky integrate-and-fire (LIF) point
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neurons, variants thereof, as well as few-compartment neuron models, as the main determi-

nant for the extracellular signals is presynaptic spikes or spike rates. Also, point-neuron net-

works may accurately mimic experimentally observed spiking activity as well as corresponding

MC neuron networks (see e.g., [43]). Then, the computationally costly MC simulations may

only be required in order to compute the appropriate sets of kernels, thus reducing compute

resource demands by orders of magnitude. This may for instance open for efficient forward-

model-based extracellular signal predictions from large-scale point-neuron network models

encompassing multiple brain areas [44] or models incorporating realistic cell densities within

an area [36, 43]. The kernel methodology would also be immediately useful with rate-based

frameworks, as also population spike rates of spiking network models may be accurately cap-

tured in corresponding population rate models (see e.g., [45–48]).

This study is organized as follows: In Materials and methods we first detail a generic bio-

physically detailed MC neuron network that is used for ground truth signal predictions, and

different network configurations. Then we detail a proposed hybrid methodology that allows

for separation between simulations of network activity (‘spikes’) and extracellular signals, and

the derivation of linearized signal predictions, including our proposed methodology for fast,

accurate, and deterministic predictions of kernels. In Results we investigate the properties of

neuron models in active and linearized versions, recurrent MC neuron networks and compare

the different linear approximations to the corresponding ground truth signals. Then, we show-

case the kernel-based methodology to network spiking activity of a recurrent network of leaky

integrate-and-fire neurons. In Discussion we consider the implications of this work and possi-

ble future steps.

Materials and methods

Reference multicompartment neuron networks

We first define the properties of a generic recurrently connected network of MC neurons used

for ground truth signal generation and later signal approximations. For compactness, we

choose a symbolic notation similar to [18] wherever possible and provide the model details as

a generic ‘recipe’. Their particular values are summarized in this section and Tables 1 to 3. In

general terms we:

1. Let X 2 {. . .} and Y� X denote pre- and postsynaptic populations, respectively. Each popu-

lation corresponds to separate classes of neurons (derived from anatomy, electrical proper-

ties, gene expression, phenomenology, etc.). We let populations in Y be a local subset to

allow for remote neuronal populations in X. (Thus X may include remote populations,

point processes, external stimuli, and similar, which we will assume give approximately

zero direct contributions to the local signals predicted by the full recurrent network model).

2. Let lists NX and NY denote the sizes of populations X and Y.

3. Let u 2 {1, . . ., N|N 2 NX} and v 2 {1, . . ., N|N 2 NY} denote pre- and postsynaptic neuron

indices, respectively.

4. Let rv � ~rY denote a discretely sampled somatic location of neuron v, where ~rY describes

the probability density function of somatic locations of population Y in 3-dimensional (3D)

space.

5. Let KYX denote the total number of pairwise connections between presynaptic (source)

population X and postsynaptic (target) population Y. Assuming random connectivity with

binomial in- and out-degree distributions the corresponding connection probability is then
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CYX ¼ 1 � ð1 � 1=NYNXÞ
KYX [49]. KYX� CYXNYNX for small connection probabilities. The

subscript YX notation is used throughout this paper to emphasize that these parameters are

connection-specific.

6. Let kvu �
~kYX denote the randomly sampled number of synapses (multapses) per connec-

tion if a connection exist between neurons u and v. ~kYX here describes a discrete distribu-

tion from which integer numbers greater than 0 are drawn.

7. Let probabilities of synapse placement onto postsynaptic compartments indexed by m be

proportional to the product LYX(zm)Am, where LYX(z) is a depth-dependent function evalu-

ated at the midpoint of each compartment with surface area Am. Compartments are

indexed by m. Synapse placements are drawn randomly kvu times for each pair of connected

neurons.

Table 1. MC neuron and recurrent network parameters (continued in Table 2).

Symbol Value/definition Description

X {Excitatory (E), inhibitory (I)} Presynaptic cell types/populations

Y X Postsynaptic cell types/populations

NY 2 {NE, NI} {8192, 1024} Population sizes

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Radius around vertical z–axis

N ðm;sÞðxÞ 1ffiffiffiffiffiffiffi
2ps2
p exp�

ðx� mÞ2

2s2
Gaussian distribution

~rX N ð0; 75mmÞðzÞ � r2 for r 2 ½0; 150 mm� Cell body probability density function

CYX 0.05 for all Y and X Pairwise connection probability (Pairwise

Bernoulli; no autapses)

~kYX N ð2; 0:5ÞðxiÞ; xi 2 f1; 2; . . . ; 20g; for X ¼ E

N ð5; 1ÞðxiÞ; xi 2 f1; 2; . . . ; 20g; for X ¼ I

(
Multapse probability mass function

S {soma, apic, basal} Morphology sections

LS f30; 1000; 200g mm for X ¼ E

f30; 200; 200g mm for X ¼ I

(
Section length

dS f30; 3; 2g mm for X ¼ E

f15; 2; 2g mm for X ¼ I

(
Section diameter

nS
seg f1; 21; 5g for X ¼ E

f1; 5; 5g for X ¼ I

(
# of segments per section

cm 1 μF cm−2 Membrane capacitance

Ra 100 O cm Axial resistivity

gS
L {0.0000338, 0.0000589, 0.0000589} S cm−2 Passive leak conductance

EL −90 mV Passive leak reversal potential

�g S
Nat

{2.04, 0.0213, 0.0213} S cm−2 Nat conductance

ENa 50 mV Na+ reversal potential

�g S
Kv3:1

{0.693, 0.000261, 0.000261} S cm−2 Kv3.1 conductance

EK −85 mV K+ reversal potential

�g S
Ih {0.0002, 0.002, 0.002} S cm−2 Ih-current conductance

The leak, fast inactivating Na+ (Nat), fast, non-inactivating K+ (Kv3.1) channel and non-specific cation current (Ih)

dynamics are those given in detail in [30]. Capped and discrete distributions are normalized such that the integral or

sum over all values equals 1.

https://doi.org/10.1371/journal.pcbi.1010353.t001
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8. Let the current for each synapse following activation at time t be described by

IsynðtÞ ¼ �Gsynf ðtÞðVmðtÞ � EsynÞ ; ð1Þ

where �Gsyn denotes the maximum synaptic conductance and f(t) 2 [0, 1] the temporal kinet-

ics of the synapse. We let f(t) = fYX(t) depend on both the pre- and postsynaptic populations

X and Y, respetively. Vm(t) denotes the postsynaptic membrane potential and Esyn 2 {EsynE,

EsynI} denotes the reversal potential of the synapse which is determined by the presynaptic

cell type (i.e., excitatory or inhibitory). For simplicity, we will assume that �Gsyn is indepen-

dent of position. We will also assume that �Gsyn is static, that is, there are no synaptic plastic-

ity rules or stochastic processes in place. Individual weights are, however, drawn from a

distribution described by a probability density function ~GsynYX, that is, �Gsynvuk �
~GsynYX for

Table 2. Synaptic parameters for recurrent network (continued from Table 1).

Symbol Value/definition Description

~GsynYX N ð0:15 nS; 0:02 nSÞYðGÞ for X ¼ E;Y ¼ E

N ð0:125 nS; 0:0125 nSÞYðGÞ for X ¼ E;Y ¼ I

N ð4:5 nS; 0:45 nSÞYðGÞ for X ¼ I;Y ¼ E

N ð2:0 nS; 0:2 nSÞYðGÞ for X ¼ I;Y ¼ I

8
>>>>><

>>>>>:

Synaptic conductance distributions

EsynX 0 mV for X = E, −80 mV for X = I Synaptic reversal potential

fYX(t) e� ðt� tsÞ=t1 � e� ðt� tsÞ=t2

e� tpeak=t1 � e� tpeak=t2

� �

Yðt � tsÞ

where tpeak ¼
t2t1

t2 � t1

log
t2

t1

� �

Synaptic temporal kernel

τ1 0.2 ms for X = E, 0.1 ms for X = I Synaptic rise time constant

τ2 1.8 ms for X = E, 9.0 ms for X = I Synaptic decay time constant

~DYX
N ð1:5 ms; 0:3 msÞYðt � 0:3 msÞ for X ¼ E;Y ¼ E

N ð1:4 ms; 0:4 msÞYðt � 0:3 msÞ for X ¼ E;Y ¼ I

N ð1:3 ms; 0:5 msÞYðt � 0:3 msÞ for X ¼ I;Y ¼ E

N ð1:2 ms; 0:6 msÞYðt � 0:3 msÞ for X ¼ I;Y ¼ I

8
>>>>><

>>>>>:

Conduction delay distributions

LYX(z) N ð0; 100ÞðzÞ
3

þ
2N ð500; 100ÞðzÞ

3
;

X ¼ E;Y ¼ E;S n fsomag

N ð50; 100ÞðzÞ;X ¼ E;Y ¼ I;S n fsomag

N ð� 50; 100ÞðzÞ;X ¼ I;Y ¼ E

N ð� 100; 100ÞðzÞ;X ¼ I;Y ¼ I

8
>>>>>>>>>><

>>>>>>>>>>:

Depth-dependence, syn. density

�GsynYext 0.2 nS External synapse conductance

Eext 0 mV Ext. synapse rev. potential

fYext(t) fYX(t) Ext. synapse temporal kernel

τ1 0.2 ms Ext. synapse rise time constant

τ2 1.8 ms Ext. synapse decay time constant

kYext {465, 160} # ext. synapses per neuron

hνexti 40 s−1 (Poisson statistics) Ext. syn. activation rate

~DYext
δ(t) Ext. syn. conduction delay

LYext 1 Ext. syn. depth dependence

Capped and discrete distributions are normalized such that the integral or sum over all values equals 1.

https://doi.org/10.1371/journal.pcbi.1010353.t002
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k = 1, . . ., kvu. The subfix vuk in �Gsynvuk denotes the value for the k’th synapse between pre-

and postsynaptic neurons u and v, respectively.

9. Let the conduction delays resulting from presynaptic action potential generation time to

activation time of the synapse be greater than zero and randomly drawn from some distri-

bution as Dvuk �
~DYXðtÞ. For simplicity, we let conduction delays be independent of cell

location and geometry.

10. Let the sequence of spike times suðtÞ ¼
P

kdtk
¼
P

kdðt � tkÞ of each presynaptic neuron

u in each population X is recorded throughout the entire simulation duration [0, tsimi. We

choose to relax this requirement if a population in X represents an external population

feeding persistent, uncorrelated events with spectrally ‘flat’ spiking statistics (e.g., fixed-

rate Poisson point processes) into the recurrently connected network. We here (and for

the remainder of this study) use the compact notation dtk
¼ dðt � tkÞ to denote Dirac

delta functions centered around the time tk.

11. Let the weighted, directed graph representing edges (synaptic connections) between nodes

(neurons) for every pair of pre- and postsynaptic populations be stored for purpose of vali-

dating the ‘hybrid scheme’ simulations described in the section Hybrid scheme for extra-

cellular signal predictions. This storage requirement may also be relaxed if the total

number of synapses over all connections is large enough to make storage infeasible or one

could recreate the full connectivity graph procedurally (at least statistically). Graph

weights represent maximum synaptic conductances. The graph also includes the synaptic

locations on the postsynaptic neurons, and we will hereby let compartment index m
equate to this location.

12. Let each postsynaptic neuron v in any population in Y be modeled using the ‘standard’

MC neuron formalism such that their transmembrane currents ½Ihvim ðrm; tÞ� per compart-

ment indexed by m can be computed. rm denotes their midpoint coordinates.

13. Let extracellular signal contributions in different spatial locations (or axes in terms of cur-

rent dipole moment) be computed and summed up as
P

Y

PNY
v¼1

F hvi½Ihvim ðrm; tÞ�. The

matrix F hvi here denotes a linear mapping of transmembrane currents of cell v to a linearly

Table 3. Measurement and simulation parameters for recurrent network (continued from Table 2).

Symbol Value/definition Description

Δt 0.0625 ms Temporal step size

tsim 12 000 ms Simulation duration

ttransient 2000 ms Startup transient duration

C˚ 34˚C Simulation temperature

Vm(0) −65 mV Initial membrane voltage

su(t)
P

kdtk
for all u 2 X Spike times tk of neurons u

xch. = ych. [0, . . ., 0] x, y-positions of electrode contacts

zch. [1000, 900, . . ., −100, −200]μm z-positions of electrode contacts

R [xch., ych., zch.]
> Electrode contact locations

rcontact 5 μm Electrode contact radiis

ncontact [0, 1, 0] Electrode contact surface normals

σ 0.3 S m−1 Conductivity

ψ {Ve(R, t), P(t)} Predicted signals

https://doi.org/10.1371/journal.pcbi.1010353.t003
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dependent extracellular signal. The different forward models considered in this study are

detailed in Volume-conductor forward models.

Reference networks of simplified ball-and-sticks neurons. The two-population, recur-

rent MC neuron network models constructed for this study, fully specified by the enumerated

list above and parameter values listed in 1–3, are kept intentionally simple for clarity of results.

One main simplification is stylized neuron models with only a subset of ion channels distrib-

uted onto soma and dendritic compartments. The ‘E’ cell represents a phenomenological excit-

atory unit, while the ‘I’ cell represents a phenomenological inhibitory unit. Both share the

same subset of passive and active ion channels taken from a biophysically detailed cell model

[30], important for action potential generation (transient sodium, Nat; fast, non-activating

potassium, SKv1.3) and sub-threshold dynamics (non-specific cation current, Ih). Refer to [30]

for details on these ion-channel dynamics. Network parameters were initially tuned by a com-

bination of hand-tuning and parameter value scans, aiming to generate population spiking

activity that is asynchronous and irregular (AI) [50] and with biologically plausible averaged

spontaneous spike rates (approximately hνE(t)i = 2.5 spikes s−1 for the ‘E’ population; hνI(t)i =

5 spikes s−1 for the ‘I’ population).

Reference networks of biophysically detailed neuron models. As an additional test of

the methodology developed around the above description of a recurrent network of simplified

ball-and-sticks MC neuron models, we replace the ‘excitatory’ (E) cell type with a biophysically

detailed model of a thick-tufted layer 5b pyramidal cell of rat somatosensory cortex [30]. Here,

we use model parameter values shown to produce acceptable BAC firing and perisomatic step

current firing as summarized in [30, Table 3]. Each individual cell instance in the modified

network model is rotated by 4.729 rad and -3.166 rad around the horizontal x− and y−axes,

respectively, in order to first align the apical dendrite with the vertical z−axis, before applying

a random rotation around the z−axis. By increasing the number of extrinsic synapses distrib-

uted on each neuron to kEext ¼ 920, the typical population firing rates, and network state is well

preserved when compared to the reference network. All other parameters remain as defined in

Tables 1 to 3.

Reference neuron networks with perturbed synaptic conductances. Parts of this study

are devoted to the effect of perturbed network parameters in different network instances on

our proposed methodology. For this, we incorporated a connection weight scaling factor J 2
{0.975, 1, 1.025, 1.05, 1.075}, and rescaled recurrent synaptic max conductances �G 0synYX (and

parameters derived from them) as

�G 0synEE ¼ �GsynEEJ
�GsynEI=�GsynEE ; ð2Þ

�G 0synIE ¼ �GsynIEJ
�GsynII=�GsynIE ; ð3Þ

�G 0synEI ¼ �GsynEIJ
�GsynEE=�GsynEI ; ð4Þ

�G 0synII ¼ �GsynIIJ
�GsynIE=�GsynII : ð5Þ

Effectively, perturbing J shifts the relative balance of excitatory and inhibitory synaptic input

in the networks. A factor J = 1 corresponds to our unperturbed reference network.
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Leaky integrate-and-fire (LIF) point-neuron network

As a proof of principle that the ‘kernel method’ (see Kernel-based extracellular signal predic-

tions) can be utilized for ‘live’ extracellular signal predictions with spiking point-neuron net-

work models or other types of networks with abstract neuron representations, we fit

connectivity parameters of a phenomenological two-population network of leaky integrate-

and-fire (LIF) point neuron network with current-based synapses to mimic the spiking activity

of the unperturbed reference network of ball-and-sticks neurons. After initial hand tuning of

the network parameters into a reasonable state of activity resembling the reference network’s

state, we subsequently used the multi-objective optimization NSGA-II non-dominated sorting

genetic algorithm [51] in order to fine tune key network connectivity parameters, namely syn-

aptic weights �I synYX, membrane capacitance of neurons in each population CmX, weight of

extrinsic synapses �I extsyn, and mean value of the conduction delay distributions h~DYXi. The full

network and neuron descriptions are given in Table 4, including best-fit parameters and

parameter value boundaries used for the fitting procedure. The network is implemented and

simulated in NEST [52, 53], using exact integration for step size Δt [54].

For the parameter fitting, we used the implementation of the NSGA-II class pymoo.
algorithms.nsga2.NSGA2 provided by the pymoo Python package [55]. We defined

the objective functions to be minimized using the pymoo.optimize.minimize method

as

F1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhnEðtÞi � hnLIFE ðtÞiÞ
2

q

; ð6Þ

F2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhnIðtÞi � hnLIFI ðtÞiÞ
2

q

; ð7Þ

F3 ¼
X

f�200Hz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðSnEnEðf Þ � SnLIFE nLIFE
ðf ÞÞ2

q

; ð8Þ

F4 ¼
X

f�200Hz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðSnInI ðf Þ � SnLIFI nLIFI
ðf ÞÞ2

q

: ð9Þ

Here, νX(t) and nLIFX ðtÞ denote population spike rates of the MC and LIF neuron network popu-

lations, respectively. SnXnX ðf Þ and SnLIFX nLIFX
ðf Þ denotes population spike rate autospectral power at

each frequency f (see Signals and signal analysis methods for details). For this minimization

problem, we used an initial population size of 100, and ran the algorithm for 20 generations

with default parameters.

The pseudo-weight vector approach [55, 56] is used to select a solution from the solution

set that performs well with respect to all objective functions. The pseudo weight, a normalized

distance measure from the worst solution for each objective function Fi, is herein calculated as:

wi ¼
ðFmax

i � FiðxÞÞ=ðFmax
i � Fmin

i Þ
PM

m¼1
ðFmax

m � FmðxÞÞ=ðFmax
m � Fmin

m Þ
: ð10Þ

Fmax
i and Fmin

i denotes the maximum and minimum value of Fi(x) in the last generation, respec-

tively. Then, the best-fit parameter vector x where chosen as the one that minimized k[w1, w2,

w3, w4]> − [0.25, 0.25, 0.25, 0.25]>k. We here use the implementation provided by the

pymoo.factory.get_decision_making method.
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Hybrid scheme for extracellular signal predictions

The so-called ‘hybrid scheme’ [18] is a proposed solution for computing extracellular signals

from spiking activity in recurrent neuron network models. This scheme is hybrid in the sense

that the spiking activity of recurrent networks is first simulated separately and stored, then

stored spike events are loaded and used for synaptic activation times in corresponding popula-

tions of MC neuron models set up to predict extracellular signals. In this latter step, synapses

are placed on postsynaptic neurons and are activated at times as they would occur in the

Table 4. LIF network and neuron parameters.

Symbol Value/definition Description

X {E, I} Population names

NX 2 {NE, NI} {8192, 1024} Population sizes

CYX 0.05 for all Y and X Connection probability (Pairwise Bernoulli; no autapses)

[CmX]
�

½270; 310� pF for X ¼ E

½100; 120� pF for X ¼ I

(
Upper/lower bounds, membrane cap.

CmX {289.1, 110.7} pF Membrane capacitance (best fit)

τm 10 ms for all X Membrane time constant

RmX τm/CmX Membrane resistance

EL −65 mV for all X Leak reversal potential

Vθ −55 mV for all X Spike threshold

Vr EL for all X Spike reset potential

τr 2 ms for all X Refractory period

thuik if Vhuim ðt
hui
k Þ � Vy

Spike emission times

tm
dVhuim

dt
� Vhuim þ RmXIuðtÞ if 8k; t =2 ðthuik ; thuik þ tr� Sub-threshold dynamics

Vhuim ðtÞ Vr if t 2 ðthuik ; thuik þ tr� Reset and refractoriness

½�I synYX �

�

½1:1; 1:8� nA for X ¼ E;Y ¼ E

½1:5; 2:1� for X ¼ E;Y ¼ I

½� 25; � 18� for X ¼ I;Y ¼ E

½� 14; � 8� for X ¼ I;Y ¼ I

8
>>>>><

>>>>>:

Bounds, mean max. syn. current

�I synYX

�

N ð1:589 nA; 0:1589 nAÞYðIÞ for X ¼ E;Y ¼ E

N ð2:020 nA; 0:2020 nAÞYðIÞ for X ¼ E;Y ¼ I

� N ð23:84 nA; 2:384 nAÞYðIÞ for X ¼ I;Y ¼ E

� N ð8:441 nA; 0:8441 nAÞYðIÞ for X ¼ I;Y ¼ I

8
>>>>><

>>>>>:

synapse max. current (best fit)

τsynYX 0.5 ms for all Y and X Exp. syn. decay time constant

½~DYX� [1, 4] ms for all X and Y Bounds, mean conduction delay

~DYX
N ð2:520 ms; 1:260 msÞYðt � 0:3 msÞ for X ¼ E;Y ¼ E

N ð1:714 ms; 0:857 msÞYðt � 0:3 msÞ for X ¼ E;Y ¼ I

N ð1:585 ms; 0:793 msÞYðt � 0:3 msÞ for X ¼ I;Y ¼ E

N ð1:149 ms; 0:574 msÞYðt � 0:3 msÞ for X ¼ I;Y ¼ I

8
>>>>><

>>>>>:

Conduction delay dist. (best fit)

½�I extsyn� [28, 32] nA Bounds, ext. syn. max. current

�I extsyn 29.89 nA Ext. syn. max. current (best fit)

kY ext {465, 160} # ext. synapses per neuron

hνexti 40 s−1 (Poisson statistics) Ext. syn. activation rate

Capped and discrete distributions are normalized such that the integral or sum over all values equals 1.

https://doi.org/10.1371/journal.pcbi.1010353.t004
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corresponding recurrent network, negating recurrent connections and spike communication

between MC neurons. Thus, the problem of computing signals can be solved in an embarrass-

ingly parallel manner. As the scheme relies on prerecorded spike events, our application of the

scheme employs postsynaptic neurons that do not generate APs.

Here, we incorporate the hybrid scheme by storing population geometries, spikes, and the

full synaptic connectome (placements, weights, conduction delays, pre- and postsynaptic neu-

ron IDs) of the recurrent MC neuron networks to file, and reinstate synaptic placements and

activation times in separate simulations without actual recurrent connections. Locations and

activation times of extrinsic synapses are not stored directly due to their large count. Here we

ensured replicable placements and activation times by fixing the random seeds affecting these.

This step allows for computing signals identical to the recurrent model in case the MC neuron

models are those of the recurrent network, but here, we shall rely on models where the

membrane and synapse dynamics are approximated by linear dynamics. Thus, only signal

contributions that stem from synapse activations on postsynaptic neurons are accounted for in

predicted signals, while contributions by presynaptic APs are not. The scheme thus lends itself

to predictions of signals thought to mainly stem from synaptic activity, that is, LFP, ECoG,

EEG, and MEG signals.

Linear approximations to synapse and membrane dynamics. Here, we describe the dif-

ferent linear approximations to the different constituents of the conductance-based non-linear
recurrent neuron network models, calculated via the following steps:

1. Approximate conductance-based synapses by equivalent current-based synapses:

IsynðtÞ ¼ �Gsynf ðtÞðVmðtÞ � EsynÞ

� �Gsynf ðtÞð�Vm � EsynÞ

¼ �I synf ðtÞ ;

ð11Þ

where �Vm denotes the typical postsynaptic potential (or its expectation value). The synapse

current magnitude �I syn is constant. Here, we typically recorded somatic potentials in a sub-

set of neurons in each population of the recurrent MC neuron networks and let �Vm equate

the median somatic potentials. Where noted, we perturb �Vm by some value or use values

obtained across the neuronal morphologies.

2. Active ion channel currents on the specific form

iwðtÞ ¼ � �gwoðtÞðVmðtÞ � EwÞ ð12Þ

are approximated by equivalent, linearly dependent currents similar to [40, 57]. Here, Ew is

the channel reversal potential and ω(t) the gating variable which dynamics are given in

terms of an activation time function τw(V) and activation function ω1(V) as

twðVmðtÞÞ
@oðtÞ
@t
¼ o1ðVmðtÞÞ � oðtÞ : ð13Þ

If the voltage dynamics of the active compartment is defined by

cm
@VmðtÞ
@t

¼ � �g L VmðtÞ � ELð Þ � �gwoðtÞ VmðtÞ � Ewð Þ þ Ia ; ð14Þ

one can obtain the so-called quasi-active approximation [40, 57, 58] by linearizing each
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voltage dependent term around the steady state value �Vm resulting in

cm
@VmðtÞ
@t

¼ � �g LðgRðVmðtÞ � �VmÞ þ Z�ðtÞÞ þ Ia ; where ð15Þ

gR ¼ 1þ
�gwo1ð�VmÞ

�g L
; and ð16Þ

Z ¼
�gwð�Vm � EwÞ

�g L

@o1ð
�VmÞ

@Vm
: ð17Þ

Here, an equivalent gating variable is defined as

�ðtÞ ¼ oðtÞ � o1ð�VmÞð Þ=
@o1ð

�VmÞ

@Vm
; ð18Þ

and its linear dynamics is governed by

twð
�VmÞ

@�ðtÞ
@t
¼ VmðtÞ � �Vm � �ðtÞ : ð19Þ

Above, γR denotes the ratio between the total and leak conductance, while η characterize

whether the quasi-active current approximation acts as positive (η< 0) or negative (η> 0)

feedback. For the special case η = 0 the quasi-active current is ‘frozen’, acting as a passive

current [40]. Note that the above sets of equations correspond to channels usually modeled

with a single state variable (e.g., Ih-type currents), but generalize also to current types with

more than one gating variable (e.g., Na+- and K+ type currents), see [57] for details.

3. With linearized active ion channels, the leak reversal potential EL is further modified as

EL ¼
�Vm þ

X

w

�gwð�Vm � EwÞ

�g L
; ð20Þ

which ensures that the resting potential of the quasi-active model is similar to �Vm. We note

that this modification do not affect extracellular signal predictions where current-based

synapses (pt. 1) are used, but is applied anyway as in [40].

4. In principle one may remove active ion channels omitting the above linearization tricks

altogether if their net contributions to the total transmembrane currents can be assumed to

be minuscular around typical membrane voltage values. Here however we do account for

all channels.

5. With current-based synapses (pt. 1), we optionally incorporate the effective membrane con-
ductance geff which amounts to a modified passive leak conductivity. Assuming the total

membrane conductance depends only on synaptic currents of recurrent and external con-

nections and the passive leakage current, the total leak membrane conductivity per postsyn-

aptic compartment m of postsynaptic neuron indexed by v is

gmðtÞ ¼ �g L þ
1

Am

X

X02X[fextg

X

u[X0

�Gsynvu fYX0 � su � dDvuk

� �
ðtÞ ; ð21Þ

where �g L is the specific passive leak conductance, Am compartment area, su(t) the sequence

of presynaptic spikes and dDvuk
¼ dðt � DvukÞ the conduction delay. The asterisk symbol (�)

denotes a temporal convolution. The double sum over presynaptic populations X0 2 X [ {ext}
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and units u 2 X0 implies that each presynaptic unit u targeting the compartment is accounted

for. We introduce this notation to express that also synapses from external sources (‘ext’)

must be accounted for. Assuming a fixed average presynaptic spike rate hνu(t)i and a normal-

ized delay distribution (where
R1

0
~DYXðtÞdt ¼ 1), the time-averaged effective conductance in

each compartment m is approximately

geffm ¼ hgmðtÞi � �g L þ
1

Am

X

X02X[fextg

X

u[X0
hnuðtÞi�Gsynvu

Z 1

0

fYX0 ðtÞdt : ð22Þ

Then, the original �g L value may be replaced by geffm on a per-compartment basis.

Note that we compute values of geffm independently from contributions by linearized active

ion-channel contributions (pt. 2), which still contribute to the total sum of conductances.

Kernel-based extracellular signal predictions

In case the relations between spikes in presynaptic populations and resulting extracellular sig-

nals arising mainly from evoked responses in targeted postsynaptic populations are approxi-

mately linear, filter- or ‘kernel’-based prediction methods may greatly simplify signal

predictions at the level of populations. If we first define the presynaptic population spiking

activity as the sequence of Dirac delta functions sX(t) = ∑u2X su(t), the signal approximation

ĉðR; tÞ � cðR; tÞmay be computed as the sum over linear convolutions

ĉðR; tÞ ¼
X

X

X

Y

ðsX � HYXÞðR; tÞ : ð23Þ

Here, HYX(R, τ) are representative spatiotemporal spike-signal impulse responses for pairs of

pre- and postsynaptic populations measured relative to presynaptic spike events at time lag τ =

0. As we deal with spike events and sampled signals on a discrete time grid, it is convenient to

redefine the spike sequences sX(t) as spike rates by the temporal binning

nX½ti� ¼ Dt� 1
R tiþDt=2

ti� Dt=2
sXðtÞdt ; ð24Þ

where Δt denotes the simulation step size. Then, the above equation can be written as

ĉðR; tÞ ¼
X

X

X

Y

ðnX �HYXÞðR; tÞ : ð25Þ

Throughout this section, we describe two alternative methods to compute such kernels

HYX(R, τ), either via the hybrid scheme as in [18], or directly as described below. As the kernels

are equivalent to finite impulse responses (FIR) as they are 0 for all time lags τ< Δt, the linear

convolutions can be replaced by a linear filter function implementation (see Signals and signal

analysis methods below).

Kernel predictions via the hybrid scheme. The linear cable equation combined with line-

arized synapse- and ion-channel dynamics in our application of the hybrid scheme (cf. Hybrid

scheme for extracellular signal predictions) provides a relatively straightforward method to

compute representative sets of spatiotemporal kernel functions as in [18]. This earlier study

shows that a good approximation to the signal ψ(R, t) can be obtained by first measuring ker-

nels averaged over all pre- and postsynaptic neurons in each population X and Y. In order to

compute these kernel averages directly using the hybrid scheme, actual network spiking activ-

ity is first replaced by simultaneous and deterministic events suðtÞ ¼ dtX
where tX > 0 is a cho-

sen time for each population X, then the signal contributions of each postsynaptic population
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ψYX(R, t) is computed via the disassociated network model around tX; and the response is aver-

aged over the presynaptic neurons as

HYXðR; tÞ ¼
1

NX
cYXðR; tÞ : ð26Þ

Here, τ denote time relative to tX. Thus these kernels must be causal, that is, by construction

HYX(R, τ) = 0 for τ< 0 as any contribution to the signal ψ(R, t) is solely postsynaptic. No signal

contributions before the presynaptic spike event at τ = 0 plus the minimum conduction delay

is accounted for (Contributions by presynaptic activity, that is, transmembrane currents of

presynaptic neurons from APs and axonal propagation are not accounted for.). We let the

computed kernels span the interval τ 2 [−τmax, τmax], where τmax denotes a maximum lag

value. The postsynaptic responses typically rise and decay back to approximately zero after a

few tens of milliseconds. This decay time is related to the time constants relevant to the neuro-

nal dynamics (that is, τm, τsyn, τw, . . .). Throughout this manuscript, we chose τmax = 100 ms

for computed kernels, which we assume is a few multiples of relevant time constants.

Direct kernel predictions from single MC simulations. Different from the hybrid

scheme kernel method described above, the main aim of this work is to develop a method to

directly compute a set of accurate and deterministic kernels ĤYXðR; tÞ needed for all connec-

tion pathways between pre- and postsynaptic populations X and Y, based on some expectation

values for cell and synaptic placements and other network parameters. We aim to replace sim-

ulations of populations of MC neurons via the hybrid scheme with a single MC neuron simula-

tion per kernel. Thus the number of MC neuron simulations corresponds to the number of

pathways between any population X and Y which is significantly less than the total neuron

count in each network. The hat denotes kernels computed using this direct method, in contrast

to hybrid scheme kernels. First, we assume that:

1. The dynamics of the neuronal cables and synaptic input can be approximated as a linear

system resulting from the same steps as in Linear approximations to synapse and mem-

brane dynamics.

2. Each postsynaptic population can be represented by one typical biophysically detailed neu-

ron model. Effectively, the whole postsynaptic neuron population is collapsed to a single

neuron with linearized membranes receiving all inputs, while the effect of the spatial distri-

bution of cells in space is accounted for via the VC forward model (see Modified forward

models for deterministic kernel predictions).

3. The underlying statistics of synaptic placements and currents are preserved, which allows

us to compute the average synaptic current density for each recurrent connection over the

whole postsynaptic population ‘neuron’.

Accounting for the distribution of neurons along the z-axis and ignoring their radial loca-

tion, we let the synaptic density be proportional to the membrane area of postsynaptic com-

partments Am multiplied by a function LYXðzÞ obtained as the convolution of LYX(z) (see

Table 2) and the z−component of ~rY (defined in Table 1). Hence we compute the expecta-

tion value for synaptic in-degree per compartment indexed by m as

hksynYXmi ¼
h~kYXiKYX

NY

LYXðzmÞAmP
mLYXðzmÞAm

; ð27Þ

where zm denotes the midpoint location of each compartment projected on the z-axis, and

h~kYXi the mean multapse count per connection. With this quantity one may define the per-
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compartment synaptic input per activation as

IsynYXmðtÞ ¼ NXhksynYXmi
�I synYXfYXðtÞ : ð28Þ

As above, the term fYX(t) denotes the temporal component of synapse currents for each

connection.

4. Optionally accounting for the effective leak conductivity, Eq 22 must be modified per com-

partment as

geffm ¼ �g L þ
1

Am

X

X02X[fextg

hnX0 ihksynYX0mi
�GsynYX0

Z 1

0

fYX0 ðtÞdt : ð29Þ

As above, we account for the external population ‘ext’ jointly with the main network popu-

lations in X.

5. Then one may straightforwardly compute the resulting postsynaptic response, that is, the

full set of transmembrane currents [Im(rm, τ)], by applying synaptic currents IsynYXm(τ) in a

single MC neuron simulation for all connections between populations X and Y. In order to

temporarily compute the approximated kernel functions Ĥ temp
YX ðR; tÞ for different extracel-

lular signals, the resulting transmembrane currents must be combined with appropriate

forward model matrices F calculated as described below.

6. Finally to account for network conduction delay distributions, the intermediate kernels

must be filtered in the temporal domain as

ĤYXðR; tÞ ¼ ð~DYX � Ĥ temp
YX ÞðR; tÞ : ð30Þ

Volume-conductor forward models

Forward models for reference-network and hybrid scheme signals. As derived from vol-
ume conductor theory, the different electric and magnetic signals that can be computed from

the electric activity of brain cells are linearly dependent on transmembrane currents (see e.g.,

[5] and references therein). Thus, some arbitrary signals ψ(Rn, t) in M different spatial loca-

tions Rn (or directions in case of current dipole moments) from N compartmental sources

indexed by m located at rm can be computed as

½cðRn; tÞ� ¼ F ½Imðrm; tÞ� ð31Þ

where F is a matrix with dimensions (M, N) wherein each element fnm is the chosen forward

solution mapping the contribution from each source to the corresponding measurement.

[Im(rm, t)] denotes the transmembrane currents of compartments m at time t. For the presently

used line sources [11, Eq. (4)], the elements of F are calculated using

fnm ¼
1

4psDsnm
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

nm þ r
2
nm

p
� hnm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘
2

i þ r
2
nm

q

� ‘nm

�
�
�
�
�
�
�

�
�
�
�
�
�
�

; ð32Þ

where ρnm is the distance perpendicular to line source (compartment) m, hnm the longitudinal

distance from the end of the line source and ℓnm = Δsnm + hnm the longitudinal distance from

the start of the line source with length Δsnm to some electrode contact located at Rn. The line-

source approximation assumes an infinite homogeneous, isotropic, and linear volume conduc-

tor with conductivity σ. Measurement sites are treated as infinitesimally small points, so to
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mimic the finite extent of contacts of experimental recording electrodes, we apply the ‘disk-

electrode’ approximation to the extracellular potential [11, Eq. (6)] by embedding averaged

values of fnm from Eq 32 for 100 random locations within radius rcontact into F .

The approach applies also to other types of measurements that are linearly dependent on

the transmembrane current sources, such as the current dipole moment [39]. For calculations

of the current dipole moment P the columns of F are simply

fm ¼ rm ¼ ½xm; ym; zm�
>
; ð33Þ

where (xm, ym, zm) denotes the midpoint coordinates of each compartment.

Modified forward models for deterministic kernel predictions. When computing extra-

cellular signals via the kernel predicting scheme we must account for the distributions of cells

in space. Here we assume that each population is radially symmetric around the vertical z-axis,

homogeneous within some radius R and inhomogeneous along the z−axis as described by a

probability density function ~rX (see Table 1). In order to compute extracellular potentials, we

use the analytical forward solution for the electric potential from a planar disk with homoge-

neous current density [59]

anmðzn; zmÞ ¼
1

2spR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðzn � zmÞ
2
þ R2

q

� jzn � zmj

� �

; ð34Þ

which is subsequently convolved with the depth-dependence of cell placement gðzÞ ¼ ~rX � ez

(where ez denotes the unit vector along the z−axis), resulting in matrix elements:

fnm ¼
R1
� 1

anmðzn � z; zmÞgðzÞdz : ð35Þ

Here, we solve this convolution integral numerically using the quad method of the scipy.
integrate module. Note that we apply the same equation also when predicting kernels for

the biophysically detailed neuron network (see Reference networks of biophysically detailed

neuron models). This formalism also assumes that the spread of ~rX is ‘vast’ versus typical com-

partment lengths and contact radii. The planar disk radius R is set equal to the population

radius r.

To compute the current dipole moment assuming radial symmetry around the z-axis the

mapping matrix’ columns are simply modified as

fm ¼ ½0; 0; zm�
>
; ð36Þ

where zm denotes the midpoint coordinates of each compartment along the z−axis. We do not

account for the distribution of cells along the z-axis as it does not affect the current dipole

moment. Due to radial symmetry, the components in the lateral directions are expected to can-

cel [12, 60], hence the corresponding matrix elements are set to zero.

Signals and signal analysis methods

Throughout this study, the different signals we consider are: membrane potentials Vm(t); spike

trains su(t); population firing rates νX(t) obtained by counting spikes per time bin of width Δt
divided by bin width providing a signal with unit spikles s−1 as defined in Eq 24; and raw and

low-pass filtered extracellular signals ψ(Rn, t) (extracellular potentials Ve(Rn, t); current dipole

moments P(t)). For extracellular signals we consider only frequencies f> 0Hz by subtracting

the mean value in each channel for times t> ttransient.

For low-pass filter operations, we used an elliptic (Cauer) digital filter design. Here, we

used filters of the 2nd order with 0.1 dB maximum ripple in the passband, minimum
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attenuation of 40 dB in the stopband, and a critical (cutoff) frequency of 100 Hz. Filter coeffi-

cients were generated using the scipy.signal.ellip function with parameter out-
put=’sos’ (second-order sections). The low-pass filter was applied to the data using the

scipy.signal.sosfiltfilt function which implements a forward-backward (zero

time-lag) filter operation.

In order to quantify relative differences in amplitudes of approximated signals x(t) and

ground truth y(t) we defined the ‘ratio of standard deviations’ as

rSTD ¼
STDðxÞ
STDðyÞ

: ð37Þ

In order to quantify temporal agreement with signals x(t) and y(t) we computed the squared

correlation coefficient (coefficient of determination) R2 at zero time lag as

R2 ¼
COVðx; yÞ

VARðxÞVARðyÞ
: ð38Þ

In order to aggregate our R2 and rSTD metrics for signals computed at different depths, we

computed the 10th and 90th percentiles using the implementation of numpy.quantile
with quantiles equal to 0.1 and 0.9, respectively.

For convolutions, we use the discrete convolution between vectors x and y defined as

ðx � yÞ½k� ¼
X1

l¼� 1

x½l�y½k � l� : ð39Þ

Here, we used the implementation provided by numpy.convolve with mode=’same’.

Application of discrete FIR filter coefficients h to a signal x (relevant for NEST predictions)

is defined as

y½k� ¼
XL

l¼0

h½l�x½k � L� : ð40Þ

Estimates of cross power spectral densities (CPSD) Sxy(f) and power spectral densities

(PSD) Sxx(f) of signals x(t) and y(t) use the Welch’s average periodogram method [61] as

implemented by scipy.signal.csd. Unless specified otherwise, we use the periodogram

settings nfft = 2048, noverlap = 1536, fs=Δt−1 (in Hz) and detrend = False.

When optimizing point-neuron network parameters we used the setting detrend=’con-
stant’ when computing the features F3 and F4.

The real-valued coherence (magnitude-squared coherence) between signals x(t) and y(t) we

compute via their CPSD and PSD functions as

Cxyðf Þ ¼
jSxyðf Þj

2

Sxxðf ÞSyyðf Þ
: ð41Þ

NESTML FIR filter extension

In order to incorporate extracellular signal predictions using the computed sets of causal ker-

nels from a point-neuron simulation in NEST (see Leaky integrate-and-fire (LIF) point-neu-

ron network), a finite impulse response (FIR) filter implementation of Eq 40 is now expressed

in the NESTML modeling language [62, 63]. The FIR filter model is written as a neuron model

in NESTML, which takes neuronal spikes as input and computes the filter output while the
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simulation progresses. The output can then be queried and recorded to file using standard

NEST devices. The NESTML toolchain generates C++ code for the model, which is compiled

into a NEST extension module, allowing the FIR filter node (or a heterogeneous population of

filter nodes) to be instantiated in NEST simulations.

As per Eq 40, the FIR filter model defines L as the order of the filter and h as a vector of

length L containing the filter coefficients. The values of L and h can be set externally from the

simulation script, and in this study we insert filter coefficients from each set of predicted ker-

nels ĤYXðRn; t � 0Þ for each different extracellular signal (see Direct kernel predictions from

single MC simulations for details). The input spikes are binned per time step, and the spikes

for the last L time steps are stored in a circular buffer x of length L. At every time step during

the simulation, the binned input spikes in x are multiplied with filter coefficients in vector h
and summed according to Eq 40. The index to vector x is also adjusted such that the appropri-

ate element of the circular buffer is accessed. The resulting filter output is stored in a (scalar)

state variable, y, which can be recorded using a multimeter in NEST.

Software and hardware details

Codes and software tools. This study has been made possible using the following software

tools: GCC 11.2.0, mpich 3.4.2, Python 3.9.6, ipython 7.27.0, jupyter-notebook 6.0.3, numpy

1.21.3, scipy 1.7.1, matplotlib 3.4.3, pandas 1.3.4, seaborn 0.11.2, pymoo 0.4.2.2, mpi4py 3.1.3,

h5py 3.5.0, NEURON 8.0.2, MEAutility 1.5.0, LFPykit 0.4, LFPy 2.2.6, LFPykernels 0.1.rc8

(github.com/LFPy/LFPykernels, git SHA: 4fd79ab), NEST 3.1 (github.com/nest/nest-simula

tor, git SHA: 512022e54), NESTML 4.0-post-dev (github.com/nest/nestml, git SHA: 0b251ec),

parameters 0.2.1 (github.com/NeuralEnsemble/parameters, git SHA:b95bac2).

In order to ensure Methods and results reproducibility [64, 65], all simulation codes required

to replicate the findings reported here are publicly available at github.com/LFPy/LFPykernels.

These include the reference implementation of the methodology which is installable via the

usual Python distribution channels as:

• pip install --pre lfpykernels # or

• pip install git+https://github.com/LFPy/LFPykernels

The code repository also includes a Docker recipe file which may be used to build contain-

ers with the full software environment required by the simulations and analysis. Versioned

releases of the LFPykernels tool is permanently deposited on Zenodo.org [66].

Hardware details. All computationally demanding simulations for recurrent networks

and reconstructed networks of MC neurons as well as parameter optimizations were per-

formed on the standard compute nodes of the JUSUF compute cluster at the Jülich Supercom-

puting Centre (JSC), Jülich Research Centre, Jülich, Germany. Each compute node has two

AMD EPYC 7742 CPUs (2 × 64 physical cores) running at 2.25 GHz, 256 GB of DDR4 RAM

running at 3200 MHz. The compute nodes are interconnected by InfiniBand HDR100 (Con-

nect-X6). Each MC network simulation ran in parallel distributed across 8 compute nodes

with 1024 Message Passing Interface (MPI) processes, using the ParTec ParaStation MPI

implementation. Point-neuron network simulations were executed using 32 OpenMP threads,

1 core per thread. All relevant software tools were compiled with compilers from GCC.

Post-processing, calculations of deterministic kernels, other analysis, and plotting were

performed on a MacBook Pro (13-inch, M1, 2020) with 16 GB RAM running macOS Big Sur

(v11.6) with the Conda (conda.io) package management system with packages from the

conda-forge channel (conda-forge.org).
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Results

Neuron models with linearized membrane dynamics

The results presented throughout this study rely on three different fully active multicompart-

ment (MC) neuron models, and versions where their voltage-dependent ion channel dynamics

are linearized around a chosen membrane voltage value. These linearization steps are detailed

in (pts. 2–3 under Linear approximations to synapse and membrane dynamics). The cell mor-

phologies are shown in Fig 2A. The phenomenological ‘ball-and-sticks’ models ‘E’ and ‘I’ rep-

resent excitatory and inhibitory neurons in the two-population recurrent network in the

following sections, while the biophysically detailed layer 5 pyramidal cell model ‘EHay2011’ [30]

later on replaces the ball-and-sticks ‘E’ population (in Methods performance using biophysi-

cally detailed cell models). The ‘E’ and ‘I’ neurons are both modeled with a single compartment

for the soma, and dendritic sections pointing upwards and downwards along the depth axis.

The ‘E’ cell has a prominent apical section 1 mm in length while the ‘I’ cell dendritic sections

are symmetric around the soma.

As a first check comparing active and linearized neuron dynamics in absence of synapses,

we stimulate the different cell models with small step-like hyper- and depolarizing input

Fig 2. Model neurons and somatic responses with active and linearized ion-channel dynamics. (A) Neuronal geometries of neurons representing

excitatory (E) and inhibitory (I) neurons, as well as a biophysically detailed pyramidal cell model (EHay2011 [30]) replacing population ‘E’ in the modified

network. (B) Excitatory (E) neuron responses in active and linearized versions. Row 1: Step input current with variable magnitude injected into the

neuron’s soma compartment. Row 2: Somatic voltage responses to step input currents for the active neuron version. Colors corresponds to each

respective trace in row 1. Row 3: Input responses in the quasi-active linearized (biophys:lin) version. Row 4: Input responses in the passive-frozen

(biophys:frozen) version. Row 5: Response amplitudes at t = 1200 ms as function of stimulus magnitude. (C) Same as column B but for the

inhibitory (I) neuron model. (D) Same as column B but for the biophysically detailed excitatory (EHay2011) neuron model.

https://doi.org/10.1371/journal.pcbi.1010353.g002
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currents to the somatic compartment. The dynamics are linearized around the steady state

somatic membrane potentials in absence of stimuli. In panels B-C we compare responses of

the ‘E’ and ‘I’ model versions with ‘quasi-active’ linearized versions of the Ih-type channel

(biophys:lin) plus frozen dynamics for the Nat- and SKv1.3 channels as well as the version

were also the Ih-type channel is frozen (biophys:frozen). In both cases, the quasi-active

versions can capture the sub-threshold dynamics, including the sag and rebound effects

explained by the Ih-channel currents. The fully passive-frozen models are effectively similar

to models with only passive leak channels, which is reflected in the corresponding responses.

These models then perform worse with respect to capturing the sub-threshold dynamics of the

fully active versions. Note also that these linearized model neurons can not generate APs for

stronger depolarizing input currents, unlike their active counterparts. The row 5 panels show

the response amplitudes after 100 ms stimulus duration, and unsurprisingly the linearized

neuron dynamics are linearly dependent on stimulus amplitude. Quasi-active models match

the corresponding active model responses well for small stimulus amplitudes.

In Fig 2D, the same experiment is performed with the biophysically detailed model neuron

[30]. Here, a quasi-active version of the NaP conductance is incorporated in addition to the

quasi-active Ih channel, while remaining channels are in their passive-frozen states (bio-
phys:lin). Again, the sub-threshold dynamics for small perturbations are captured by the

quasi-active model in an excellent manner, resulting in similar responses below the firing

threshold. Similar to our earlier observation, the model version with all passive-frozen dynam-

ics (biophys:frozen) can not capture the somatic response accurately. The same qualita-

tive observations hold true in case current input is delivered to a dendritic location

approximately 200 μm from the soma (S1 Fig).

Reference MC neuron network with extracellular signal predictions

Representing our reference networks for generating ground-truth extracellular signals, and

spiking activity used for signal approximations, Fig 3A shows the populations of ball-and-

sticks neurons and extracellular recording geometry for a phenomenological two-population

MC neuron network set up according to pts. 1–13 in Reference multicompartment neuron

networks. For this network (as well as networks with perturbed parameters), we predict extra-

cellular potentials at depths highlighted by black circular markers treating compartments as

line sources (Eq 32), as well as the current dipole moment (Eq 33). The current dipole moment

determines EEG and MEG-like signals, as both can be computed from it using the appropriate

forward model [3, 4, 12, 60]. Panels B and C show the distributions across depth of somas and

instantiated synapses for each pair of pre- and postsynaptic populations, accordingly. All neu-

rons receive depolarizing input by randomly distributed excitatory synaptic input with ran-

dom activation times. A few somatic membrane potential traces recorded in each population

is shown in panel D. The median values �Vm for a sample size of N = 1024 in each population

are used for linearization of ion-channel and synapse dynamics in the following sections. The

spike raster plot (Fig 3E) shows the resulting activity to be stable and asynchronous-irregular

at biologically plausible rates. The I cells fire more often than the E cells on average, around 5.1

Hz and 2.6 Hz respectively. Oscillations at the level of the populations are clearly visible in the

corresponding spike-count histograms (panel F) and rate spectra (panel G). These oscillations

around 55 Hz can be expected to be expressed in extracellular signals, and indeed the extracel-

lular potential (panel H) shows oscillations with varying amplitudes across depth. We note in

passing that the generated extracellular potentials are in line with experimentally observed sig-

nals with amplitudes of a few 100 μV, with few visible extracellular spike signatures. The oscil-

lations generated by the network are prominently captured also in the current dipole moment
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(panel I), however only in the vertical z−component Pz. Due to the symmetry of the neural

populations around the z−axis and the cell alignments along the same axis, the orthogonal

components Px and Py cancel. Next, we investigate how these signals may be captured by mod-

els that only use MC neurons with linearized ion-channel and synapse dynamics and no recur-

rent connections.

Fig 3. Stylized two-population MC neuron network with ground truth predictions of extracellular signals. (A) Neuronal populations and electrode

geometry. The network is constructed of one excitatory (‘E’) and one inhibitory (‘I’) population. Only a subset of cells is shown from each population.

The black point markers along the z-axis denote locations of electrode contact points with separation 100 μm. (B) Soma counts per population X along

the vertical z-axis in bins of 20 μm. (C) Synapse counts per connection KYX along the vertical z-axis (bin size 20 μm). (D) Somatic potential traces of 10

neurons in populations ‘E’ and ‘I’. The �V hEim and �V hIim values in each legend denote median soma potentials computed from a subset of neurons in each

population (N = 1024). (E) Network spike raster spanning 500 ms of spontaneous activity. The mean population-averaged firing rates are given shown

in the legend. (F) Per-population spike-count histograms with bin size 1 ms. (G) Population firing-rate power spectra. (H) Extracellular potentials

across depth (Ve(R, t)). (I) Components of the current dipole moment (P(t)) along the x, y, z−axes.

https://doi.org/10.1371/journal.pcbi.1010353.g003

PLOS COMPUTATIONAL BIOLOGY Brain signal predictions from multi-scale networks using a linearized framework

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010353 August 12, 2022 23 / 51

https://doi.org/10.1371/journal.pcbi.1010353.g003
https://doi.org/10.1371/journal.pcbi.1010353


Hybrid scheme with linearized dynamics accurately captures extracellular

signals of the reference network

Biophysically detailed as well as simplified networks of spiking point-neuron models can gen-

erate realistic spike train statistics of different populations. But, the presently used framework

combining MC and VC models is required in order to compute meaningful extracellular pop-

ulation signals such as the LFP. In the hybrid scheme ([18]; Hybrid scheme for extracellular

signal predictions), the simulation of spiking activity in the recurrent network(s) can be per-

formed separately with intermediate storage of spikes, while extracellular signals can be com-

puted via unconnected populations of MC neurons activated by synapses triggered at times as

they would have occurred in the actual network. Using the reference recurrent MC neuron

network and corresponding spike events and ground-truth extracellular signals shown in Fig 3

we can now, in contrast to our earlier study [18], test this prediction scheme in a self-consistent

manner.

In this test, we record spikes trains of each neuron and ground truth extracellular potentials

and current dipole moment from our reference MC neuron network to file, as well as the ran-

domly instantiated cell locations in space and the full synaptic connectivity including synaptic

placements. The resulting connectivity table includes pre- and postsynaptic neuron id, synap-

tic location (cell morphology coordinate and Cartesian coordinate), maximum synaptic con-

ductance and transmission delay.

With the above information, we confirmed we can compute the intra- and extracellular sig-

nals matching the ground truth exactly, as initial conditions, neuron models and synaptic acti-

vations, etc., can be preserved in absence of actual recurrent connections (result not shown).

However, one benefit of the present hybrid scheme, is that it allows simplifying the individual

neuron and synaptic dynamics systematically. In particular, we shall ascertain that linearized

model setups can accurately capture the features of the ground truth extracellular potential

(Ve(R, t)) and current dipole moment (P(t)). Here, we shall account for synaptically evoked

contributions to the different signals.

We first consider 4 hybrid scheme model configurations. These configurations all incorpo-

rate the same linear approximation to synaptic currents around the median somatic voltage in

each reference network population as described in pt. 1 in Linear approximations to synapse

and membrane dynamics. Then, we consider every possible permutation of (1) whether or not

to account for changes in the effective membrane leak conductance geff per compartment m
due to synaptic activity (see pt. 5 in Linear approximations to synapse and membrane dynam-

ics), and (2) the quasi-active linearized (biophys:lin) and passive-frozen (biophys:
frozen) model neuron variants representative of the ‘E’ and ‘I’ population showcased above.

See pt. 2–3 in Linear approximations to synapse and membrane dynamics for details on the

linearization procedure for voltage-gated ion channel descriptions.

By visual inspection of all hybrid scheme predictions in Fig 4, both model setups that

account for changes in the effective membrane leak conductance (g_eff:True) in panels C

and D accurately capture the spatiotemporal features of the ground truth signals (black lines),

including signal amplitudes. The main differences seen here are that the ground truth signals

contain high-frequency jitter that is not captured in hybrid scheme predictions as signal con-

tributions by APs are not accounted for by design.

Our choice of quasi-active (biophys:lin) or passive-frozen (biophys:frozen) ion-

channel dynamics are seen to have remarkably little effect on the predicted signals (in contrast

to somatic voltage responses). However, not accounting for membrane conductance contribu-

tions by synapses (g_eff:False), results in a clearly detrimental effect on the predicted sig-

nals (panels A and B). The most salient observation is that the approximations to extracellular
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potentials across depth (Ve(R, t)) as well as z−components of the current dipole moment

(Pz(t)) are predicted with amplitudes that are about a factor 2 too high. The signals also appear

to lag behind the ground truth signals by a few ms in the temporal domain. These effects are

also observed in a preliminary report on this particular hybrid scheme model configuration

[67]. A more thorough analysis and summary of the accuracies of these signal approximations

are summarized below in Accurate signal predictions using hybrid scheme and deterministic

kernels, and compared also to kernel-based prediction methods. For the remainder of this

study, we will thus assume that methods other than the hybrid scheme must also account for

changes in the leaky properties of the membrane. This is due to the effect the (effective) mem-

brane time constant has on the integration of synaptic input currents throughout the dendrites

and the resulting distributions of transmembrane currents.

Kernels for accurate signal predictions

So far we have shown that hybrid scheme predictions incorporating linear approximations to

the synapse and active ion channel currents accurately capture the extracellular potentials

across depth as well as the current dipole moment. This observation implies that the relations

between times of presynaptic APs and resulting spatiotemporal distribution of transmembrane

currents (and therefore extracellular potentials etc.) of respective postsynaptic neurons are

approximately fixed. As the postsynaptic responses can not occur before the spike times of pre-

synaptic neurons, these relationships must also be causal. Throughout this and the next sec-

tions, we shall therefore further test the idea that extracellular signal predictions can be well

Fig 4. Ground truth signals vs. hybrid scheme approximations. Extracellular potential across depth (top row) and z-component of the current dipole moment (Pz(t),
bottom row) predicted from the MC neuron network model in Fig 3 (black lines) is compared to predictions made using the hybrid scheme (colored lines), using

current-based synapses and neurons with either passive-frozen or quasi-active ion-channel dynamics (biophys:frozen vs. biophys:lin), ignoring or

accounting for the effective membrane conductance (g_eff:False/True in panels A-D respectively).

https://doi.org/10.1371/journal.pcbi.1010353.g004
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represented as a linear time-invariant (LTI) causal system. Here, we shall compare filter coeffi-

cients, or ‘kernels’, obtained at the population level using two different approaches, either via

the hybrid scheme setup above, or using a novel, direct, deterministic method based on the

idea that the underlying distributions of cell and synapse positions, synaptic delays, linearized

ion-channel, linearized synapse dynamics, and neuronal geometries provide sufficient infor-

mation to estimate the corresponding causal filters. Our derivation of these deterministic ker-

nels is described in detail in Direct kernel predictions from single MC simulations. In both

cases, the kernels represent the population-averaged postsynaptic response of spike events in

each presynaptic population, that is, equivalent to ‘spike-signal’ impulse response functions of

the system. For corresponding signal predictions evaluated in Accurate signal predictions

using hybrid scheme and deterministic kernels, the kernels are applied with population spike

rates. Predictions are compared with ground truth signals generated by our reference recur-

rent MC neuron network (see Reference MC neuron network with extracellular signal

predictions).

Predicted kernels using the hybrid scheme method. As discussed in [18], estimating full

sets of kernels for every connected pair of pre- and postsynaptic neurons for signal predictions

is intractable in large networks due to the connection count and corresponding kernel count.

The study showed that averaged kernels HYX(R, τ) computed for presynaptic (X) and postsyn-

aptic (Y) populations could accurately capture the corresponding hybrid scheme extracellular

potentials by the double sum over the convolution of population firing rates and averaged ker-

nels (see Eq 25). Here, we revisit this approach, adding also current dipole moments to the

comparison.

First, we take the hybrid scheme simulation above, using current-based synapses and either

variant of linearized ion-channel dynamics. We account for changes in the effective membrane

leak conductance as above (g_eff:True). Then, ongoing spiking activity in each population

is replaced by single synchronous events that allow for computing the full set of population-

averaged kernels HYX(R, τ) using Eq 26. The resulting sets of kernels for predicting the extra-

cellular potential and current dipole moment are shown in Fig 5A. Consistent with our earlier

observation, only minor differences occur between kernel signals predicted using quasi-active

or passive-frozen cable models. The set of kernels reveals non-trivial relationships between

spikes by neurons in each population and the extracellular potential across depth due to com-

bined effects of the cable models, synapse model, VC model, etc., and could challenge model

assumptions made in other studies like space- and time-separable kernels (e.g., [20, 34, 35])

due to the effect of dendritic integration.

The set of kernels also allows for some insight into which connections and populations

shape the extracellular signals. Here, the I to E kernels (HEI(R, τ)) have amplitudes that are

�4–16 times those of the E to E kernels (HEE(R, τ)). Thus any spike in population ‘I’ may give

a significant signal contribution from inhibitory synaptic currents in population ‘E’, even if the

number of neurons in population ‘E’ is 8-fold that of population ‘I’. The dominance of inhibi-

tory over excitatory contributions in the LFP is in agreement with previous reports (e.g., [18,

68]). It should, however, be noted that our choices of synaptic density shape functions for each

pathway (LYX(z) defined in Table 2) may significantly affect the corresponding kernel appear-

ances—inhomogeneous synapse densities may result in much stronger responses than homo-

geneous densities [41, 60, 69]. Furthermore, the direct contribution by evoked transmembrane

currents on population ‘I’ can be expected to be minor, in part explained by the smaller spatial

extents of the neurons and low cell count.

Predicted kernels using the direct and deterministic method. The kernel calculations

via the hybrid scheme above rely on a number of MC neuron simulations proportional to the

overall network size, and incur significant computational costs. Here we rather account for
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Fig 5. Spike-signal impulse response functions (‘kernels’) for extracellular potentials and current dipole moments. (A) Hybrid scheme spatiotemporal functions

HYX(R, τ) for each connection between every possible pre- and postsynaptic network population X and Y, respectively. The top row kernels are computed as the spike-

averaged contribution by postsynaptic neurons to the extracellular potential in electrode contact locations shown in Fig 3A, while the bottom row kernels are computed

as the spike-averaged current dipole moment contribution along the vertical z-axis. The kernels are computed either using fully passive-frozen (biophys:frozen) or

with quasi-active (biophys:lin) cable models. The kernels are truncated at time lags τ 2 [0, 50 ms]. (B) Same as panel A, but here the kernels are computed using a

computationally fast and deterministic method accounting for expectation values in terms of cell and synapse placement.

https://doi.org/10.1371/journal.pcbi.1010353.g005
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distributions and expectation values in the parameterization of the MC neuron network

directly, allowing predictions of an appropriate and accurate set of kernels without instantiat-

ing network-equivalent populations of MC neurons. Described fully in Direct kernel predic-

tions from single MC simulations, the constituents needed for these calculations are:

linearized versions of the MC neurons representing each population; their distribution in

space; probabilities for synaptic placements per compartment for each main connection; syn-

aptic indegree distributions over instantiated connections for each main connection; conduc-

tion delay distribution for each main connection and the linearized synapse currents for each

main connection. Typical presynaptic spike rates need to be specified as well as pairwise con-

nection probabilities between neurons in each population. Finally, the VC model for each sig-

nal is modified to account for radially symmetric cell distributions in space (see Modified

forward models for deterministic kernel predictions for details).

In contrast to the above hybrid scheme kernels shown in Fig 5A, each kernel now requires

only a single MC neuron simulation to compute the population-averaged transmembrane cur-

rents following synaptic activation, and account for all other effects by a series of linear convo-

lution operations in the spatial and temporal domains as well as a scaling by the presynaptic

population size (see Direct kernel predictions from single for MC simulations details). The set

of calculations results in deterministic outcomes, and are fast to compute on laptop computers

while high-performance computing resources are generally required for the hybrid scheme

setup. From our default parameterization of the MC neuron network (Reference multicom-

partment neuron networks), the resulting set of approximated kernels ĤYXðR; tÞ for each

main connections between pre- and postsynaptic populations X and Y is shown in Fig 5B. This

new set of kernels appears similar to the averaged kernels computed via the hybrid scheme

shown in Fig 5A, suggesting that they may be used interchangeably. The main differences

appear to be somewhat reduced amplitudes of the deterministic set of kernels for extracellular

potentials in panel B. Next, we shall apply our predicted kernels with corresponding popula-

tion spike count histograms (‘spike rates’) for signal approximations, and compare their accu-

racies alongside predictions using the full hybrid scheme against the corresponding ground

truth (Hybrid scheme with linearized dynamics accurately captures extracellular signals of the

reference network).

Accurate signal predictions using hybrid scheme and deterministic kernels

With the sets of hybrid scheme kernels (HYX(R, τ)) and approximated kernels (ĤYXðR; tÞ)
shown in panels A and B in Fig 5, respectively, we now convolve them with the corresponding

presynaptic population firing rates νX(t), and sum up the contributions using Eq 25. In all

respects, the corresponding signal predictions shown in panels A-D in Fig 6 compare very

favorably with the ground truth signals generated by the reference network (Fig 3H and 3I).

By visual inspection, neither hybrid scheme predictions (Hybrid scheme with linearized

dynamics accurately captures extracellular signals of the reference network, Fig 4) nor kernel-

based predictions display clearly distinguishable discrepancies from the ground truth signals

in terms of spatiotemporal features and signal amplitudes, except for some high-frequency jit-

ter associated with APs present in the ground truth data.

In order to quantify prediction accuracies, we therefore resort to comparing squared Pear-

son correlation coefficients (R2, Eq 38) and relative differences in their standard deviations

(rSTD, Eq 37) between ground truth signals and predictions. We compute these metrics not

only for the ‘raw’ signals but also for low-pass (‘LP’) filtered data. Thus by attenuating the

higher frequencies typically associated with presynaptic APs present in the ground truth (see

Signals and signal analysis methods for details) a somewhat improved accuracy for the
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different approximations can be expected. In terms of extracellular potentials and the low-pass

filtered counterpart (a.k.a. the LFP), the R2 and rSTD metrics in Fig 7 confirm our visual analy-

sis. The worst-performing configurations are hybrid scheme setups that do not account for

changes in the effective membrane time constants (g_eff:False). All other configurations

perform well in all channels except ch. 9. Nearby this depth, the sign of the signals flips due to

current conservation, perhaps most evident in the dominating kernels HEI(R, τ) and ĤEIðR; tÞ
shown in Fig 5. Except for the ch. 9 outliers, the observed R2 and rSTD values approach 1. Pan-

els C and D in Fig 7 projects median as well as the 10% and 90% percentiles of R2 and rSTD val-

ues computed across channels. Here, an overall gain in R2 is seen in all cases in the low-pass

filtered data. Overall, our choice of quasi-active vs. passive-frozen membrane dynamics has

only a minor effect in terms of the rSTD and R2 metrics.

Our findings for the extracellular potentials are mirrored for the approximated z−compo-

nent of the current dipole moment in panels E and F in Fig 7. All approximations taking into

account the effect of the effective membrane leak conductance perform excellently, both

with respect to the R2 and rSTD metrics. Similarly, the PSDs of ground truth (black curve)

and different approximations to the z-compontent of the current dipole moment in panel G,

show that the spectral signal content is well captured below approximately 300 Hz. Around

similar frequencies, the corresponding coherences (cf. Eq 41) in panel H drop below approx-

imately 50%.

Fig 6. Ground truth signals vs. kernel-based approximations. (A,B) Ground truth extracellular potential (top) and current dipole moment (bottom) predicted from

the MC neuron network model in Fig 3 compared to predictions made using the hybrid scheme kernels HYX(R, τ) shown in Fig 5A. The signal approximations are

obtained by convolving presynaptic population firing rates (νX(t)) with respective kernels (HYX(R, τ)) and summing the contributions. (C,D) Same as panels A and B,

using deterministic kernels ĤYXðR; tÞ shown in Fig 5B.

https://doi.org/10.1371/journal.pcbi.1010353.g006
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Fig 7. Accuracy of signal predictions vs. ground truth. For each approximation of extracellular potentials shown in Figs 4 and 6, their accuracy is evaluated in terms of

the (A) squared Pearson correlation coefficient between approximation and ground truth (R2) and (B) their standard deviation normalized by ground truth signal

standard deviation (rSTD). The filled and white-faced markers denote metrics computed from raw and low-pass filtered data, respectively. (C) Aggregate R2 and rSTD

values with median, 10% and 90% percentiles along each axis computed from extracellular potential approximations. Outliers (< 10%,� 90% percentiles) not shown.

(D) Same as panel C for predictions accounting for changes in effective membrane conductance (g_eff: True). (E) Scatter plot of R2 vs. rSTD for the different

approximations to the z-component of the current dipole moment Pz(t). (F) Same as panel E for predictions accounting for changes in effective membrane conductance

(g_eff:True). (G) PSD of the z−component of the current dipole moment, comparing ground truth (black line) versus hybrid- and kernel-based signal

approximations (colored lines). Same color coding as in panel A. (H) Coherence between ground truth z−component of the current dipole moment and different

approximations. Same color coding as in panel A.

https://doi.org/10.1371/journal.pcbi.1010353.g007
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Effect of perturbed parameters on signal predictions with deterministic

kernels

Predictions of kernels ĤYXðR; tÞ and corresponding signals rely on accurate assessments of

a number of parameters. Here we choose to investigate the effect on ĤYXðR; tÞ of mis-

matched time-averaged presynaptic population firing rates hνX(t)i (including that of

the external population) and choice of �Vm on our R2 and rSTD metrics. The unperturbed

�Vm � � 70mV (Fig 3D), and presynaptic rates hνX(t)i are 2.6 s−1, 5.1 s−1 and 40 s−1 for excit-

atory, inhibitory and external synapses, respectively. The R2 and rSTD statistics are computed

for rate-based time-series predictions against corresponding ground truth datas (Fig 3H

and 3I). For brevity, we chose to compute these metrics only for the z−component of the

current dipole moment (Pz(t)). In our results above this term appears to be a valid indicator

for corresponding metrics computed from extracellular potentials (Ve(R, t)). The parameter

hνX(t)i directly affects the calculation of the effective leak conductivity values geffm via Eq 29,

while �Vm affects the linearization steps applied to voltage-gated ion channels and synaptic

currents as detailed in Linear approximations to synapse and membrane dynamics. For

brevity, we compute kernels employing neuron models with passive-frozen ion-channel

dynamics.

The contour lines denoting R2 equal to 0.95, 0.98 and 0.99 in Fig 8A demonstrate that a rel-

atively broad range of parameter values results in good temporal agreement between the

Fig 8. Effect of mismatched presynaptic firing rates and membrane potentials on kernel-based approximations to

the current dipole moment signal. (A) Effect on the R2 metric computed between ground truth z−component of the

current dipole moment (Pz(t)) and corresponding kernel-based approximations. For each datapoint in each panel, the

kernel approximations ĤYXðR; tÞ are computed when shifting the linearization membrane voltage by �V �m � �Vm and

multiplying the presynaptic firing rates by a factor hn�Xi=hnXi. The superscript � denotes perturbed values. The panels

show R2 computed for kernels assuming passive-frozen (biophys:frozen) ion-channel dynamics. The left and

right columns show R2 computed from raw and low-pass (LP) filtered data, respectively. (B) Same as panels in A but

for the rSTD metric.

https://doi.org/10.1371/journal.pcbi.1010353.g008
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approximated and ground truth signals. When �Vm is shifted by −10 mV the signal contribu-

tions by inhibitory synapses drop significantly as the difference to the inhibitory synapse rever-

sal potential diminishes. If the assumed presynaptic rates are all rescaled to zero (the ratio

hn�Xi=hnXi ¼ 0), it amounts to ignoring the effective leak conductivity altogether as geffm ¼ �g L.
A minor gain may be seen for low-pass filtered data. The rSTD values computed across the

same parameter space in Fig 8B show a more gradual dependency on each parameter. Reason-

able rSTD values occur alongside the contour line labeled ‘1.0’.

Methods performance for perturbed network states

So far our Results show that fully linearized model setups can accurately approximate the

ground truth extracellular signals of the reference recurrent MC neuron network. The main

linearization tricks (detailed in Linear approximations to synapse and membrane dynam-

ics) are (1) approximations of the conductance-based synapses by equivalent current-based

synapses and (2) approximations of the active ion conductances by linearized versions. A

crucial parameter in both cases is the choice of the postsynaptic membrane potential �Vm

which is assumed constant. Initially, we have chosen the median somatic membrane poten-

tial averaged over neurons in each population of the reference networks. However, there

are several scenarios where this assumption of near-constant postsynaptic membrane

potentials can be expected to fail. This may include the presence of large-conductance syn-

apses where synapse activation may result in significant de- and hyperpolarized postsynap-

tic membrane potential, as well as synchronous network states where the variance in

membrane potentials may increase with the increased strength of the network-generated

oscillations.

We here chose to assess the accuracy of kernel predictions and kernel-based approxima-

tions for perturbed networks in terms of modified connectivity parameters, using sets of ker-

nels estimated directly from neuron models using passive-frozen ion-channel dynamics. For

this purpose, we perturb the mean recurrent synaptic connection conductances �GsynYX in the

reference recurrent MC neuron networks by a factor governed by the parameter J (see Refer-

ence neuron networks with perturbed synaptic conductances for details), rerun network simu-

lations in order to provide new ground truth data, spike trains, and somatic potentials, and

recompute the set of kernels for each J value and derived kernel parameters. The scaling factor

affects both the degree of network synchrony and overall spike rates. It also affects the kernel

predictions via the updated �GsynYX values entering Eqs (11) and (29). J = 1 corresponds to our

reference network model introduced above.

Our findings, summarized in Fig 9, show in panel A that increasing J results in increased

population firing rates and increased degree of synchrony. The increased synchrony results

in stronger amplitudes of extracellular potentials in ch. 2 and 11 in panel B as well as the cur-

rent dipole moment in panel C. The firing rate spectra in panel D also show that the typical

oscillation frequency decreases while increasing J, from 55 Hz to 31 Hz. Reducing J attenu-

ates the firing rates and oscillations. In terms of the temporal agreement between ground-

truth and approximated signals (R2, panel E), only the most synchronous activity pattern

(J = 1.075) results in reduced performance in the upper channels. In terms of the ratio of sig-

nal standard deviations (rSTD, panel F), the particular network state resulting from J = 1.05

yielded the worst performance. The general take home-message inferred from the aggre-

gated R2 and rSTD values in panel G is that asynchronous irregular (AI) network states, at

least for this relatively simplistic two-population network, allow for kernel-based signal pre-

dictions that well capture the corresponding ground truth signals. More synchronous
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Fig 9. Effect of perturbed MC-network connection weights on kernel-based signal predictions. (A) Mean population spike rates and raster plots (N = 1024 spike

trains in each population). The scaling factor J rescales all connection weights in each network simulation. J = 1 corresponds to our unperturbed reference network. (B)

Ground-truth extracellular potential (black lines) and kernel-based approximations at depth of ch. 2 and 11 (colored lines). (C) Ground-truth and kernel-based

approximation to z−component of current dipole moment. (D) Effect of rescaled connection weights on firing rate power spectra of populations ‘E’ (top) and ‘I’

(bottom). (E) Accuracy of kernel predictions in terms of R2 and (F) rSTD for kernel-based predictions of raw- and low-pass filtered extracellular potentials. Here, kernels

are in each case computed using ‘biophys:frozen’ ion channel dynamics accounting for changes in the leak conductance from synaptic conductances (g_eff:True).

(G) Aggregated R2 and rSTD values (median, 10% and 90% percentiles) across electrode channels. (H) rSTD vs. R2 computed for the z-component of the raw and low-pass

filtered current dipole moment (Pz(t)).

https://doi.org/10.1371/journal.pcbi.1010353.g009
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activity results in reduced performance of our proposed methodology in the upper three

channels.

As a final test we also recompute the accuracy metrics for Pz(t) in Fig 9H. Also here,

reduced performances of the kernel-based method are observed for the more synchronous net-

works, quantified in terms of rSTD and R2. For the signals we consider, the kernel-based

approach works marginally better for the low-frequency signal components, reflected in the

improved R2 values over the raw signals.

Methods performance using biophysically detailed cell models

So far in this paper, we kept the neuron and network model descriptions at a deliberately low

level of complexity. However, biological neurons are commonly modeled at a much greater

level of biophysical detail both in terms of geometry and in terms of the presence of heteroge-

neous types of ion channels, and are also used in large-scale MC neuron network simulation

studies (e.g., [70]). Here we explore how well extracellular signals of neural activity can be

captured using the linearization steps introduced for networks using stylized neurons, in net-

works incorporating biophysically detailed neuron models. For this purpose, we replace the

excitatory neurons in our previous reference networks with a rat layer 5b pyramidal cell

model [30], rerun network simulations to regenerate ground truth extracellular signals etc.,

and repeat the analyses of hybrid- and kernel-based approximations. This detailed neuron

model has many more active ion channels than the ball-and-sticks neurons and may produce

back-action-potential activated Ca2+ spikes [30]. The network parameterization is kept iden-

tical, except for an increased indegree of external excitatory input to this population in order

to preserve overall firing rates (see Reference networks of biophysically detailed neuron

models for details). The hybrid and kernel-based approximations rely on linearized variants

of the biophysically detailed neuron model, showcased in Neuron models with linearized

membrane dynamics. To emphasize on effects explained by this change of model neuron, we

exclude signal contributions by transmembrane currents of inhibitory neurons in the

analysis.

Hybrid scheme signal predictions. First, we consider the hybrid scheme setup, where

spike events of the recurrent network are used for synaptic activation times in populations of

neurons but without recurrent connections, and repeat the experiments first set up for the

ball-and-sticks networks. Summarized in Fig 10; If the effective leak conductance is not

accounted for (g_eff:False, panel A,B), signal amplitudes are clearly overestimated. Pre-

dictions are in better agreement with the ground truth when the leak conductance contribu-

tion from synaptic activation is accounted for (g_eff:True, panels C,D). In contrast to the

previous model setup, the ground truth extracellular potential signals contain prominent

extracellular spike contributions, in particular across the soma-proximal ch. 9–12. In terms of

choice of linearized membrane dynamics, the visual differences are minuscular. Dynamics are

linearized around �V hEim ¼ � 64:96mV.

Kernel-based signal predictions. Next, we compare spike-to-signal impulse response

functions (‘kernels’) computed via the hybrid scheme setup and the computationally fast deter-

ministic method. The resulting set of kernels for connections onto the excitatory population in

Fig 11, show that the deterministic method yields quantitatively similar kernels as the corre-

sponding hybrid-scheme-based method. The differences can in part be explained by the fact

that the hybrid implementation employs discrete synapse and cell placements in space, as they

occur in the recurrent network used for ground truth signal generation, while the direct

method only accounts for the underlying distributions used to set up the recurrent network in
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the first place. Note that with the reconstructed neuron there is a higher degree of freedom in

terms of discrete synapse placements compared to the ball-and-stick neuron. The current

dipole moment kernels for the E-to-E and I-to-E projections remain very similar, although vis-

ible differences now occur between the quasi-active and passive-frozen model neurons.

Fig 10. Ground truth signals vs. hybrid scheme and kernel-based approximations. (A-D) Same as Fig 4 and (E-H) Fig 6, but with the excitatory cell model being

replaced by a biophysically detailed pyramidal cell model [30]. Here, only signal contributions by transmembrane currents of the updated excitatory population are

accounted for.

https://doi.org/10.1371/journal.pcbi.1010353.g010
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The corresponding signal predictions using these sets of kernels in combination with popu-

lation firing rates are shown panels E-H in Fig 10. Similar to the hybrid scheme predictions in

panels A-D, visual inspection reveals only small differences. Thus, we recompute our accuracy

metrics as summarized in Fig 12 including also the hybrid scheme predictions. Similar to our

initial results with ball-and-sticks neuron networks, the projected accuracies for all approxima-

tions remain clustered together if the effective membrane leak conductance is accounted for.

However, the R2 metric is reduced, particularly in the uppermost channels, while rSTD is

increased irrespective of signal type compared to our earlier results. The different approxima-

tions are observed to perform better in the low-frequency range as contributions by presynap-

tic APs in the ground truth signals are attenuated (‘LP’ vs. ‘raw’ data, respectively). The spectra

and coherences comparing ground truth and approximations to Pz(t) in panels G and H in Fig

12, respectively, show that signal approximations match the ground truth up to frequencies

around 300 Hz.

Overall, these observations of reduced performance compared to the ball-and-sticks cases

are unsurprising, as this biophysically detailed cell model by [30] has a much more elaborate

dendritic structure with many thin sections and many more degrees of freedom in terms of

voltage-gated ion channels. Thus, the somatic voltage value we chose for linearized synapse

and membrane dynamics may poorly represent voltage fluctuations and deviations that may

be present, particularly in dendrites located remotely from the soma. Still, all approximations

are able to provide excellent insight into the spatiotemporal properties of the extracellular

potential and current dipole moment (and by extension EEG and MEG-like signals computed

from it), more so in the low-frequency band.

Fig 11. Spike-LFP impulse response function averages and predictions. Similar to panels in Fig 5, but but with the excitatory cell model being replaced by a

biophysically detailed pyramidal cell model [30].

https://doi.org/10.1371/journal.pcbi.1010353.g011
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Fig 12. Accuracy of signal predictions vs. ground truth. Same as Fig 7, but with the excitatory cell model being replaced by a biophysically detailed pyramidal cell

model [30], and accounting only for contributions by transmembrane currents of this updated excitatory population.

https://doi.org/10.1371/journal.pcbi.1010353.g012
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For these kernel predictions we also repeated the experiment where the linearization voltage

( �Vm) and assumed presynaptic firing rates (hνXi) are offset in S2 Fig. For the corresponding

predictions of Pz(t), a somewhat better agreement between the ground-truth and the approxi-

mated signal amplitudes can potentially be obtained by shifting �Vm by about −5 mV.

Methods performance for perturbed network states. Further testing of the kernel-pre-

diction methodology, we repeat our earlier experiment investigating the effect of perturbed

conductances for recurrent synaptic connections on our proposed methodology, by introduc-

ing a variable J affecting �GsynYX in ground-truth generating networks using the biophysically

detailed layer 5 neuron model. Summarized in Fig 13, also here increasing J results in

increased strength of network oscillations (synchrony), but the change of excitatory cell model

here also results in slow synchronous oscillations with periodicity between 150–200 ms, while

the oscillations in the 50 Hz range remain present. A similar emergence of slow oscillations

was observed in another phenomenological network study relying on the same model neuron

[71], but such activity may also arise in simplified point-neuron networks [50]. As also

observed for the ball-and-sticks neuron networks, the more synchronous network states result

in reduced performance of the kernel-based methodology, particularly in the uppermost chan-

nels of the extracellular potential signal (Ve(R, t)). This observation may be explained by the

lack of recurrent synapses in the apical tuft.

As the typical membrane voltages can be expected to vary dramatically across the elaborate

geometry of the biophysically detailed pyramidal neuron, we check whether or not the accu-

racy of the approximated signals can be improved by varying the linearization voltage �Vm on a

per-compartment basis when computing deterministic sets of kernels. For each value of J and

corresponding network simulation, we computed the mean membrane potential per compart-

ment across a subset of neurons (N = 1024) and incorporated the values when computing the

set of kernels. Comparing our R2 and rSTD metrics for Ve(R, t) and Pz(t) for different values of

J in S3 Fig, expose that varying �Vm across the morphology generally increase signal amplitudes

(semi-transparent markers/lines) when compared to results obtained with our earlier assump-

tion of a constant value (opaque markers/lines). However, the overall result is inconclusive.

Kernel-based signal predictions from point-neuron networks

Throughout Results we have demonstrated that estimates of linear spike-to-signal impulse-

response functions (‘kernels’) allow for accurate approximations of different signals by

convolving population firing rates with the appropriate sets of kernels and summing the con-

tributions. So what does this allow for?

One major benefit is that spiking dynamics can with ease be modeled using recurrently

connected networks employing simplified neuron representations, like leaky integrate-and-

fire (LIF) point neurons and variants thereof. Recurrent network models using biophysically

detailed MC neuron models (e.g., [43, 70]) are, in contrast, intrinsically more difficult to

develop due to their vast number of parameters [72], are comparably slow to simulate even on

large-scale high-performance computing facilities, less amenable for analytical analysis, and

henceforth difficult to constrain into reasonable network states resembling experimental data.

Point-neuron networks mediate all of these important issues. In addition, systematic reduc-

tionist approaches applied to MC neuron networks allow for capturing their spiking dynamics

in equivalent few-compartment or point-neuron networks [73–75]. But point-neuron net-

works do not allow for computing the distribution of transmembrane currents in space needed

for signal predictions, as all in- and out-going currents sum to zero in a point [18]. Using our

direct and deterministic method we can, however, predict sets of kernels ĤYXðR; tÞ for each

connectivity pathway via single MC neuron simulations in order to compute extracellular
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signals from simplified networks. While reduced networks may not predict identical spike

trains as the corresponding fully detailed networks, their main statistics (rates, spectra, correla-

tions, etc.) should be preserved, implying that kernel-based signal predictions from rates

remain applicable.

Fig 13. Effect of perturbed MC-network connection weights on kernel-based signal predictions. Same as Fig 9, but with the excitatory cell model being replaced by a

biophysically detailed pyramidal cell model [30].

https://doi.org/10.1371/journal.pcbi.1010353.g013
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As a proof of principle of this methodology, we constructed a point-neuron network of the

same size as our reference MC-neuron networks and fit its parameters in order to mimic our

reference network’s averaged firing rates and rate power spectra shown in Fig 3 (see Leaky

integrate-and-fire (LIF) point-neuron network for details). Showcased in Fig 14, the point-

neuron network state is asynchronous and irregular (AI) with some oscillations present in the

corresponding spike count histogram (panel A), similar to our reference network. We here

also showcase the different signal contributions by each pathway (E-to-E and so forth) in pan-

els B-E, using the set of kernels displayed in Fig 5B and discussed in Predicted kernels using

the direct and deterministic method. The summed contributions are shown in panel F. Here,

there are no ground truth signals to compare to directly, but the extracellular potential signal

varies across time and space in an expected manner, and closely resembles the signals obtained

by the I-to-E pathway. Signal amplitudes are also in the expected ranges set by our MC-neuron

network simulations.

As a final remark, we here compute the firing rates and signals ‘live’ while the network sim-

ulation is running. To reiterate, the kernels are always causal, that is, equal to zero for any time

less than the minimum conduction delay in the network, and of finite duration. This causal

relationship allows for treating the sets of kernels as finite-impulse-response (FIR) filter

Fig 14. LIF network spiking activity and forward-model predictions. (A) Spiking activity and average spike rates of the excitatory (E) and inhibitory (I) populations of

a point neuron network simulation (top), with spike counts in bins of width Δt (bottom). (B-E) Contributions to the extracellular potential (top) and current dipole

moment (bottom) by the E to E connection, E to I connection, I to E connection, and I to I connection, respectively. The signals are equivalently computed as the

convolution between the presynaptic population spike count histogram and corresponding signal kernel approximations using a FIR filter implementation concurrently

with the spiking simulation. The kernels used are shown in Fig 5B. (F) Sum over signal contributions in panels B-E.

https://doi.org/10.1371/journal.pcbi.1010353.g014
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coefficients, which are here applied via a custom network node that receives incoming spike

events from each population while the simulation is running and outputs continuous signals

representing the temporally filtered spike events. For this purpose a FIR filter network node is

implemented for the NEST simulator [52, 53] via the NESTML description language [62, 63]

as detailed in NESTML FIR filter extension. This network node is also reusable for other spik-

ing networks in NEST.

Discussion

Summary of findings

The main results presented throughout this paper can be summarized as follows: First, an

assessment of the validity and limitations of different prediction schemes for extracellular sig-

nals from biological neuronal network models assuming linearity between times of presynaptic

action potentials (‘spikes’) and corresponding extracellular signals. The signals mainly occur

due to evoked transmembrane currents on the postsynaptic neuronal populations. Our finding

is that the linearity assumption is valid if all contributions from the linearized membrane and

synapse conductances are accounted for, resulting in accurate signal predictions.

Secondly, identification of the critical role of the effective membrane time constant due to

persistent activation of recurrent and external synapses on predicted signals. We found that

simply approximating conductance-based synapses by current-based synapses without

accounting for the time-averaged synaptic conductances resulted in overestimated amplitudes

and poorer temporal accuracy of the approximated signals.

Third, a new, fast and accurate method to compute averaged spatiotemporal spike-to-signal

impulse response functions (‘kernels’) for connections between pre- and postsynaptic popula-

tions, by accounting for distributions of cells and synapses in space, linearized synapse, and

membrane dynamics, overall connection probabilities, distributions of synapses per instanti-

ated connection, and connection delay distributions. As the sets of computed kernels are

causal and linearly map population spike events to the corresponding signals, it allows for effi-

cient signal predictions as in a linear time-invariant (LTI) causal system, that is, by treating the

sets of spatiotemporal kernels as finite impulse response (FIR) filter coefficients applied to cor-

responding firing rates of presynaptic populations. The kernel-based predictions are as accu-

rate as a hybrid scheme explicitly accounting for neuron and synapse placements in space [18],

but significantly faster. The proposed methodology accounts mainly for signal contributions

resulting from synaptic activations, explaining a large fraction of the low-frequency compo-

nents of extracellular signals (≲ 300 Hz).

We developed and evaluated the methodology based on recurrently connected reference

networks of MC neurons. For simplicity, we initially opted for phenomenological ball-and-

sticks MC neuron models with active voltage-gated ion channels distributed all over, repre-

senting each population of excitatory (E) and inhibitory (I) neurons. Synapses are conduc-

tance-based. We show that the proposed methodology is feasible with perturbed network

states, as well as for cases where populations are replaced by biophysically detailed neurons

[30] at a level of detail similar to neuron models implemented in high-profile biophysically

detailed network modeling efforts (e.g., [43, 70]).

As a final proof of principle for the kernel-prediction methodology, we apply a suitable set

of kernels for forward-model predictions from spiking activity in a spiking point-neuron net-

work model. For this network model, the kernels are applied via a FIR filter network node

receiving presynaptic spike events applying the filter coefficients for continuous signal predic-

tions during the course of the simulation. The resulting signals resemble corresponding

ground truth signals of the reference MC neuron network.
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Kernels versus other estimation methods

The sets of spike-signal kernels we compute using our proposed methodology should not be

confused with corresponding spike-triggered averaged signals (e.g., [76, 77]), which are intrin-

sically affected by ongoing network activity, that is, spike train correlations, as previously

shown in [18]. Even if both are linear measures, the spike-triggered averaged signal will most

likely be non-causal and depend on the network state, unless the spiking activity of the trigger

neuron is approximately uncorrelated with the ongoing activity. The latter scenario may occur

for instance for spontaneous activations of neurons in one brain region (e.g., thalamus) pro-

jecting to another area (e.g. somatosensory or visual cortex, see [78–80]). This so-called mono-

synaptic, also referred to as unitary (e.g., by [81]) extracellular response is recently modeled in

detail [82], then using conductance-based synapses but with passive membrane time constants

fitted to available experimental and published data. A similar effort to compute such responses

in the hippocampus was recently published [83]. Fitting such responses to spatiotemporal ker-

nel shape functions for excitatory and inhibitory presynaptic units in order to compute LFP

signals in point-neuron network models has been proposed [19]. The sets of kernels we com-

pute do not assume a particular shape, but are derived from the biophysics of the neurons and

network, and can be recomputed for other networks and populations.

Other, even simpler estimation methods for extracellular potential time series was proposed

by [34], recently extended to EEG signals by [84], by approximating signals by weighted and

time-shifted sums of excitatory and inhibitory synaptic currents measured in the network sim-

ulation. In contrast to the hybrid- and kernel-based approaches considered here, these simpli-

fied approximations do not explicitly account for any effects on the predicted signals from

the neuronal morphologies, ion-specific channels and the VC forward model. They also do

not account for any signal variation in space except if combined with some position-depen-

dent scaling factor, and the physical units of the predicted signals can be considered arbitrary.

These simplified schemes may still be considered a major improvement over ad hoc
approaches equating firing rates or averaged somatic potentials to extracellular signals [34, 84].

In the case of scalp EEG and MEG signal predictions mainly the current dipole moment com-

ponents normal to the cortical tissue surface may be predicted with reasonable accuracy and

be combined with an appropriate head forward model [60], allowing for respective signal pre-

dictions along the scalp’s surface.

With the recent advances in the machine-learning (ML) field such as deep learning [85], a

fair assumption is that also ML methods can infer linear/non-linear relationships between e.g.,

network spikes and extracellular signals if subjected to enough observations for training the

algorithms. Input-output dynamics of neurons can be captured by different deep artificial neu-

ral network (ANN) architectures [86, 87], and one could likely extend such models for extra-

cellular signal predictions. One recent study proposed deep convolutional neural networks for

approximated EEG signal predictions from spike rates [84]. Linear filter-based models have

also been proposed for LFP signals [18, 19, 21]. In contrast to our proposed methodology

where kernels mapping population spike rates to extracellular signals are inferred from the

biophysical description and parameters of the biological neuronal network itself, deep learning

and related algorithms generally require experimental or model data for training. In the pres-

ent context, the avenue of using ML-based methods to predict kernels from biophysical net-

work parameters is obfuscated. Using ANNs, it was recently shown that model LFP signals

contain information about underlying network parameters [38]. For mechanistic models of

biological neurons and circuits, one main issue is determining suitable parameters for viable

model output. Here ML-based methods such as deep neural density estimators may be used

for investigating such vast model parameter landscapes [88].
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Extensions and future works

One main novelty reported here is the proposed method for directly computing kernels that

facilitate efficient calculations of extracellular signals from population spike rates, as well as a

reference implementation in the Python package LFPykernels [66]. We applied this frame-

work to quite simplified two-population recurrent networks. The framework is, however,

applicable to networks with many more populations. One could for instance mimic the

laminar topology of cortical microcircuits, where each layer consists of different populations

representing the heterogeneous types of cells within each layer as in [70] and [43]. Based on

available anatomical and electrophysiological constraints either from experiments or detailed

models themselves, signal kernels of interest can then be computed for the different connec-

tions independently of simulations of recurrent network spiking activity. The latter step may

then even use simplified neurons (e.g., spiking point neurons) thus negating the need for high-

performance computing facilities. Extracellular signal predictions can be incorporated in the

running simulation as we have demonstrated here (see Kernel-based signal predictions from

point-neuron networks), or after simulation by computing population spike rates from

recorded spike events, filter these and sum up all contributions.

While we have here mainly focused on the methodology and less on overall simulation

speeds, we note that potential speedup can be of several orders of magnitude. The typical

simulation times for the recurrent network with biophysically detailed pyramidal neuron

models (see Methods performance using biophysically detailed cell models) we observe are

around 4400 s multiplied by 1024 physical cores for 12 s of biological time on the high-per-

formance computing resource, while the corresponding set of kernel predictions take

around 150 s on a laptop computer using a single physical core (see Software and hardware

details for details). This number can potentially be reduced substantially if the numerical

integration of Eq 35 on a per-compartment basis can be replaced by a closed-form (the MC

neuron simulations of transmembrane currents are quite brief). Further reductions in pre-

diction times may involve other trivial parallelization schemes, as kernels for different con-

nections can be computed fully independent of each other, which is also the case for

different spatial components of each spatiotemporal kernel. Code acceleration using for

instance Numba (numba.pydata.org) or Cython (cython.org) may also help in this respect.

Simulation times and resources required for spike times in equivalent networks of the same

size using simplified neurons (i.e., few-compartment and point-neuron models) are also

substantially less compared to the biophysically detailed case. For the point-neuron network

incorporating the FIR filter operations used here, the respective network build and simula-

tion times were around 8 s and 235 s with single-threaded execution on a laptop. Thus the

serial time to solution is reduced by a factor�104 compared to the MC network simulation.

Hence, the avenue of biophysics-based forward model predictions of extracellular signals in

large-scale networks with millions of spiking point neurons and beyond (e.g., [44]) is

opened.

In its present form, there are multiple scenarios where our proposed kernel-prediction

methodology could use either further development or validation. Presently we investigate the

method for networks with a columnar (cylindrical) organization and no distance-dependency

for connections in terms of connection probabilities, synaptic conductances, and axonal trans-

mission delays within the column-like geometry. Large scale recurrent network models with

(lateral) distance-dependent connectivity and periodic boundary conditions spanning multiple

mm of cortical area has been proposed at various levels of description (e.g., [36, 43]), but so far

our proposed kernel prediction method is neither developed for nor validated against such

models. So far, such lateral distance-dependent connectivity was accounted for in a
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phenomenological kernel-based prediction model [37], and for an experimentally derived ker-

nel-based method [19].

Furthermore, we assume recurrent networks with static connection weights. But synapses

may be subject to various weight dynamics such as short-term plasticity (STP) with activity-

dependent facilitation and depression, stochasticity, spike-timing-dependent plasticity (STDP)

(see e.g., [89]), as well as structural plasticity [90]. Out of these, stochasticity is perhaps easier

dealt with if probabilities of synaptic activations are known and independent of activation rate

by scaling the corresponding kernel amplitudes accordingly. Weight changes due to STP are

mainly governed by presynaptic activation intervals hence the average connection weights for

kernel predictions can be determined for known averaged presynaptic rates. STDP may be

harder to account for, but due to the much longer time scales for weight updates, the option to

monitor connection weights during the course of simulation could allow for recomputing ker-

nels and applying them to each simulation segment.

In terms of signal predictions in network models incorporating recurrent connections with

external populations (representing other areas or nuclei) or interactions with the external

world (e.g., mimicking closed-loop experiments), the present framework for direct kernel pre-

dictions could well account for the additional signal contributions. Exemplified by a putative

network model of the thalamus and somatosensory cortex, representative sets of kernels must

initially be computed for presynaptic spike events of thalamocortical projection neurons tar-

geting subsets of cortical populations given knowledge of the corresponding anatomy and bio-

physics. Applying the additional sets of kernels with presynaptic spike events or spike rates for

signal predictions would then account for locally evoked signal contributions by remote activ-

ity, without affecting network activity itself. In case synaptic weight updates (via STDP for

instance) takes place, the kernels may require recalculations as suggested above.

Our analyses also demonstrate that the accuracies of kernel-based signal predictions versus

corresponding reference signals can be expected to drop when the degree of synchrony and/or

firing rates in the network increases (see Methods performance for perturbed network states),

which we observed by rescaling recurrent synaptic conductances. Our reference network gener-

ates various-strength oscillations in the gamma range (� 55Hz) when driven by external fixed-

rate Poisson processes, and we obtained also slow synchronous oscillations in case of the bio-

physically detailed neuron network. We expect to observe similar detrimental effects on predic-

tion errors for networks with non-stationary activity. Such non-stationarities may include up-

and-down states [91] or result from variable-rate external drive (e.g., representing sensory

input), as the choice for membrane potential when linearizing synapse and ion-channel dynam-

ics may indeed affect the kernel predictions. Our results of setting the linearization voltage value

on a per-compartment basis are inconclusive, however, but this idea should be explored further

in the future. Still, our hope is that the kernel-prediction methodology can still give excellent

qualitative insight into extracellular signals from networks expressing non-stationary behavior.

Contrary to our starting point, recurrent MC neuron networks, forward model predictions

from recurrent point-neuron networks pose a potential challenge due to their inherent lack of

detail. Their descriptions may contain no spatial information even if the network is supposed

to mimic a particular brain area, such as the generic somatosensory cortex column model pro-

posed by [49], representing the local circuitry under a 1 mm2 patch of the cortical surface. To

compute extracellular potentials from this model spatial information in terms of neuron

geometries and depth-dependencies for synaptic placements should be determined based on

available anatomical data (see [18] for details). Similarly, the present kernel predictions require

MC neuron models representative of each population, and statistical distributions describing

placements of cells within each population in space, placements of synapses across the neuron

models for each pre and postsynaptic population, numbers of synapses per instantiated
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connection. Other parameters may (or may not) be derived from the point-neuron network

description, such as conduction delay distributions and synaptic parameters. Some may be

derived from its activity, such as population firing rates. As such, multiple concurrent efforts

aim to amass such anatomical and electrophysiological detail for different brain regions and

species with corresponding tools for enquiring the data (see e.g., [92–96]). Such data may be

used to derive suitable kernels.

For rate-based frameworks aiming to explain activity in terms of population firing rates

in finite-sized populations (see e.g., [45–48]), special attention should also be taken. Unless

the rate-based models are derived using bottom-up approaches, in contrast to heuristics or

inferred statistically, for instance via dynamical causal model frameworks [97], use of our pro-

posed kernel prediction scheme also necessitates specifying parameters such as population cell

counts and pairwise connection probabilities. Otherwise, the resulting kernel amplitudes can

be considered arbitrary. If such parameters indeed can be determined, we do not see any prin-

cipled reasons why one could not apply the kernels with continuous population rate predic-

tions as we already demonstrated with temporally binned population spike rates computed

from spiking networks.

Further extensions of our kernel estimates for continuous neural fields equations aiming to

explain activity across space [98] should be based on and validated via the aforementioned

laminar network models incorporating lateral distance-dependent connectivity routines. For

discretized spiking point-neuron network models with distance-dependent connectivity, [99]

derived corresponding neural field equations. Developments in this direction are required for

simulation frameworks such as ‘The Virtual Brain’ (TVB [100]) aiming to relate firing rates

across brain areas also with extracellularly recorded signals such as the EEG, as well as similar

tools aimed towards clinical use [101].

Finally, we have considered only postsynaptic contributions from synaptic activations to

signals predicted using the hybrid scheme or kernel-based methods. These approaches are

therefore better able to capture the low-frequency parts of the signals as most clearly demon-

strated in our simulations using the biophysically detailed layer 5 pyramidal neuron which

resulted in clearly visible extracellular spikes in the ground-truth extracellular potentials. One

could potentially account for signal contributions by presynaptic events such as somatic APs,

backpropagating APs, Ca2+ and NMDA spikes by computing and superimposing the extracel-

lular signatures of each event to the signals considered here, in case the network model

accounts for times of such events. Taking such steps would result in non-causal kernel contri-

butions and would require additional validation against network models using biophysically

detailed neuron models expressing such phenomena. It should however be feasible to incorpo-

rate and could improve the accuracy of the present implementation around frequencies where

spike contributions may dominate in the extracellular signals.

Conclusion

Many of the research successes in the physical sciences have come from an interplay between

modeling and experiments where predictions between physics-based candidate models have

been systematically compared with experiments in an iterative back-and-forth loop. This

approach is sometimes referred to as the ‘virtuous loop’ or circle [102]. For large-scale network

models in the brain, this approach has until now been hampered by the lack of physics-based

forward models able to predict mesoscopic and macroscopic brain signals like LFPs and EEGs

[6]. We believe that the kernel-based approach presented here could be an important step for-

ward for making such model-based predictions feasible, thus paving the way for use of the vir-

tuous loop also in large-scale network neuroscience.
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Supporting information

S1 Fig. Active and linearized model neuron responses to dendritic current input. Same as

Fig 2, but with current input in the apical dendrites approximately 200 μm from the soma

compartments of the respective neurons.

(PDF)

S2 Fig. Effect of mismatched presynaptic firing rates and membrane potentials on kernel-

based approximations to the current dipole moment signal. Same as Fig 8, but for the case

where the excitatory (‘E’) population is replaced by biophysically detailed neuron models [30].

(PDF)

S3 Fig. Effect of setting the linearization voltage �Vm per segment. Same as Fig 13C–13F, but

for computed kernels and reconstructed signals either assuming a constant value for �Vm across

the entire neuron model (circular lines/markers), versus kernel-based predictions where the

�Vm is set on a per-compartment basis (asterisk markers). For this, we use averaged values from

each reference network simulation providing ground truth signals for comparison. Same color

coding as in Fig 13.

(PDF)
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42. Haider B, Schulz DPA, Häusser M, Carandini M. Millisecond Coupling of Local Field Potentials to Syn-

aptic Currents in the Awake Visual Cortex. Neuron. 2016; 90(1):35–42. https://doi.org/10.1016/j.

neuron.2016.02.034 PMID: 27021173

PLOS COMPUTATIONAL BIOLOGY Brain signal predictions from multi-scale networks using a linearized framework

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010353 August 12, 2022 48 / 51

https://doi.org/10.1523/JNEUROSCI.0230-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27225764
https://doi.org/10.1126/science.1179867
http://www.ncbi.nlm.nih.gov/pubmed/20110506
https://doi.org/10.1126/science.1179850
http://www.ncbi.nlm.nih.gov/pubmed/20110507
https://doi.org/10.1529/biophysj.107.111179
http://www.ncbi.nlm.nih.gov/pubmed/17921225
https://doi.org/10.1016/j.jneumeth.2015.01.029
http://www.ncbi.nlm.nih.gov/pubmed/25662445
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
http://www.ncbi.nlm.nih.gov/pubmed/12991237
https://doi.org/10.1371/journal.pcbi.1002107
http://www.ncbi.nlm.nih.gov/pubmed/21829333
https://doi.org/10.1111/j.1469-7793.2001.0447a.x
http://www.ncbi.nlm.nih.gov/pubmed/11389204
https://doi.org/10.1146/annurev-neuro-062111-150343
http://www.ncbi.nlm.nih.gov/pubmed/23841837
https://doi.org/10.1007/s00429-014-0793-x
http://www.ncbi.nlm.nih.gov/pubmed/24863422
https://doi.org/10.1371/journal.pcbi.1004584
http://www.ncbi.nlm.nih.gov/pubmed/26657024
https://doi.org/10.3389/fninf.2016.00001
http://www.ncbi.nlm.nih.gov/pubmed/26834620
https://doi.org/10.3389/fninf.2018.00075
http://www.ncbi.nlm.nih.gov/pubmed/30467469
https://doi.org/10.1371/journal.pcbi.1007725
https://doi.org/10.1371/journal.pcbi.1007725
http://www.ncbi.nlm.nih.gov/pubmed/32155141
https://doi.org/10.1007/s10827-010-0245-4
https://doi.org/10.1007/s10827-010-0245-4
http://www.ncbi.nlm.nih.gov/pubmed/20502952
https://doi.org/10.1113/JP272022
http://www.ncbi.nlm.nih.gov/pubmed/27079755
https://doi.org/10.1523/JNEUROSCI.3278-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29875266
https://doi.org/10.1016/j.neuron.2016.02.034
https://doi.org/10.1016/j.neuron.2016.02.034
http://www.ncbi.nlm.nih.gov/pubmed/27021173
https://doi.org/10.1371/journal.pcbi.1010353


43. Billeh YN, Cai B, Gratiy SL, Dai K, Iyer R, Gouwens NW, et al. Systematic Integration of Structural and

Functional Data into Multi-scale Models of Mouse Primary Visual Cortex. Neuron. 2020; 106(3):388–

403.e18. https://doi.org/10.1016/j.neuron.2020.01.040 PMID: 32142648

44. Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, van Albada SJ. A multi-scale layer-resolved

spiking network model of resting-state dynamics in macaque visual cortical areas. PLOS Computa-

tional Biology. 2018; 14(10):e1006359. https://doi.org/10.1371/journal.pcbi.1006359 PMID: 30335761

45. Gerstner W. Neuronal dynamics: from single neurons to networks and models of cognition. Cam-

bridge, United Kingdom: Cambridge University Press; 2014.

46. Cain N, Iyer R, Koch C, Mihalas S. The Computational Properties of a Simplified Cortical Column

Model. PLOS Computational Biology. 2016; 12(9):e1005045. https://doi.org/10.1371/journal.pcbi.

1005045 PMID: 27617444

47. Dumont G, Payeur A, Longtin A. A stochastic-field description of finite-size spiking neural networks.

PLOS Computational Biology. 2017; 13(8):e1005691. https://doi.org/10.1371/journal.pcbi.1005691

PMID: 28787447

48. Schwalger T, Deger M, Gerstner W. Towards a theory of cortical columns: From spiking neurons to

interacting neural populations of finite size. PLOS Computational Biology. 2017; 13(4):e1005507.

https://doi.org/10.1371/journal.pcbi.1005507 PMID: 28422957

49. Potjans TC, Diesmann M. The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity

in a Full-Scale Spiking Network Model. Cerebral Cortex. 2014; 24(3):785–806. https://doi.org/10.1093/

cercor/bhs358 PMID: 23203991

50. Brunel N. Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons.

Journal of Computational Neuroscience. 2000; 8(3):183–208. https://doi.org/10.1023/

A:1008925309027 PMID: 10809012

51. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Transactions on Evolutionary Computation. 2002; 6(2):182–197. https://doi.org/10.1109/4235.

996017

52. Gewaltig MO, Diesmann M. NEST (NEural Simulation Tool). Scholarpedia. 2007; 2(4):1430. https://

doi.org/10.4249/scholarpedia.1430

53. Deepu R, Spreizer S, Trensch G, Terhorst D, Vennemo SB, Mitchell J, et al. NEST 3.1; 2021.

54. Rotter S, Diesmann M. Exact digital simulation of time-invariant linear systems with applications to

neuronal modeling. Biological Cybernetics. 1999; 81(5-6):381–402. https://doi.org/10.1007/

s004220050570 PMID: 10592015

55. Blank J, Deb K. Pymoo: Multi-Objective Optimization in Python. IEEE Access. 2020; 8:89497–89509.

https://doi.org/10.1109/ACCESS.2020.2990567

56. Deb K. Multi-Objective Optimization. John Wiley & Sons; 2001. Available from: https://www.ebook.de/

de/product/5833814/deb_multi_objective_optimization.html.

57. Remme MWH, Rinzel J. Role of active dendritic conductances in subthreshold input integration. Jour-

nal of Computational Neuroscience. 2011; 31(1):13–30. https://doi.org/10.1007/s10827-010-0295-7

PMID: 21127955

58. Koch C. Cable theory in neurons with active, linearized membranes. Biological Cybernetics. 1984; 50

(1):15–33. https://doi.org/10.1007/BF00317936 PMID: 6324889

59. Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT. Current-source density estimation based on

inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity

discontinuities. Journal of Neuroscience Methods. 2006; 154(1-2):116–133. https://doi.org/10.1016/j.

jneumeth.2005.12.005 PMID: 16436298

60. Næss S, Halnes G, Hagen E, Hagler DJ, Dale AM, Einevoll GT, et al. Biophysically detailed forward

modeling of the neural origin of EEG and MEG signals. NeuroImage. 2021; 225(117467):117467.

PMID: 33075556

61. Welch P. The use of fast Fourier transform for the estimation of power spectra: A method based on

time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics.

1967; 15(2):70–73. https://doi.org/10.1109/TAU.1967.1161901

62. Plotnikov D, Blundell I, Ippen T, Eppler JM, Morrison A, Rumpe B. NESTML: a modeling language for

spiking neurons. In: Oberweis A, Reussner R, editors. Modellierung 2016. Bonn: Gesellschaft für Infor-

matik e.V.; 2016. p. 93–108.

63. Nagendra Babu P, Linssen C, Eppler JM, Schulte to Brinke T, Ziaeemehr A, Fardet T, et al. NESTML

4.0; 2021.

64. Goodman SN, Fanelli D, Ioannidis JPA. What does research reproducibility mean? Science Transla-

tional Medicine. 2016; 8(341):12–12. https://doi.org/10.1126/scitranslmed.aaf5027 PMID: 27252173

PLOS COMPUTATIONAL BIOLOGY Brain signal predictions from multi-scale networks using a linearized framework

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010353 August 12, 2022 49 / 51

https://doi.org/10.1016/j.neuron.2020.01.040
http://www.ncbi.nlm.nih.gov/pubmed/32142648
https://doi.org/10.1371/journal.pcbi.1006359
http://www.ncbi.nlm.nih.gov/pubmed/30335761
https://doi.org/10.1371/journal.pcbi.1005045
https://doi.org/10.1371/journal.pcbi.1005045
http://www.ncbi.nlm.nih.gov/pubmed/27617444
https://doi.org/10.1371/journal.pcbi.1005691
http://www.ncbi.nlm.nih.gov/pubmed/28787447
https://doi.org/10.1371/journal.pcbi.1005507
http://www.ncbi.nlm.nih.gov/pubmed/28422957
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1093/cercor/bhs358
http://www.ncbi.nlm.nih.gov/pubmed/23203991
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1023/A:1008925309027
http://www.ncbi.nlm.nih.gov/pubmed/10809012
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1007/s004220050570
https://doi.org/10.1007/s004220050570
http://www.ncbi.nlm.nih.gov/pubmed/10592015
https://doi.org/10.1109/ACCESS.2020.2990567
https://www.ebook.de/de/product/5833814/deb_multi_objective_optimization.html
https://www.ebook.de/de/product/5833814/deb_multi_objective_optimization.html
https://doi.org/10.1007/s10827-010-0295-7
http://www.ncbi.nlm.nih.gov/pubmed/21127955
https://doi.org/10.1007/BF00317936
http://www.ncbi.nlm.nih.gov/pubmed/6324889
https://doi.org/10.1016/j.jneumeth.2005.12.005
https://doi.org/10.1016/j.jneumeth.2005.12.005
http://www.ncbi.nlm.nih.gov/pubmed/16436298
http://www.ncbi.nlm.nih.gov/pubmed/33075556
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1126/scitranslmed.aaf5027
http://www.ncbi.nlm.nih.gov/pubmed/27252173
https://doi.org/10.1371/journal.pcbi.1010353


65. Plesser HE. Reproducibility vs. Replicability: A Brief History of a Confused Terminology. Frontiers in

Neuroinformatics. 2018; 11. https://doi.org/10.3389/fninf.2017.00076 PMID: 29403370

66. Hagen E. LFPykernels; 2021. Available from: https://doi.org/10.5281/ZENODO.5720619.

67. Magnusson SH. Evaluating Approximate Methods for Computing Extracellular Potentials from Neuro-

nal Networks [mathesis]. Department of Physics, University of Oslo; 2021. Available from: http://urn.

nb.no/URN:NBN:no-89738.

68. Teleńczuk B, Dehghani N, Quyen MLV, Cash SS, Halgren E, Hatsopoulos NG, et al. Local field poten-

tials primarily reflect inhibitory neuron activity in human and monkey cortex. Scientific Reports. 2017; 7

(1). https://doi.org/10.1038/srep40211 PMID: 28074856

69. Ness TV, Halnes G, Næss S, Pettersen KH, Einevoll GT. Computing Extracellular Electric Potentials

from Neuronal Simulations. In: Advances in Experimental Medicine and Biology. vol. 1359. Springer

International Publishing; 2022. p. 179–199.

70. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, et al. Reconstruction

and Simulation of Neocortical Microcircuitry. Cell. 2015; 163(2):456–492. https://doi.org/10.1016/j.cell.

2015.09.029 PMID: 26451489
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reduction of detailed nonlinear neuron models. Nature Communications. 2020; 11(1). https://doi.org/

10.1038/s41467-019-13932-6 PMID: 31941884

76. Nauhaus I, Busse L, Carandini M, Ringach DL. Stimulus contrast modulates functional connectivity in

visual cortex. Nature Neuroscience. 2009; 12(1):70–76. https://doi.org/10.1038/nn.2232 PMID:

19029885

77. Denker M, Roux S, Lindén H, Diesmann M, Riehle A, Grün S. The Local Field Potential Reflects Sur-

plus Spike Synchrony. Cerebral Cortex. 2011; 21(12):2681–2695. https://doi.org/10.1093/cercor/

bhr040 PMID: 21508303

78. Swadlow HA, Gusev AG, Bezdudnaya T. Activation of a Cortical Column by a Thalamocortical

Impulse. Journal of Neuroscience. 2002; 22(17):7766–7773. https://doi.org/10.1523/JNEUROSCI.22-

17-07766.2002 PMID: 12196600

79. Stoelzel CR, Bereshpolova Y, Gusev AG, Swadlow HA. The Impact of an LGNd Impulse on the Awake

Visual Cortex: Synaptic Dynamics and the Sustained/Transient Distinction. Journal of Neuroscience.

2008; 28(19):5018–5028. https://doi.org/10.1523/JNEUROSCI.4726-07.2008 PMID: 18463255

80. Bereshpolova Y, Stoelzel CR, Su C, Alonso JM, Swadlow HA. Activation of a Visual Cortical Column

by a Directionally Selective Thalamocortical Neuron. Cell Reports. 2019; 27(13):3733–3740.e3.

https://doi.org/10.1016/j.celrep.2019.05.094 PMID: 31242407

81. Bazelot M, Dinocourt C, Cohen I, Miles R. Unitary inhibitory field potentials in the CA3 region of rat hip-

pocampus. Journal of Physiology. 2010; 588(12):2077–2090. https://doi.org/10.1113/jphysiol.2009.

185918 PMID: 20403979

82. Hagen E, Fossum JC, Pettersen KH, Alonso JM, Swadlow HA, Einevoll GT. Focal Local Field Potential

Signature of the Single-Axon Monosynaptic Thalamocortical Connection. Journal of Neuroscience.

2017; 37(20):5123–5143. https://doi.org/10.1523/JNEUROSCI.2715-16.2017 PMID: 28432143

83. Teleńczuk M, Teleńczuk B, Destexhe A. Modelling unitary fields and the single-neuron contribution to

local field potentials in the hippocampus. Journal of Physiology. 2020; 598(18):3957–3972. https://doi.

org/10.1113/JP279452 PMID: 32598027

84. Martı́nez-Cañada P, Ness TV, Einevoll GT, Fellin T, Panzeri S. Computation of the electroencephalo-

gram (EEG) from network models of point neurons. PLOS Computational Biology. 2021; 17(4):

e1008893. https://doi.org/10.1371/journal.pcbi.1008893 PMID: 33798190

85. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016.

86. Beniaguev D, Segev I, London M. Single cortical neurons as deep artificial neural networks. Neuron.

2021; 109(17):2727–2739.e3. https://doi.org/10.1016/j.neuron.2021.07.002 PMID: 34380016

PLOS COMPUTATIONAL BIOLOGY Brain signal predictions from multi-scale networks using a linearized framework

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010353 August 12, 2022 50 / 51

https://doi.org/10.3389/fninf.2017.00076
http://www.ncbi.nlm.nih.gov/pubmed/29403370
https://doi.org/10.5281/ZENODO.5720619
http://urn.nb.no/URN:NBN:no-89738
http://urn.nb.no/URN:NBN:no-89738
https://doi.org/10.1038/srep40211
http://www.ncbi.nlm.nih.gov/pubmed/28074856
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
http://www.ncbi.nlm.nih.gov/pubmed/26451489
https://doi.org/10.1093/cercor/bhy291
https://doi.org/10.1152/jn.00360.2016
http://www.ncbi.nlm.nih.gov/pubmed/27535372
https://doi.org/10.1162/NECO_a_00788
http://www.ncbi.nlm.nih.gov/pubmed/26496043
https://doi.org/10.1038/s41467-019-13932-6
https://doi.org/10.1038/s41467-019-13932-6
http://www.ncbi.nlm.nih.gov/pubmed/31941884
https://doi.org/10.1038/nn.2232
http://www.ncbi.nlm.nih.gov/pubmed/19029885
https://doi.org/10.1093/cercor/bhr040
https://doi.org/10.1093/cercor/bhr040
http://www.ncbi.nlm.nih.gov/pubmed/21508303
https://doi.org/10.1523/JNEUROSCI.22-17-07766.2002
https://doi.org/10.1523/JNEUROSCI.22-17-07766.2002
http://www.ncbi.nlm.nih.gov/pubmed/12196600
https://doi.org/10.1523/JNEUROSCI.4726-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18463255
https://doi.org/10.1016/j.celrep.2019.05.094
http://www.ncbi.nlm.nih.gov/pubmed/31242407
https://doi.org/10.1113/jphysiol.2009.185918
https://doi.org/10.1113/jphysiol.2009.185918
http://www.ncbi.nlm.nih.gov/pubmed/20403979
https://doi.org/10.1523/JNEUROSCI.2715-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28432143
https://doi.org/10.1113/JP279452
https://doi.org/10.1113/JP279452
http://www.ncbi.nlm.nih.gov/pubmed/32598027
https://doi.org/10.1371/journal.pcbi.1008893
http://www.ncbi.nlm.nih.gov/pubmed/33798190
https://doi.org/10.1016/j.neuron.2021.07.002
http://www.ncbi.nlm.nih.gov/pubmed/34380016
https://doi.org/10.1371/journal.pcbi.1010353


87. Drakopoulos F, Baby D, Verhulst S. A convolutional neural-network framework for modelling auditory

sensory cells and synapses. Communications Biology. 2021; 4(1). https://doi.org/10.1038/s42003-

021-02341-5 PMID: 34211095
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