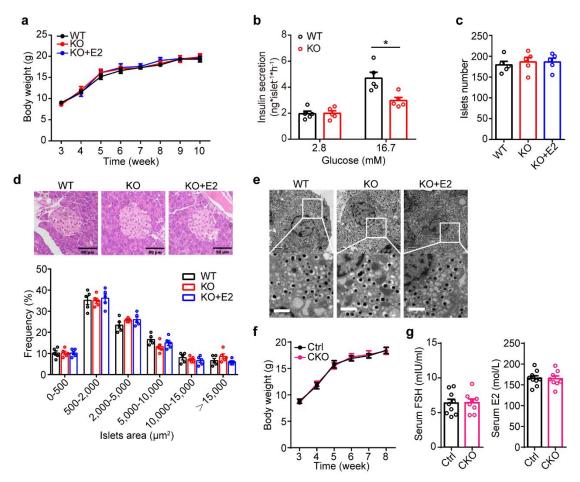
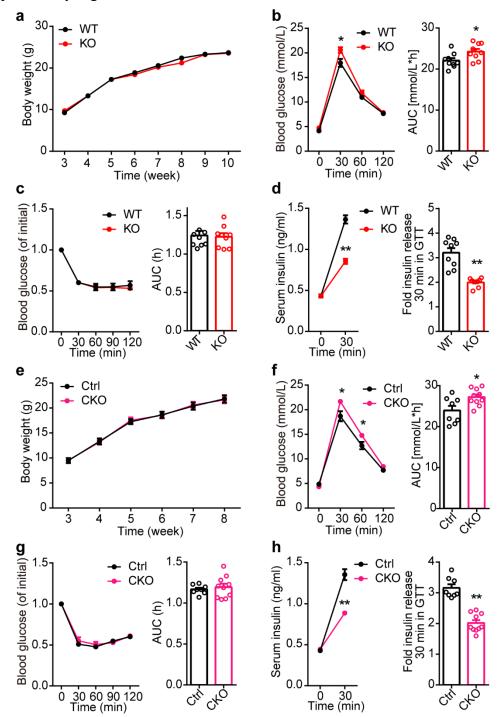



#### Supplementary Figure 1. Expression of FSHR in human male pancreatic β-cells.


(a) mRNA expression of FSHR in the pancreas of the human male. *GAPDH* served as a loading control. (b) Protein expression of FSHR in pancreas of the human male.  $\beta$ -Actin served as a loading control. Pan, pancreas. (c) Localization of FSHR in the human male pancreas by immunohistochemistry. Scale bars, 500  $\mu$ m (main images), 100  $\mu$ m (magnified images). (d) Localization of FSHR (red) in the human male pancreas by immunofluorescence, Insulin (green) was the marker of pancreatic  $\beta$ -cell, and nuclei (blue) were stained with DAPI. Scale bars, 100  $\mu$ m. The experiments in a-d were performed twice independently. Source data are provided as a Source Data file.



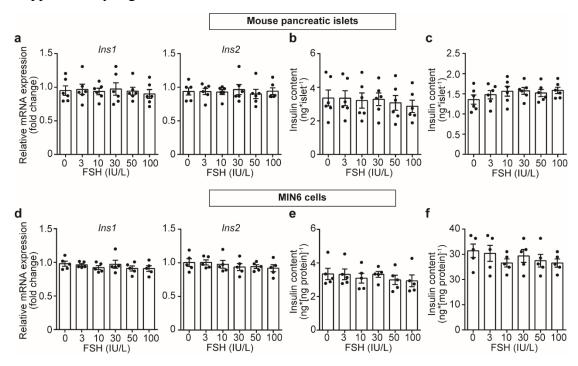
14 Supplementary Figure 2. FSHR expressed in both the cell membrane and the


15 cytoplasm.

- 16 FSHR expression in cytoplasmic and membrane of cells from mouse pancreatic islets
- and MIN6 cells. The experiment was repeated 3 times with similar results.

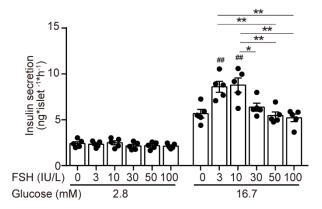


Supplementary Figure 3. The number and morphology of pancreatic islets in FSHR knockout mouse.


(a) Body weight of the WT, KO, and KO+E2 female mice. (b) GSIS in isolated islets from 10-week-old female WT and KO mice, n=5 per group. (c) The number of pancreatic islets in each group, n=5 per group. (d) Hematoxylin and eosin (H&E) staining in paraffin-embedded sections of the pancreas and the profiling of islet size distribution. Scare bars, 50 µm. Shown are representative images from 5 mice per group with similar results. (e) Electron microscopic images of pancreatic  $\beta$ -cells. Scare bars, 1 µm. (f) Body weight of the Ctrl, and CKO female mice. (g) Serum FSH and E<sub>2</sub> levels of the Ctrl, and CKO female mice. Data were shown as mean  $\pm$  s.e.m., analyzed by unpaired two-tailed Student's *t*-tests (b, f, g) and one-way ANOVA (a, c, d), \*P < 0.05. Statistical details are in Supplementary Table 2. Source data are provided as a Source Data file.

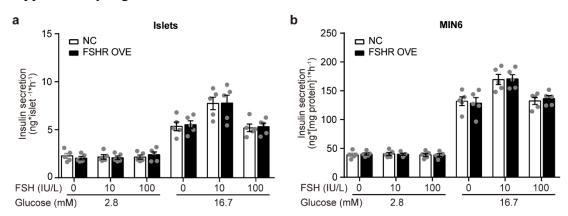


Supplementary Figure 4. FSHR knockout lead to impaired glucose tolerance and insulin secretion in male mice.


(a) Body weight of Fshr<sup>+/+</sup> (WT) and Fshr<sup>-/-</sup> (KO) male mice. (b) Glucose tolerance test and AUC of WT and KO male mice in different treatment groups.  $n_{WT} = 9$ ,  $n_{KO} = 9$ . \*P < 0.05. (c) Insulin tolerance test and AUC of WT and KO male mice in different treatment groups.  $n_{WT} = 9$ ,  $n_{KO} = 9$ . (d) Blood insulin levels at 0 min and 30 min after

41 glucose injection and its fold changes of WT and KO male mice with different treatments.  $n_{WT} = 9$ ,  $n_{KO} = 9$ . \*\*P < 0.01. All the WT and KO male mice were performed 42 the serum and metabolic tests at 10 weeks of age. (e) Body weight of Ctrl (Fshr<sup>f/f</sup>) and 43 CKO (Fshr<sup>f/f</sup>; Pdx1-Cre) male mice. (f) Glucose tolerance test and AUC of Ctrl and 44 CKO male mice in different treatment groups.  $n_{Ctrl} = 8$ ,  $n_{CKO} = 10$ . \*P < 0.05. (g) Insulin 45 tolerance test and AUC of Ctrl and CKO male mice in different treatment groups. n<sub>Ctrl</sub> 46 = 8, n<sub>CKO</sub> = 10. (e) Blood insulin levels at 0 min and 30 min after glucose injection and 47 its fold changes of Ctrl and CKO male mice with different treatments. n<sub>Ctrl</sub> = 8, n<sub>CKO</sub> = 48 10. \*\*P < 0.01. All the Ctrl and CKO male mice were performed the serum and 49 metabolic tests at 8 weeks of age. Data (a-h) were shown as mean  $\pm$  s.e.m. and analyzed 50 by unpaired two-tailed Student's t-tests. Statistical details are in Supplementary Table 51 52 2. Source data are provided as a Source Data file.



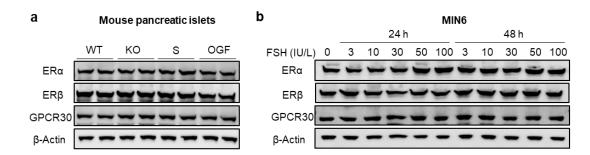

Supplementary Figure 5. FSH, alone, did not stimulate insulin synthesis and secretion.

(a-b) Ins1, Ins2 mRNA expression (a) and intracellular insulin content (b) in mouse pancreatic islets treated with or without FSH for 48 hours. (c) Supernatant insulin secretion level in mouse pancreatic islets treated with or without FSH for 1 hour, under 0 mM glucose. (d-e) Ins1, Ins2 mRNA expression (d) and intracellular insulin content (e) in MIN6 cells treated with or without FSH for 48 hours. (f) Supernatant insulin secretion level in MIN6 cells treated with or without FSH for 1 hour, under 0 mM glucose. Data were shown as mean  $\pm$  s.e.m., n = 6 per group (a-c), n = 5 per group (d-f). Statistical details are in Supplementary Table 2. Source data are provided as a Source Data file.

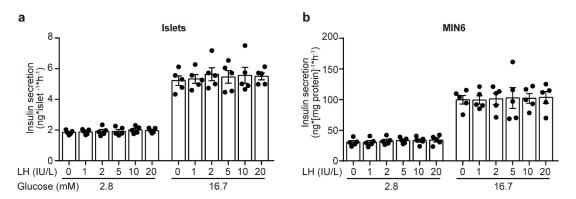


Supplementary Figure 6. FSH regulated GSIS in a bell curve manner in pancreatic islets of male mice.

GSIS in pancreatic islets from 10-week-old C57BL/6 male mice, with or without FSH, n = 5 for each group. \*P < 0.05, \*\*P < 0.01; #P < 0.05 compared to 0 IU/L FSH group. Data were presented as mean  $\pm$  s.e.m. and analyzed by one-way ANOVA. Statistical details are in Supplementary Table 2. Source data are provided as a Source Data file.

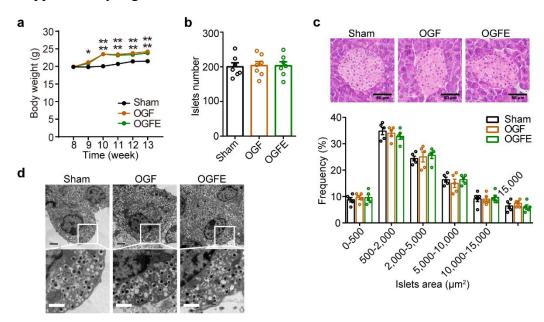



Supplementary Figure 7. Overexpression of FSHR in WT pancreatic islets and MIN6 cells, there was not a significant improvement of GSIS.


Pancreatic islets (a) and MIN6 cells (b) were transfected with either the scramble (NC) or the FSHR overexpression lentivirus (FSHR OVE), followed by GSIS assays with different concentrations of FSH. Data were shown as mean  $\pm$  s.e.m., n = 5 per group. Statistical details are in Supplementary Table 2. Source data are provided as a Source Data file.

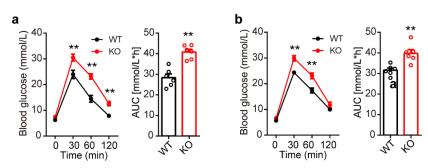
84

85




- Supplementary Figure 8. The expression of ERs was not altered on the pancreatic islets from FSHR KO mice and FSH-treated MIN6 cells.
- (a) The ERs expression on the pancreatic islets from WT and FSHR KO mice. (b) The ERs expression on the MIN6 cells with different concentrations of FSH treatment. The experiments were repeated 3 times with similar results.

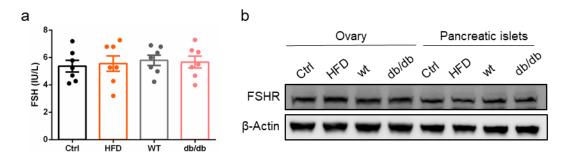



Supplementary Figure 9. LH did not affect glucose stimulated insulin secretion.

(a) GSIS in pancreatic islets from 10-week-old C57BL/6 female mice, with or without LH, n = 5 for each group. (b) GSIS in MIN6 cells, with or without LH, n = 5 for each group. Data were presented as mean  $\pm$  s.e.m. and analyzed by one-way ANOVA. Statistical details are in Supplementary Table 2. Source data are provided as a Source Data file.

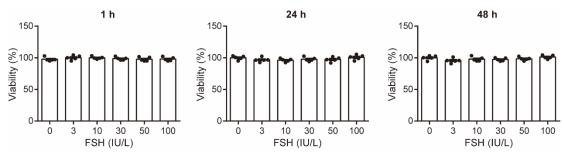


Supplementary Figure 10. Pancreatic islet number, morphology, and ultrastructure in the OVX mouse model.


(a) The body weight of mice in Sham, OGF and OGFE group. (b) The number of pancreatic islets of each group. Data are mean  $\pm$  s.e.m., n=7 per group. (c) H&E staining in paraffin-embedded sections of the pancreas and the profiling of islet size distribution, scare bars, 50  $\mu$ m. Shown are representative images from 5 mice per group with similar results. (d) Electron microscopic images of pancreatic  $\beta$ -cells. scare bars, 1  $\mu$ m. Statistical details are in Supplementary Table 2. Source data are provided as a Source Data file.

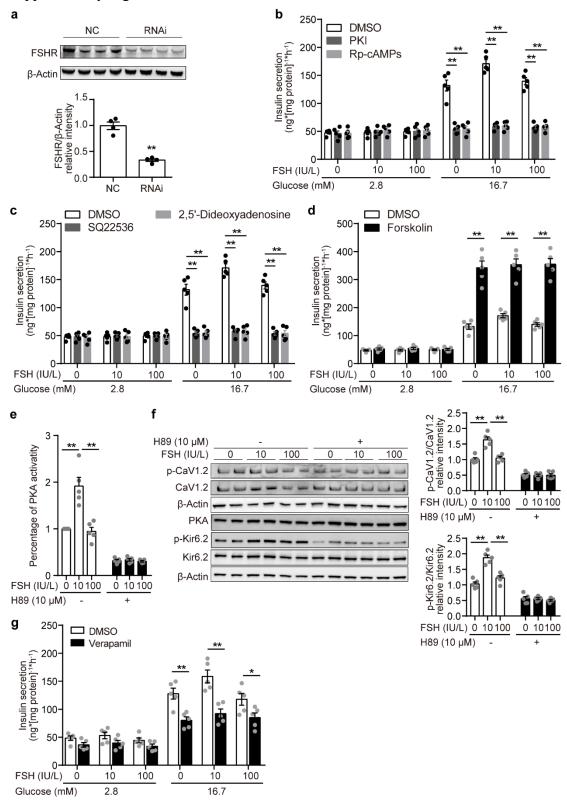


Supplementary Figure 11. HFD aggravated glucose intolerance in FSHR KO mice.


(a) Glucose tolerance test and AUC of WT and KO female mice fed with HFD.  $n_{WT} = 6$ ,  $n_{KO} = 6$ . (b) Glucose tolerance test and AUC of WT and KO male mice fed with HFD.  $n_{WT} = 6$ ,  $n_{KO} = 6$ . \*\*P < 0.01, data were shown as mean  $\pm$  s.e.m. and analyzed by unpaired two-tailed Student's *t*-tests. Statistical details are in Supplementary Table 2. Source data are provided as a Source Data file.

#### 117 Supplementary Figure 12

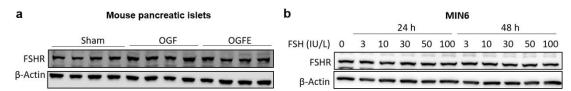



Supplementary Figure 12. The serum FSH level and FSHR expression and was not altered in HFD mice and db/db mice.

(a) Serum FSH levels in 20-week-old C57BL/6 female mice (Ctrl), HFD fed 20-week-old C57BL/6 female mice (HFD), 10-week-old WT and db/db female mice (db/db). Data were presented as mean  $\pm$  s.e.m., n = 7 per group. (b) FSHR expression in ovary and pancreatic islets from Ctrl, HFD, WT, and db/db mice. The experiments were performed 3 times independently with similar results. Statistical details are in Supplementary Table 2. Source data are provided as a Source Data file.

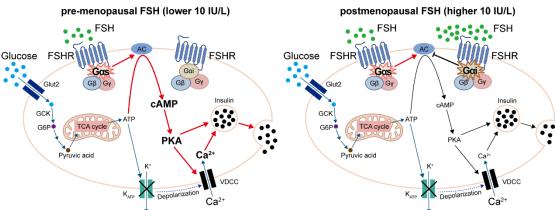


Supplementary Figure 13. The effect of FSH on cell viability in MIN6 cells.


Cell viability validation of MIN6 cells treated with different concentrations of FSH for 1 hour, 24 hours, or 48 hours. Data were shown as mean  $\pm$  s.e.m., n = 5 per group. Statistical details are in Supplementary Table 2. Source data are provided as a Source Data file.



Supplementary Figure 14. The effect of FSH on PKA pathway in MIN6 cells.


(a) FSHR protein level in the MIN6 cells transfected with control siRNA (NC) or Fshr siRNA. (b) GSIS was tested in MIN6 cells treated with or without PKA inhibitor (PKI,

10 μM; Rp-cAMPs, 10 μM), n = 5 per group, \*\*P < 0.01. (c) GSIS was tested in MIN6 cells treated with or without AC inhibitor (SQ22536, 10 μM; 2',5'-Dideoxyadenosine, 20 μM), n = 5 per group, \*\*P < 0.01. (d) GSIS was tested in MIN6 cells treated with or without AC activator (Forskolin, 10 μM), n = 5 per group, \*\*P < 0.01. (e) PKA activity was measured in MIN6 cells after stimulated with 16.7 mM glucose and different concentrations of FSH for 1 hour with or without PKA inhibitor (H89, 10 μM), n = 5 per group, \*\*P < 0.01. (f) Representative protein levels of p-CaV1.2, and p-Kir6.2 were analyzed by immunoblotting in the MIN6 cells stimulated with 16.7 mM glucose and different concentrations of FSH for 1 hour with or without PKA inhibitor (H89, 10 μM). (g) GSIS was tested in MIN6 cells treated with or without Ca<sup>2+</sup> channel blocker (verapamil, 10 μM), n = 5 per group, \*\*P < 0.01. All the data were shown as mean ± s.e.m. and analyzed by one-way ANOVA (b, c, e, f) or unpaired two-tailed Student's P tests (a, d, g). Statistical details are in Supplementary Table 2. Source data are provided as a Source Data file.



Supplementary Figure 15. High FSH did not affect FSHR expression in the pancreatic islets of the OVX model and MIN6 cells.

(a) Western blots were performed to examine FSHR expression in the pancreatic islets of the OVX model. (b) MIN6 cells treated with or without FSH for 24 hours or 48 hours, western blots were performed to examine FSHR expression in the MIN6 cells. The experiments were repeated 3 times with similar results.



Supplementary Figure 16. Schematic model depicting the proposed role of FSH/FSHR in pancreatic islet  $\beta$ -cells.

Pre-menopausal FSH (lower than 10 IU/L) activates stimulatory G $\alpha$ s protein via FSHR, leading to adenylate cyclase (AC) activation, promoting the cAMP/PKA pathway and intracellular Ca<sup>2+</sup> accumulating to enhance GSIS (left). While the FSH level was higher than 10 IU/L, the postmenopausal FSH levels, FSH binding to FSHR could activate G $\alpha$ i as well, which inhibits the activation of AC and attenuate the cAMP/PKA pathway and intracellular Ca<sup>2+</sup> signaling, resulting in decreased GSIS (right).

# 171 Supplementary Table 1. Primers used for RT-qPCR analysis.

| Gene           | Forward Primer           | Reverse Primer          |
|----------------|--------------------------|-------------------------|
| human<br>FSHR  | GTGCGGAACCCCAACATCGTG    | ATTCCTTGGATGGGTGTTGTG   |
| human<br>GAPDH | GTGAACCATGAGAAGTATGACAAC | CATGAGTCCTTCCACGATACC   |
| mouse          | GCTACACCCACATCTACCTCACAG | CTGGGCTTGCACCTCATAACAGC |
| Fshr           |                          |                         |
| mouse          | AGGTCGGTGTGAACGGATTTG    | TGTAGACCATGTAGTTGAGGTCA |
| Gapdh          |                          |                         |
| mouse          | CACTTCCTACCCCTGCTGG      | ACCACAAAGATGCTGTTTGACA  |
| Ins1           |                          |                         |
| mouse          | CTTCTTCTACACACCCATGTCCC  | CCAAGGTCTGAAGGTCACCTG   |
| Ins2           |                          |                         |
| mouse          | AGTGTGACGTTGACATCCGT     | GCAGCTCAGTAACAGTCCGC    |
| β-Actin        |                          |                         |

# 174 Supplementary Table 2. Statistical tests.

| Figures          | Statistical test       | Comparisons           | <i>p</i> -value |
|------------------|------------------------|-----------------------|-----------------|
| 2a_FSH           | One-way ANOVA with     | WT vs. KO             | < 0.0001        |
| 2a_F3F           | LSD post-test          | WT vs. KO+E2          | < 0.0001        |
| 2a_E2            | One-way ANOVA with     | WT vs. KO             | < 0.0001        |
| Za_LZ            | LSD post-test          | WT vs. KO+E2          | 0.7196          |
|                  |                        | 0 min: WT vs. KO      | 0.297           |
|                  |                        | 0 min: WT vs. KO+E2   | 0.596           |
|                  |                        | 30 min: WT vs. KO     | < 0.0001        |
|                  |                        | 30 min: WT vs. KO+E2  | < 0.0001        |
| 2c_GTT and AUC   | One-way ANOVA with     | 60 min: WT vs. KO     | < 0.0001        |
| 20_GTT and AUC   | LSD post-test          | 60 min: WT vs. KO+E2  | 0.002           |
|                  |                        | 120 min: WT vs. KO    | 0.003           |
|                  |                        | 120 min: WT vs. KO+E2 | 0.009           |
|                  |                        | AUC: WT vs. KO        | < 0.0001        |
|                  |                        | AUC: WT vs. KO+E2     | < 0.0001        |
|                  |                        | 30 min: WT vs. KO     | 0.184           |
|                  |                        | 30 min: WT vs. KO+E2  | 0.835           |
|                  |                        | 60 min: WT vs. KO     | 0.109           |
|                  |                        | 60 min: WT vs. KO+E2  | 0.283           |
| 2d ITT and ALIC  | One-way ANOVA with     | 90 min: WT vs. KO     | 0.938           |
| 2d_ITT and AUC   | LSD post-test          | 90 min: WT vs. KO+E2  | 0.581           |
|                  |                        | 120 min: WT vs. KO    | 0.615           |
|                  |                        | 120 min: WT vs. KO+E2 | 0.338           |
|                  |                        | AUC: WT vs. KO        | 0.932           |
|                  |                        | AUC: WT vs. KO+E2     | 0.986           |
|                  |                        | 0 min: WT vs. KO      | 0.567           |
|                  |                        | 0 min: WT vs. KO+E2   | 0.333           |
| 20 blood inpulin | One-way ANOVA with     | 30 min: WT vs. KO     | < 0.0001        |
| 2e_blood insulin | LSD post-test          | 30 min: WT vs. KO+E2  | < 0.0001        |
|                  |                        | Fold: WT vs. KO       | < 0.0001        |
|                  |                        | Fold: WT vs. KO+E2    | < 0.0001        |
|                  |                        | 0 min: Ctrl vs. CKO   | 0.317           |
|                  | Turn sided attudents t | 30 min: Ctrl vs. CKO  | 0.003           |
| 2f_GTT and AUC   | Two-sided student's t- | 60 min: Ctrl vs. CKO  | 0.02            |
|                  | test                   | 120 min: Ctrl vs. CKO | 0.007           |
|                  |                        | AUC: Ctrl vs. CKO     | 0.004           |
|                  |                        | 30 min: Ctrl vs. CKO  | 0.971           |
|                  | Two-sided student's t- | 60 min: Ctrl vs. CKO  | 0.32            |
| 2g_ITT and AUC   |                        | 90 min: Ctrl vs. CKO  | 0.844           |
|                  | test                   | 120 min: Ctrl vs. CKO | 0.622           |
|                  |                        | AUC: Ctrl vs. CKO     | 0.599           |

|                    | Two sided students t   | 0 min: Ctrl vs. CKO                | 0.348    |
|--------------------|------------------------|------------------------------------|----------|
| 2h_blood insulin   | Two-sided student's t- | 30 min: Ctrl vs. CKO               | < 0.0001 |
|                    | test                   | Fold: Ctrl vs. CKO                 | < 0.0001 |
|                    |                        | 0 IU/L FSH vs. 3 IU/L FSH          | < 0.0001 |
|                    |                        | 0 IU/L FSH vs. 10 IU/L FSH         | < 0.0001 |
|                    |                        | 0 IU/L FSH vs. 30 IU/L FSH         | < 0.0001 |
|                    |                        | 0 IU/L FSH vs. 50 IU/L FSH         | 0.004    |
|                    |                        | 0 IU/L FSH vs. 100 IU/L FSH        | 0.053    |
|                    |                        | 3 IU/L FSH vs. 10 IU/L FSH         | < 0.0001 |
|                    |                        | 3 IU/L FSH vs. 30 IU/L FSH         | 0.157    |
| 3a_GSIS_WT_16.7 mM | One-way ANOVA with     | 3 IU/L FSH vs. 50 IU/L FSH         | 0.019    |
| glucose            | LSD post-test          | 3 IU/L FSH vs. 100 IU/L FSH        | < 0.0001 |
|                    |                        | 10 IU/L FSH vs. 30 IU/L FSH        | 0.001    |
|                    |                        | 10 IU/L FSH vs. 50 IU/L FSH        | < 0.0001 |
|                    |                        | 10 IU/L FSH vs. 100 IU/L FSH       | < 0.0001 |
|                    |                        | 30 IU/L FSH vs. 50 IU/L FSH        | < 0.0001 |
|                    |                        | 30 IU/L FSH vs. 100 IU/L FSH       | < 0.0001 |
|                    |                        | 50 IU/L FSH vs. 100 IU/L FSH       | < 0.0001 |
|                    |                        | 15 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.983    |
|                    | One-way ANOVA with     | 17 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.918    |
|                    |                        | 19 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.498    |
|                    |                        | 21 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.818    |
|                    |                        | 23 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.977    |
|                    |                        | 25 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.372    |
|                    |                        | 27 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.188    |
|                    |                        | 29 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.265    |
|                    |                        | 31 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.032    |
|                    |                        | 33 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.001    |
|                    |                        | 35 min: 0 IU/L FSH vs. 10 IU/L FSH | < 0.0001 |
|                    |                        | 37 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.061    |
| 3b_dynamic GSIS_WT | LSD post-test (at the  | 38 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.009    |
|                    | indicated time points) | 40 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.008    |
|                    |                        | 42 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.005    |
|                    |                        | 44 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.001    |
|                    |                        | 46 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.048    |
|                    |                        | 48 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.044    |
|                    |                        | 50 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.001    |
|                    |                        | 52 min: 0 IU/L FSH vs. 10 IU/L FSH | < 0.0001 |
|                    |                        | 54 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.008    |
|                    |                        | 56 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.087    |
|                    |                        | 58 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.298    |
|                    |                        | 60 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.311    |
|                    |                        | 62 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.959    |

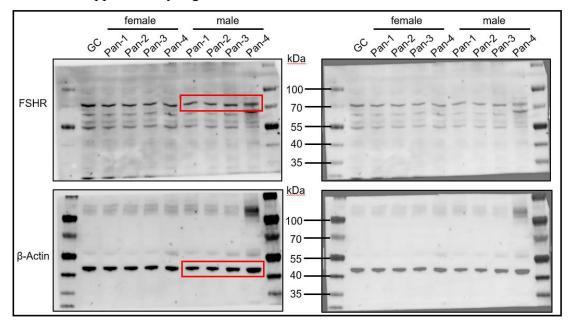
| 1                                  | 1        |
|------------------------------------|----------|
| 64 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.891    |
| 66 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.878    |
| 68 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.245    |
| 70 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.964    |
| 72 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.682    |
| 74 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.283    |
| 15 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | 0.561    |
| 17 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | 0.12     |
| 19 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | 0.029    |
| 21 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | 0.015    |
| 23 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | 0.048    |
| 25 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | 0.005    |
| 27 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | 0.184    |
| 29 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | 0.001    |
| 31 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | 0.007    |
| 33 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | < 0.0001 |
| 35 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | < 0.0001 |
| 37 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | < 0.0001 |
| 38 min: 10 IU/L FSH vs. 100 IU/L   |          |
| FSH                                | < 0.0001 |
| 40 min: 10 IU/L FSH vs. 100 IU/L   | 4 0.0001 |
| FSH                                | < 0.0001 |
| 42 min: 10 IU/L FSH vs. 100 IU/L   | V 0.0001 |
| FSH                                | 0.001    |
| 44 min: 10 IU/L FSH vs. 100 IU/L   | 3.001    |
| FSH                                | < 0.0001 |
| 46 min: 10 IU/L FSH vs. 100 IU/L   | < 0.0001 |
| 46 min: 10 10/L FSH vs. 100 10/L   | 0.005    |
|                                    | 0.005    |
| 48 min: 10 IU/L FSH vs. 100 IU/L   | 0.011    |
| FSH                                | 0.011    |

|                |                                   | 50 min: 10 IU/L FSH vs. 100 IU/L |          |
|----------------|-----------------------------------|----------------------------------|----------|
|                |                                   | FSH                              | < 0.0001 |
|                |                                   | 52 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | < 0.0001 |
|                |                                   | 54 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | 0.004    |
|                |                                   | 56 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | 0.006    |
|                |                                   | 58 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | 0.164    |
|                |                                   | 60 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | 0.465    |
|                |                                   | 62 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | 0.191    |
|                |                                   | 64 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | 0.134    |
|                |                                   | 66 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | 0.055    |
|                |                                   | 68 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | 0.011    |
|                |                                   | 70 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | 0.033    |
|                |                                   | 72 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | 0.011    |
|                |                                   | 74 min: 10 IU/L FSH vs. 100 IU/L |          |
|                |                                   | FSH                              | 0.077    |
|                | 0 410744 34                       | Sham vs. OGF                     | < 0.0001 |
| 4b_FSH         | One-way ANOVA with  LSD post-test | Sham vs. OGFE                    | < 0.0001 |
|                |                                   | OGF vs. OGFE                     | 0.4      |
|                |                                   | Sham vs. OGF                     | < 0.0001 |
| 4b_E2          | One-way ANOVA with  LSD post-test | Sham vs. OGFE                    | 0.798    |
|                |                                   | OGF vs. OGFE                     | < 0.0001 |
|                |                                   | 0 min: Sham vs. OGF              | 0.81     |
|                |                                   | 0 min: Sham vs. OGFE             | 0.62     |
|                |                                   | 0 min: OGF vs. OGFE              | 0.461    |
| 4c_GTT and AUC |                                   | 30 min: Sham vs. OGF             | < 0.0001 |
|                |                                   | 30 min: Sham vs. OGFE            | 0.007    |
|                | One-way ANOVA with                | 30 min: OGF vs. OGFE             | 0.003    |
|                | LSD post-test                     | 60 min: Sham vs. OGF             | < 0.0001 |
|                |                                   | 60 min: Sham vs. OGFE            | 0.002    |
|                |                                   | 60 min: OGF vs. OGFE             | 0.089    |
|                |                                   | 120 min: Sham vs. OGF            | 0.009    |
| · ·            |                                   |                                  |          |

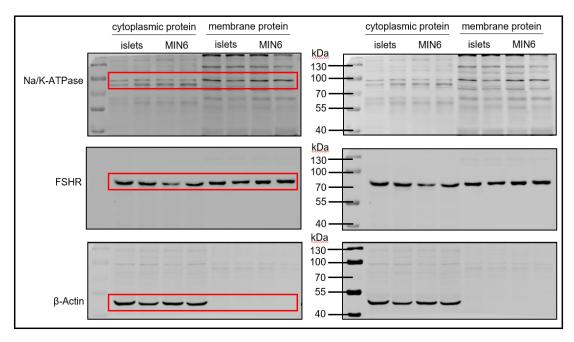
|                    |                      | 120 min: OGF vs. OGFE        | 0.21     |
|--------------------|----------------------|------------------------------|----------|
|                    |                      | AUC: Sham vs. OGF            | < 0.0001 |
|                    |                      | AUC: Sham vs. OGFE           | 0.005    |
|                    |                      | AUC: OGF vs. OGFE            | 0.027    |
|                    |                      | 30 min: Sham vs. OGF         | 0.133    |
|                    |                      | 30 min: Sham vs. OGFE        | 0.944    |
|                    |                      | 30 min: OGF vs. OGFE         | 0.167    |
|                    |                      | 60 min: Sham vs. OGF         | 0.06     |
|                    |                      | 60 min: Sham vs. OGFE        | 0.32     |
|                    |                      | 60 min: OGF vs. OGFE         | 0.497    |
|                    |                      | 90 min: Sham vs. OGF         | 0.886    |
| 4d_ITT and AUC     | One-way ANOVA with   | 90 min: Sham vs. OGFE        | 0.624    |
|                    | LSD post-test        | 90 min: OGF vs. OGFE         | 0.532    |
|                    |                      | 120 min: Sham vs. OGF        | 0.831    |
|                    |                      | 120 min: Sham vs. OGFE       | 0.368    |
|                    |                      | 120 min: OGF vs. OGFE        | 0.483    |
|                    |                      | AUC: Sham vs. OGF            | 0.151    |
|                    |                      | AUC: Sham vs. OGFE           | 0.84     |
|                    |                      | AUC: OGF vs. OGFE            | 0.232    |
|                    |                      | 0 min: Sham vs. OGF          | 0.759    |
|                    | One-way ANOVA with   | 0 min: Sham vs. OGFE         | 0.869    |
|                    |                      | 0 min: OGF vs. OGFE          | 0.878    |
|                    |                      | 30 min: Sham vs. OGF         | < 0.0001 |
| 4e_blood insulin   |                      | 30 min: Sham vs. OGFE        | < 0.0001 |
|                    | LSD post-test        | 30 min: OGF vs. OGFE         | 0.058    |
|                    |                      | Fold: Sham vs. OGF           | < 0.0001 |
|                    |                      | Fold: Sham vs. OGFE          | < 0.0001 |
|                    |                      | Fold: OGF vs. OGFE           | 0.008    |
|                    |                      | 0 IU/L FSH vs. 3 IU/L FSH    | < 0.0001 |
|                    |                      | 0 IU/L FSH vs. 10 IU/L FSH   | < 0.0001 |
|                    |                      | 0 IU/L FSH vs. 30 IU/L FSH   | 0.003    |
|                    |                      | 0 IU/L FSH vs. 50 IU/L FSH   | 0.125    |
|                    |                      | 0 IU/L FSH vs. 100 IU/L FSH  | 0.405    |
|                    |                      | 3 IU/L FSH vs. 10 IU/L FSH   | 0.005    |
| F- CCIC NC 46.7 M  | On a way ANIOVA with | 3 IU/L FSH vs. 30 IU/L FSH   | 0.392    |
| 5a_GSIS_NC_16.7 mM | One-way ANOVA with   | 3 IU/L FSH vs. 50 IU/L FSH   | 0.017    |
| glucose            | LSD post-test        | 3 IU/L FSH vs. 100 IU/L FSH  | < 0.0001 |
|                    |                      | 10 IU/L FSH vs. 30 IU/L FSH  | < 0.0001 |
|                    |                      | 10 IU/L FSH vs. 50 IU/L FSH  | < 0.0001 |
|                    |                      | 10 IU/L FSH vs. 100 IU/L FSH | < 0.0001 |
| 1                  |                      | 30 IU/L FSH vs. 50 IU/L FSH  | 0.115    |
|                    |                      | 30 IU/L FSH vs. 100 IU/L FSH | < 0.0001 |
| I                  |                      | 50 IU/L FSH vs. 100 IU/L FSH | 0.02     |

|                            |                        | 0 IU/L FSH vs. 3 IU/L FSH          | < 0.0001 |
|----------------------------|------------------------|------------------------------------|----------|
|                            |                        | 0 IU/L FSH vs. 10 IU/L FSH         | < 0.0001 |
|                            |                        | 0 IU/L FSH vs. 30 IU/L FSH         | < 0.0001 |
|                            |                        | 0 IU/L FSH vs. 50 IU/L FSH         | < 0.0001 |
|                            |                        | 0 IU/L FSH vs. 100 IU/L FSH        | 0.63     |
|                            |                        | 3 IU/L FSH vs. 10 IU/L FSH         | < 0.0001 |
|                            |                        | 3 IU/L FSH vs. 30 IU/L FSH         | 0.397    |
| 5b_cAMP                    | One-way ANOVA with     | 3 IU/L FSH vs. 50 IU/L FSH         | 0.667    |
|                            | LSD post-test          | 3 IU/L FSH vs. 100 IU/L FSH        | < 0.0001 |
|                            |                        | 10 IU/L FSH vs. 30 IU/L FSH        | 0.004    |
|                            |                        | 10 IU/L FSH vs. 50 IU/L FSH        | < 0.0001 |
|                            |                        | 10 IU/L FSH vs. 100 IU/L FSH       | < 0.0001 |
|                            |                        | 30 IU/L FSH vs. 50 IU/L FSH        | 0.204    |
|                            |                        | 30 IU/L FSH vs. 100 IU/L FSH       | < 0.0001 |
|                            |                        | 50 IU/L FSH vs. 100 IU/L FSH       | < 0.0001 |
|                            |                        | 0 IU/L FSH vs. 3 IU/L FSH          | < 0.0001 |
|                            |                        | 0 IU/L FSH vs. 10 IU/L FSH         | < 0.0001 |
|                            |                        | 0 IU/L FSH vs. 30 IU/L FSH         | < 0.0001 |
|                            |                        | 0 IU/L FSH vs. 50 IU/L FSH         | < 0.0001 |
|                            | One-way ANOVA with     | 0 IU/L FSH vs. 100 IU/L FSH        | 0.578    |
|                            |                        | 3 IU/L FSH vs. 10 IU/L FSH         | < 0.0001 |
|                            |                        | 3 IU/L FSH vs. 30 IU/L FSH         | 0.014    |
| 5c_PKA                     |                        | 3 IU/L FSH vs. 50 IU/L FSH         | 0.649    |
|                            | LSD post-test          | 3 IU/L FSH vs. 100 IU/L FSH        | < 0.0001 |
|                            |                        | 10 IU/L FSH vs. 30 IU/L FSH        | 0.001    |
|                            |                        | 10 IU/L FSH vs. 50 IU/L FSH        | < 0.0001 |
|                            |                        | 10 IU/L FSH vs. 100 IU/L FSH       | < 0.0001 |
|                            |                        | 30 IU/L FSH vs. 50 IU/L FSH        | 0.004    |
|                            |                        | 30 IU/L FSH vs. 100 IU/L FSH       | < 0.0001 |
| 1                          |                        | 50 IU/L FSH vs. 100 IU/L FSH       | < 0.0001 |
|                            |                        | 0 IU/L FSH: DMSO vs. H89           | < 0.0001 |
|                            |                        | 10 IU/L FSH: DMSO vs. H89          | < 0.0001 |
| 5d_GSIS_16.7 mM            | One-way ANOVA with     | 100 IU/L FSH: DMSO vs. H89         | < 0.0001 |
| glucose                    | LSD post-test          | DMSO: 0 IU/L FSH vs. 10 IU/L FSH   | < 0.0001 |
|                            |                        | DMSO: 10 IU/L FSH vs. 100 IU/L     |          |
|                            |                        | FSH                                | 0.002    |
|                            |                        | 0 min: 0 IU/L FSH vs. 10 IU/L FSH  | 0.535    |
|                            |                        | 5 min: 0 IU/L FSH vs. 10 IU/L FSH  | 0.316    |
|                            | One-way ANOVA with     | 10 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.164    |
| 5e_Ca <sup>2+</sup> levels | LSD post-test (at the  | 15 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.005    |
|                            | indicated time points) | 20 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.001    |
|                            |                        | 25 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.003    |
|                            |                        | 30 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.007    |

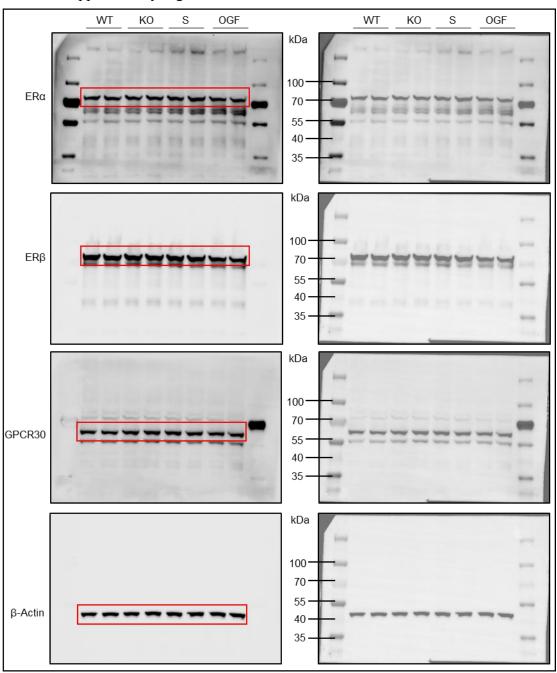
| •                | test                   | 16.7 mM: WT vs. KO                 | 0.010202 |
|------------------|------------------------|------------------------------------|----------|
| Supplementary    | Two-sided student's t- |                                    |          |
| glucose and cAMP | test                   | cAMP: DMSO vs. PTX                 | 0.01     |
| 5k_GSIS_16.7 mM  | Two-sided student's t- | 16.7 mM glucose: DMSO vs. PTX      | 0.006    |
|                  |                        | 2.8 mM glucose: DMSO vs. PTX       | 0.476    |
| glucose and cAMP | test                   | cAMP: DMSO vs. NF449               | 0.031    |
| 5h_GSIS_16.7 mM  | Two-sided student's t- | 16.7 mM glucose: DMSO vs. NF449    | 0.049    |
|                  |                        | 2.8 mM glucose: DMSO vs. NF449     | 0.499    |
| -                | test                   | cAMP: DMSO vs. NF449               | 0.002    |
| 5g_GSIS and cAMP | Two-sided student's t- | 16.7 mM glucose: DMSO vs. NF449    | 0.039    |
|                  |                        | 2.8 mM glucose: DMSO vs. NF449     | 0.063    |
|                  |                        | FSH                                | 0.114    |
|                  |                        | 60 min: 10 IU/L FSH vs. 100 IU/L   |          |
|                  |                        | FSH                                | 0.009    |
|                  |                        | 55 min: 10 IU/L FSH vs. 100 IU/L   |          |
|                  |                        | FSH                                | 0.002    |
|                  |                        | 50 min: 10 IU/L FSH vs. 100 IU/L   |          |
|                  |                        | FSH                                | 0.009    |
|                  |                        | 45 min: 10 IU/L FSH vs. 100 IU/L   |          |
|                  |                        | FSH                                | 0.006    |
|                  |                        | 40 min: 10 IU/L FSH vs. 100 IU/L   |          |
|                  |                        | FSH                                | 0.008    |
|                  |                        | 35 min: 10 IU/L FSH vs. 100 IU/L   | 3.000    |
|                  |                        | FSH                                | 0.008    |
|                  |                        | 30 min: 10 IU/L FSH vs. 100 IU/L   | 3.555    |
|                  |                        | FSH FSH VS. 100 10/L               | 0.005    |
|                  |                        | 25 min: 10 IU/L FSH vs. 100 IU/L   | 0.002    |
|                  |                        | 20 min: 10 IU/L FSH vs. 100 IU/L   | 0.002    |
|                  |                        | 70 min: 10 III/I ESH vs. 100 III/I | 0.011    |
|                  |                        | 15 min: 10 IU/L FSH vs. 100 IU/L   | 0.011    |
|                  |                        | FSH                                | 0.07     |
|                  |                        | 10 min: 10 IU/L FSH vs. 100 IU/L   | 0.07     |
|                  |                        | FSH                                | 0.465    |
|                  |                        | 5 min: 10 IU/L FSH vs. 100 IU/L    |          |
|                  |                        | FSH                                | 0.539    |
|                  |                        | 0 min: 10 IU/L FSH vs. 100 IU/L    |          |
|                  |                        | 60 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.071    |
|                  |                        | 55 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.009    |
|                  |                        | 50 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.006    |
|                  |                        | 45 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.011    |
|                  |                        | 40 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.017    |
|                  |                        | 35 min: 0 IU/L FSH vs. 10 IU/L FSH | 0.004    |


|                       |                        | 0 min: WT vs. KO             | 0.008    |
|-----------------------|------------------------|------------------------------|----------|
|                       |                        | 30 min: WT vs. KO            | 0.019    |
| Supplementary         | Two-sided student's t- | 60 min: WT vs. KO            | 0.151    |
| Fig. 4b_GTT and AUC   | test                   | 120 min: WT vs. KO           | 0.603    |
|                       |                        | AUC: WT vs. KO               | 0.025    |
|                       |                        | 0 min: WT vs. KO             | 0.907    |
| Supplementary         | Two-sided student's t- | 30 min: WT vs. KO            | < 0.0001 |
| Fig. 4d_blood insulin | test                   | Fold: WT vs. KO              | < 0.0001 |
|                       |                        | 0 min: Ctrl vs. CKO          | 0.148    |
|                       |                        | 30 min: Ctrl vs. CKO         | 0.012    |
| Supplementary         | Two-sided student's t- | 60 min: Ctrl vs. CKO         | 0.031    |
| Fig. 4f_GTT and AUC   | test                   | 120 min: Ctrl vs. CKO        | 0.172    |
|                       |                        | AUC: Ctrl vs. CKO            | 0.029    |
|                       |                        | 0 min: Ctrl vs. CKO          | 0.416    |
| Supplementary         | Two-sided student's t- | 30 min: Ctrl vs. CKO         | < 0.0001 |
| Fig. 4h_blood insulin | test                   | Fold: Ctrl vs. CKO           | < 0.0001 |
|                       | One-way ANOVA with     |                              |          |
| Supplementary Fig. 5  | LSD post-test          | for all                      | >0.05    |
|                       |                        | 0 IU/L FSH vs. 3 IU/L FSH    | 0.001    |
|                       |                        | 0 IU/L FSH vs. 10 IU/L FSH   | < 0.0001 |
|                       |                        | 0 IU/L FSH vs. 30 IU/L FSH   | 0.354    |
|                       |                        | 0 IU/L FSH vs. 50 IU/L FSH   | 0.788    |
|                       |                        | 0 IU/L FSH vs. 100 IU/L FSH  | 0.544    |
|                       |                        | 3 IU/L FSH vs. 10 IU/L FSH   | 0.812    |
| Supplementary         |                        | 3 IU/L FSH vs. 30 IU/L FSH   | 0.007    |
| Fig. 6_GSIS_WT_16.7   | One-way ANOVA with     | 3 IU/L FSH vs. 50 IU/L FSH   | < 0.0001 |
| mM glucose            | LSD post-test          | 3 IU/L FSH vs. 100 IU/L FSH  | < 0.0001 |
|                       |                        | 10 IU/L FSH vs. 30 IU/L FSH  | 0.004    |
|                       |                        | 10 IU/L FSH vs. 50 IU/L FSH  | < 0.0001 |
|                       |                        | 10 IU/L FSH vs. 100 IU/L FSH | < 0.0001 |
|                       |                        | 30 IU/L FSH vs. 50 IU/L FSH  | 0.235    |
|                       |                        | 30 IU/L FSH vs. 100 IU/L FSH | 0.132    |
|                       |                        | 50 IU/L FSH vs. 100 IU/L FSH | 0.735    |
| Supplementary         |                        | 0 IU/FSH: NC vs. FSHR OVE    | 0.826    |
| Fig. 7a_GSIS_16.7 mM  | One-way ANOVA with     | 10 IU/FSH: NC vs. FSHR OVE   | 0.961    |
| glucose               | LSD post-test          | 100 IU/FSH: NC vs. FSHR OVE  | 0.873    |
| Supplementary         |                        | 0 IU/FSH: NC vs. FSHR OVE    | 0.767    |
| Fig. 7b_GSIS_16.7 mM  | One-way ANOVA with     | 10 IU/FSH: NC vs. FSHR OVE   | 0.92     |
| glucose               | LSD post-test          | 100 IU/FSH: NC vs. FSHR OVE  | 0.709    |
| 3                     | One-way ANOVA with     |                              |          |
| Supplementary Fig. 9a | LSD post-test          | for all                      | >0.05    |
| 7. 7 3                | One-way ANOVA with     |                              |          |
| Supplementary Fig. 9b | LSD post-test          | for all                      | >0.05    |

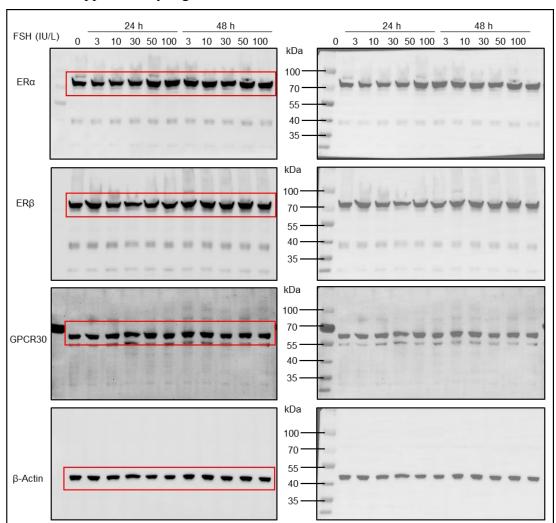
|                             |                                | 8w: Sham vs. OGF                | 0.977    |
|-----------------------------|--------------------------------|---------------------------------|----------|
|                             |                                | 8w: Sham vs. OGFE               | 0.977    |
|                             |                                | 8w: OGF vs. OGFE                | 0.964    |
|                             |                                | 9w: OGF vs. OGF                 |          |
|                             |                                |                                 | 0.017    |
|                             |                                | 9w: Sham vs. OGFE               | 0.053    |
|                             |                                | 9w: OGF vs. OGFE                | 0.618    |
|                             |                                | 10w: Sham vs. OGF               | < 0.0001 |
|                             |                                | 10w: Sham vs. OGFE              | < 0.0001 |
| Supplementary               | One-way ANOVA with             | 10w: OGF vs. OGFE               | 0.972    |
| Fig. 10a_body weight        | LSD post-test                  | 11w: Sham vs. OGF               | < 0.0001 |
|                             |                                | 11w: Sham vs. OGFE              | < 0.0001 |
|                             |                                | 11w: OGF vs. OGFE               | 0.546    |
|                             |                                | 12w: Sham vs. OGF               | < 0.0001 |
|                             |                                | 12w: Sham vs. OGFE              | < 0.0001 |
|                             |                                | 12w: OGF vs. OGFE               | 0.202    |
|                             |                                | 13w: Sham vs. OGF               | < 0.0001 |
|                             |                                | 13w: Sham vs. OGFE              | < 0.0001 |
|                             |                                | 13w: OGF vs. OGFE               | 0.377    |
|                             |                                | 0 min: WT vs. KO                | 0.164    |
|                             |                                | 30 min: WT vs. KO               | 0.011    |
| Supplementary               | Two-sided student's t-<br>test | 60 min: WT vs. KO               | < 0.0001 |
| Fig. 11a_GTT and AUC        |                                | 120 min: WT vs. KO              | 0.001    |
|                             |                                | AUC: WT vs. KO                  | < 0.0001 |
|                             |                                | 0 min: WT vs. KO                | 0.075    |
|                             |                                | 30 min: WT vs. KO               | 0.001    |
| Supplementary               | Two-sided student's t-         | 60 min: WT vs. KO               | 0.003    |
| Fig. 11b_GTT and AUC        | test                           | 120 min: WT vs. KO              | 0.208    |
|                             |                                | AUC: WT vs. KO                  | 0.003    |
| Supplementary               | Two-sided student's t-         | Ctrl vs. HFD                    | 0.801    |
| Fig. 12a_GTT and AUC        | test                           | WT vs. db/db                    | 0.836    |
|                             | One-way ANOVA with             | 10. 46/46                       | 5.000    |
| Supplementary Fig. 13       | LSD post-test                  | for all                         | >0.05    |
| Cappionicitially Fig. 10    | Two-sided student's t-         |                                 | 70.00    |
| Supplementary Fig. 14a      |                                | NC vs. RNAi                     | < 0.0001 |
| очррешенату гід. 14а        | test                           | OHI/LESH: DMSO va DIZI          | < 0.0001 |
|                             |                                | 0 IU/L FSH: DMSO vs. PKI        | < 0.0001 |
| Supplementary               | 0.000 0.000 45100 14           | 0 IU/L FSH: DMSO vs. Rp-cAMPs   | < 0.0001 |
| Fig. 14b_GSIS_16.7 mM       | One-way ANOVA with             | 10 IU/L FSH: DMSO vs. PKI       | < 0.0001 |
| glucose                     | LSD post-test                  | 10 IU/L FSH: DMSO vs. Rp-cAMPs  | < 0.0001 |
|                             |                                | 100 IU/L FSH: DMSO vs. PKI      | < 0.0001 |
|                             |                                | 100 IU/L FSH: DMSO vs. Rp-cAMPs | < 0.0001 |
| Supplementary               | One-way ANOVA with             | 0 IU/L FSH: DMSO vs. SQ22536    | < 0.0001 |
| Fig. 14c_GSIS_16.7 mM       | -                              | 0 IU/L FSH: DMSO vs. 2',5'-     |          |
| 1 ig. 1 io_00io_10i1 iiiiii | LSD post-test                  |                                 |          |


|                         |                        | 10 IU/L FSH: DMSO vs. SQ22536     | < 0.0001 |
|-------------------------|------------------------|-----------------------------------|----------|
|                         |                        | 10 IU/L FSH: DMSO vs. 2',5'-      |          |
|                         |                        | Dideoxyadenosine                  | < 0.0001 |
|                         |                        | 100 IU/L FSH: DMSO vs. SQ22536    | < 0.0001 |
|                         |                        | 100 IU/L FSH: DMSO vs. 2',5'-     |          |
|                         |                        | Dideoxyadenosine                  | < 0.0001 |
| Supplementary           | On a second ANOVA with | 0 IU/L FSH: DMSO vs. Forskolin    | < 0.0001 |
| Fig. 14d_GSIS_16.7 mM   | One-way ANOVA with     | 10 IU/L FSH: DMSO vs. Forskolin   | < 0.0001 |
| glucose                 | LSD post-test          | 100 IU/L FSH: DMSO vs. Forskolin  | < 0.0001 |
|                         |                        | H89-: 0 IU/L FSH vs.10 IU/L FSH   | < 0.0001 |
| Complementary Fig. 44a  | One-way ANOVA with     | H89-: 10 IU/L FSH vs.100 IU/L FSH | < 0.0001 |
| Supplementary Fig. 14e  | LSD post-test          | H89+: 0 IU/L FSH vs.10 IU/L FSH   | 0.88     |
|                         |                        | H89+: 10 IU/L FSH vs.100 IU/L FSH | 0.787    |
|                         |                        | H89-: 0 IU/L FSH vs.10 IU/L FSH   | < 0.0001 |
| Supplementary           | One-way ANOVA with     | H89-: 10 IU/L FSH vs.100 IU/L FSH | < 0.0001 |
| Fig. 14f_pCaV1.2/CaV1.2 | LSD post-test          | H89+: 0 IU/L FSH vs.10 IU/L FSH   | 0.807    |
|                         |                        | H89+: 10 IU/L FSH vs.100 IU/L FSH | 0.98     |
|                         |                        | H89-: 0 IU/L FSH vs.10 IU/L FSH   | < 0.0001 |
| Supplementary           | One-way ANOVA with     | H89-: 10 IU/L FSH vs.100 IU/L FSH | < 0.0001 |
| Fig. 14f_pKir6.2/Kir6.2 | LSD post-test          | H89+: 0 IU/L FSH vs.10 IU/L FSH   | 0.991    |
|                         |                        | H89+: 10 IU/L FSH vs.100 IU/L FSH | 0.547    |
| Supplementary           | One way ANOVA with     | 0 IU/L FSH: DMSO vs. Verapamil    | 0.001    |
| Fig. 14g_GSIS_16.7 mM   | One-way ANOVA with     | 10 IU/L FSH: DMSO vs. Verapamil   | < 0.0001 |
| glucose                 | LSD post-test          | 100 IU/L FSH: DMSO vs. Verapamil  | 0.019    |

### 176 Source Data of Western blot in Supplementary Figures.


# 177 Related to supplementary Fig. 1b

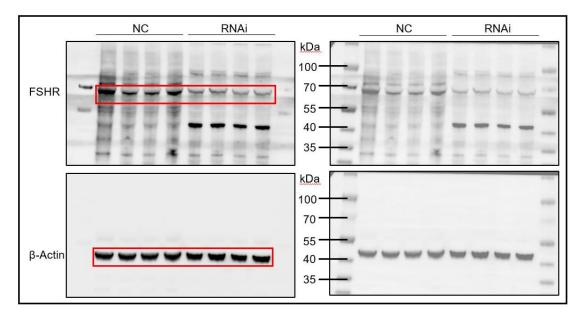



# 180 Related to supplementary Fig. 2



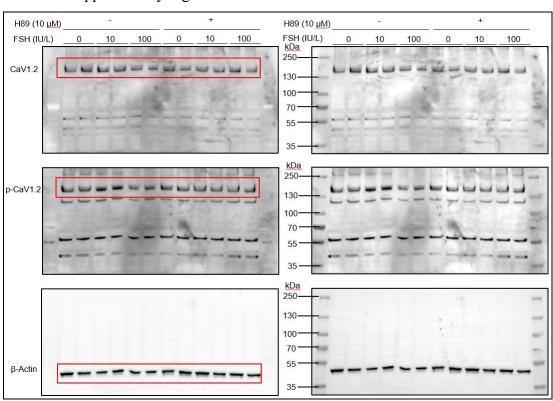
### 182 Related to supplementary Fig. 8a

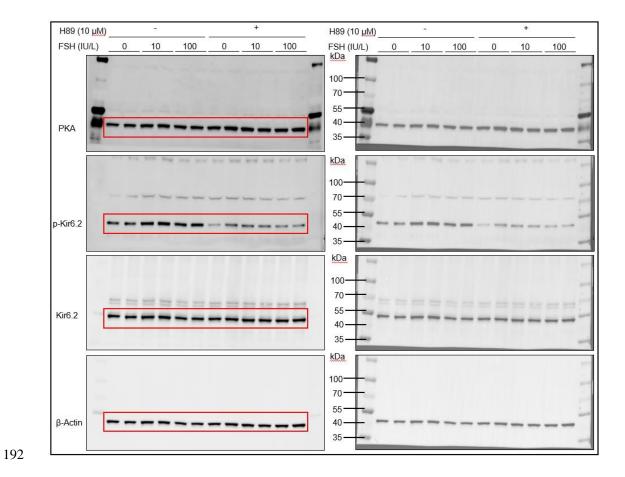



### 184 Related to supplementary Fig. 8b

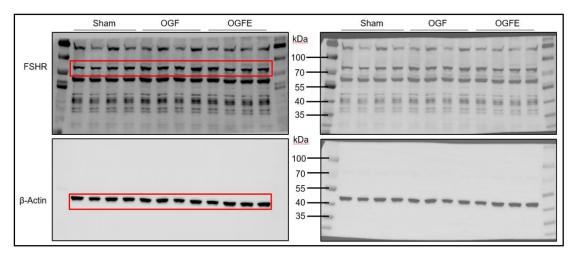


# 186 Related to supplementary Fig. 12b

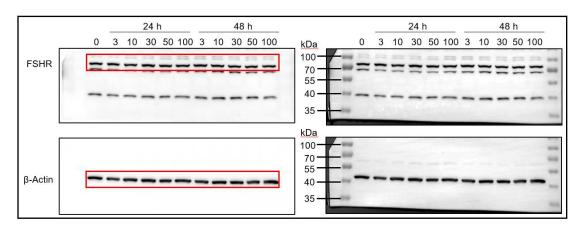




### 188 Related to supplementary Fig. 14a




### 190 Related to supplementary Fig. 14f

189






### 193 Related to supplementary Fig. 15a



195 Related to supplementary Fig. 15b

