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MicroRNA-134 is a brain-enriched small noncoding RNA that has been implicated in diverse neuronal functions,
including regulating network excitability. Increased expression of microRNA-134 has been reported in several
experimental epilepsy models and in resected brain tissue from temporal lobe epilepsy patients. Rodent studies
have demonstrated that reducingmicroRNA-134 expression in the brain using antisense oligonucleotides can in-
crease seizure thresholds and attenuate status epilepticus. Critically, inhibition of microRNA-134 after status ep-
ilepticus can potently reduce the occurrence of spontaneous recurrent seizures. Altered plasma levels of
microRNA-134 have been reported in epilepsy patients, suggesting microRNA-134 may have diagnostic value
as a biomarker. This review summarises findings on the cellular functions of microRNA-134, as well as the pre-
clinical evidence supporting anti-seizure and disease-modifying effects of targeting microRNA-134 in epilepsy.
Finally, we draw attention to unanswered questions and some of the challenges and opportunities involved in
preclinical development of a microRNA-based oligonucleotide treatment for epilepsy.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Epilepsy is a disease of network dysfunction leading to brain hyper-
excitability that manifests clinically as seizures. Epilepsy affects over 50
million people worldwide but does not respond adequately to available
treatments in around 30% of cases [1]. Physiological brain function re-
quires expression of a multitude of genes that establish the excitable
properties of neuronal networks, giving rise to finely balanced
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excitatory and inhibitory neurotransmission. Protein levels within cells
are controlled post-transcriptionally by small noncoding RNAs called
microRNAs (miRs) which negatively regulate gene expression [2,3].
This is achieved through Watson-Crick base pairing between the 5′-
end of the miR and 3’-UTR of a mRNA, an event mediated in part by
Argonaute (AGO) proteins. Because it requires only a 7–8 nucleotide
match for amiR to affect its target, individual miRs are predicted to reg-
ulate levels of multiple (perhaps hundreds) of mRNAs [4,5]. Overall, the
function of miRs appears to be to control cellular protein “noise”, by
fine-tuning and buffering protein levels in cells [6].

MiR biogenesis is essential for brain development and function.
Brain tissue is particularly enriched inmiRs, expressing several uniquely
[7–9]. A key role formiRs is shaping the structure and function of synap-
ses [10]. Several miRs have been identified that localise to the synapse
where they locally control levels of proteins involved in post-synaptic
structures [11]. Some of the biogenesis machinery for miR maturation
is also co-located at post-synaptic sites where it is responsive to
local changes in calcium signalling down-stream of NMDA receptor
activation [12]. Since dendritic spine shape and volume influence syn-
aptic strength [13], certain miRs are critical determinants of brain
excitability.

MicroRNA-134 (miR-134) was one of the first miRs to be shown to
be enriched in synapses. Originally identified as a brain derived neuro-
trophic factor (BDNF)-regulated miR, miR-134 was found to negatively
regulate dendritic spine volume [11], suggesting potential roles in con-
trol of excitability within the brain. Later, increased levels of miR-134
were reported in several animal models of epilepsy and in resected
brain tissue from patients with temporal lobe epilepsy (TLE) [14].
Since then, several studies have reported that silencing miR-134 using
antisense oligonucleotides (antagomirs) reduces seizure severity in
multiple models [14,15] and treatment of rodents with miR-134 inhib-
itors after an episode of status epilepticus (SE) can prevent or reduce the
later occurrence of spontaneous recurrent seizures. Other miRs have
been identified as therapeutic targets in epilepsy including miR-124
[16], miR-132 [17], miR-203 [18] and miR-219 [19]. However, miR-
134 is a leading candidate because it is brain-enriched (thus limiting
off-target effects) and targeting it results in generally superior seizure
suppression and this is reported in multiple models [14,15]. miR-134
levels are also altered in blood samples frompatientswith epilepsy, sug-
gesting diagnostic potential [20]. Here, we summarise our understand-
ing of the role of miR-134 in brain function, its expression in various
models of epilepsy and the findings to date on the therapeutic potential
of blocking miR-134 for the treatment and prevention of seizures.
1.1. Discovery and genetic localisation

miR-134 was originally discovered among a number of brain-
specific miRs in a screen of mouse tissues [21]. The miR was expressed
at low levels relative to other brain-enriched miRs, such as miR-124
which is the most abundant. MiR-134 was subsequently shown to be
coded within an imprinted locus on mouse distal 12 chromosome
(human 14q32), where the mir-134 gene is located in a cluster of con-
served A-repeats, close to miR-154 [22]. It was later shown that this
locus contains a cluster of ~46 potential miR genes [23]. The expression
of the whole locus is strongly controlled by an intergenic germline-
derived differentially methylated region (IG-DMR), located between
the Dlk1 and Gtl2 genes. The deletion of the IG-DMR from the
unmethylated maternally inherited chromosome, but not the methyl-
ated paternally inherited chromosome, silences the expression of this
gene cluster [24]. Clustering of miR genes is common, as their co-
expression is required for a coordinated influence on related biological
pathways [25]. Accordingly, the expression of the entire cluster is co-
regulated by Mef2 [26]. This is an activity-dependent transcription fac-
tor and so suggests a role of miR-134 in controlling neuronal response
to ongoing network function.
1.2. Cellular localisation

Schratt et al. [11] performed the first characterisation of miR-134
which strongly implicatedmiR-134 in themodulation of synaptic devel-
opment. First, expression of miR-134 in the mouse hippocampus was
shown to increase during brain development, reaching its maximum
level at p13, the age atwhich synapses begin tomature. Thiswas in con-
trast with certain other brain-enriched miRs (eg. miR-124) which were
expressed at a constant level throughout development, and so began to
show a role for miR-134 in synapse maturation [11]. This was consoli-
dated by in situ hybridisation (ISH) experiments, which showed den-
dritic localisation of miR-134 [11] and its pre-cursor, pre-miR-134
[27]. Pre-miRs are formed in the nucleus [28] and exported to the cyto-
plasm [29]. Schratt's team found a specific traffickingmechanismwhich
transports pre-miR-134 to dendrites. An RNA-binding protein, DEAH-
box helicase DHX36, recognises a sequencewithin the pre-miR-134 ter-
minal loop and guides it to the synapse [27], where it is subsequently
cleaved by the enzyme Dicer [30] to producemature miR-134. In recent
work, Park and colleagues used atomic forcemicroscopy to estimate the
copy number ofmiR-134 at synapses. They found that immature synap-
ses typically had 10–15molecules, mainly found at the base of the spine
[31]. In contrast, numbers of miR-134molecules were about half that at
mature synapses. Thus, production of active miR-134 is regulated by a
combination of trafficking and local-activity-dependent mechanisms
and the presence of miR-134 at a synapse may be a strong influence
on the maturation and functional state of the local dendrite.

While neurons appear to be the main cell type that expresses miR-
134, there remains some uncertainty about which subtypes express
miR-134. Schratt's work and ISH performed by our group support a
broad expression in both excitatory and inhibitory neurons in the ro-
dent brain [11,14]. Other studies have suggested, however, that miR-
134 expression may be enriched in certain inhibitory interneuron pop-
ulations [32]. Resolving this issue is important since modulating levels
ofmiR-134might have opposing effects if it is expressed predominantly
in inhibitory rather than excitatory neurons.

1.3. What is the function of miR-134 at the synapse?

Several methods have been used to modulate miR-134 expression,
revealing insights into its function at the synapse. Schratt et al. [11]
overexpressed miR-134 in cultured hippocampal neurons using a
pcDNA3 vector, leading to a decrease in dendritic spine width and vol-
ume. Correspondingly, in the same study, suppression of endogenous
miR-134 using a 2’-O-methylated antisense oligonucleotide (ant-134)
caused a specific increase in spine volume, without changing spine den-
sity or dendritic complexity. These effects were shown to be mediated
via miR-134's interaction with Lim-domain-containing protein kinase
1 (Limk1) mRNA (Fig. 1C), which contains a consensus for miR-134
[11]. Limk1 influences spine dynamics through an interaction with
ADF/cofilin [33]. Therefore, in basal conditions, miR-134 seems to
have a fairly specific role inmodulating spine size. However, the precise
role of miR-134 appears to be brain state dependent.

A later study showed that knockdown ofmiR-134 in cultured hippo-
campal neurons does not affect dendritic complexity in basal conditions
but, critically, can abolish the increase in branching which results from
increased neuronal activity [26]. In this context, miR-134 expression is
driven by the activity-dependent myocyte enhancing factor 2 (Mef2),
which binds upstream of the Gtl2/Dlk1 locus (also referred to as the
miR379-410 cluster) and enhances the expression of the entire cluster.
The resulting increase in miR-134 promotes activity-dependent
dendritogenesis through downregulation of a different target, the
RNA-binding protein Pumilio2 (Pum2). This effect is blocked by ant-
134. The precise regulation of dendritic outgrowth seems to follow a
‘tuning model’ [34], which requires miR-134 levels to remain within a
limited physiologically-relevant range. Indeed, miR-134 overexpression
in vivo using a recombinant adeno-associated virus vector also caused a



Fig. 1. Sequence and targets of miR-134. a - Mouse miR-134 stem-loop structure containing both mmu-miR-134-3p (blue text) and mmu-miR-134-5p (red text). b - An overview of the
biogenesis and selected mRNA targets of miR-134. Among those most likely to be relevant to epilepsy are CREB [37], DCX [38] and Pum2 [26] within the soma and LimK1 [11,14] in
dendritic spines.
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reduction in dendritic outgrowth [35], phenocopying the results seen
during miR-134 knockdown in vitro. Further study showed that miR-
134 also mediates homeostatic synaptic depression during increased
network activity [36]. Using luciferase 3’-UTR constructs, the authors
confirmed that this process was mediated by Pum2 during hyperexcit-
able states [36], and not by Limk1, as in basal conditions [11]. This raises
the exciting prospect that miR-134 is able to function differently,
through distinct molecular mechanisms, depending on specific brain
states.

A number of other targets of miR-134 have been identified which
may indirectly affect brain excitability states. Gao and colleagues [37]
showed that miR-134 targets cAMP response binding protein (CREB,
Fig. 1C), an important regulator of synaptic plasticity. Another target
of miR-134 is the neuronal guidance molecule doublecortin (DCX),
with miR-134 functioning during brain development to reduce neuro-
nal migration [38] (Fig. 1B).

1.4. miR-134 and epilepsy

Epilepsy is a neurological disease characterised by neuronal network
dysfunction that leads to brain hyperexcitability andmanifests clinically
as the susceptibility to recurrent spontaneous seizures. Epilepsy is also
frequently accompanied by significant co-morbidities, including de-
pression and cognitive problems. Epilepsy can be caused by mutations
in genes critical to brain development or neuronal function (e.g. ion
channels, neurotransmitters) of which over 500 have been discovered,
as well as be acquired through damage to the brain from physical or in-
fectious causes [39]. Epileptogenesis is the process which links brain in-
jury and other causative factors to the resulting emergence of epilepsy
[40–43]. The pathological underpinnings of epileptogenesis can include
select cell loss [44], gliosis [42], neuroinflammation [43], and circuit
restructuring [44,45]. The result of epileptogenesis is a network-level
disruption which renders brain circuits susceptible to recurrent activa-
tion and synchrony of neuronal populations. For a more complete dis-
cussion of the mechanisms of epileptogenesis the reader is referred
elsewhere [40–43].

Frontline treatments for peoplewith epilepsy are anti-seizure drugs,
including channel blockers, receptor modifiers, and other agents which
broadly work by dampening network excitability through boosting in-
hibition or suppressing excitation. Around 30% of patients with epilepsy
do not experience seizure freedomwith existing treatments [1], leaving
an urgent and unmet need for new disease-modifying therapies. Addi-
tionally, anti-seizure drugs have limited specificity [46]. This can lead
to adverse effects on normal brain function (common side effects in-
clude drowsiness/sedation and cognitive difficulties), highlighting the
need for novel approaches towards epilepsy management. MiRs repre-
sent a highly promising new target in epilepsy therapy, owing to their
ability tomodify properties of neuronal networks throughmultiplemo-
lecular targets. Since miR-134 shows activity-dependent expression
and appears to target network function through several complementary
mechanisms in a context-dependentmanner, it could represent an ideal
target for treatment of seizures. Accordingly, we began to explore the
link between miR-134, epileptogenesis and epilepsy.

We began by studying the spatio-temporal relationship between
miR-134 levels and pathological brain activity [14]. We used real-time
qPCR analysis of brain tissue taken from mice subjected to prolonged
seizures induced by microinjection of kainic acid (KA) into the amyg-
dala. This is a well-characterised rodentmodel of SE which has the ben-
efit of also triggering recurrent spontaneous seizures within a few days,
so that changes relating to epilepsy can also be investigated [47]. This
revealed an increase in mature miR-134, specifically in the hippocam-
pus ipsilateral to the KA injection. The increase occurred in both the
area of damage (CA3 subfield) and the relatively spared CA1 area, sug-
gesting seizures rather than damage are the main driver of this change.
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Accompanying this change were lower levels of LimK1, as well as CREB,
consistent with their expected responses as miR-134 targets. In hippo-
campal samples frommice that developed epilepsy therewas also an in-
crease in miR-134 levels, particularly within the CA1 subfield. The same
increase in miR-134 was observed in human specimens of neocortex
and hippocampus, from patients undergoing resective surgery for
pharmacoresistant TLE [14,15]. This is an important finding because it
suggests that miR-134 could have a similar role in human epilepsy
and could therefore be exploited clinically. Increased miR-134 levels
have since been reported in other seizure models (see Table 1 and
Fig. 2C) including pilocarpine [48], pentylenetetrazol (PTZ) [15], and
in vitromodels [49].

1.5. Manipulating miR-134 using oligonucleotides: insights into function

We then used ant-134 in the mouse brain and explored whether it
affected seizures. The sequence chosen was a 16mer oligonucleotide
with a cholesterol tag to enhance cellular uptake. Having found a dose
that selectively reducedmiR-134 levelswithout affecting othermiRNAs,
we measured the timecourse of miR-134 knockdown in mouse hippo-
campus [14]. LowermiR-134 levelsfirst becamedetectable 12 h after in-
jection into the ventricle. This route of delivery was required because
systemically injected oligonucleotides do not pass through an intact
blood-brain barrier [50]. Maximal knockdown (95%) was detected at
24 h and silencing lasted for one month following a single injection
(Fig. 2A). This is potentially an important therapeutic advantage of
ant-134 since it suggests that a single treatment could be effective for
around one month. This is in comparison with anti-epileptic drugs
which typically need to be taken at least once per day.When antagomirs
were injected 24 h before SE, mice experienced significantly reduced
seizure severity in the intraamygdala KA model (Fig. 2B). The hippo-
campus from thesemice was also less damaged. Interestingly, when in-
duction of seizureswas delayed for 14 days, a timewhenmiR-134 levels
had returned to ~30% of baseline, the mice were no longer refractory to
SE. This indicates a need for strong suppression of miR-134 to achieve
anti-seizure effects in a model of SE. The in vivo anti-seizure effects of
antagomirs targeting miR-134 when given as a pre-treatment have
since been reported in other models, including the pilocarpine and
PTZ models [15] (Table 1 and Fig. 2C). The same oligonucleotides also
suppress epileptiform activity in ex vivo rat brain slices treated with el-
evated potassium [15,51]. Importantly, a number of independent
groups have reported anti-excitability effects of targeting miR-134 in
in vitro and in vivo, includingwork in primary cultures of rat hippocam-
pal neurons exposed to low-magnesium solution [49] andmost recently
in another in vivo KA rodent model [52].

In a subsequent series of studies, the effects of silencing miR-134
after SE on the development of spontaneous recurrent seizureswere ex-
plored. SE is an effective method for inducing epileptogenesis and
Table 1
Summary of in vivo results targeting miR-134 in models of epilepsy.

Model Treatment time Delivery mode

Mouse IAKA 24 h before SE i.c.v.
Mouse IAKA 1 h after SE i.c.v.
Mouse PILO 24 h before SE i.c.v.

Rat PPS 24 h before PPS i.c.v.

Rat PPS Immediately after PPS i.c.v.
Mouse PTZ 24 h before SE i.c.v.

Rat i.c.v. KA Not specified i.c.v.

High K+ (ex vivo rat) 2–4 days before slice preparation i.c.v.

Key: IAKA, intraamygdala kainic acid; i.c.v.; intracerebroventricular; KA, kainic acid; PILO, piloc
status epilepticus.
chronic epilepsy, and in the intraamygdala KA model spontaneous sei-
zures begin within 3–5 days, occurring steadily thereafter. Injection of
the antagomirs after SE had no effect on the SE itself, consistent with
it taking many hours for the miRNA level to be reduced by the
antagomirs. Remarkably, when mice injected after SE were tracked for
two weeks with continuous EEG monitoring numbers of spontaneous
seizures were reduced by over 90% [14]. A second study followed mice
out to two months and found seizure rates were still 70% lower
(Fig. 2). This was the first demonstration that ant-134 could be thera-
peutic in epilepsy. An analysis of the mouse brains at the end of studies
found evidence of neuroprotection, but the mice still had lesions indi-
cating the disease-modifying action was not solely a function of neuro-
protection. This finding has since been extended to rats which
underwent perforant pathway stimulation [15]. In that study, silencing
miR-134 after SE prevented epilepsy in 6/7 rats whereas all the controls
became epileptic. These promising findings suggest that ant-134 can be
therapeutic against seizures with differing underlying causes, and so
could be effective in a variety of epilepsy syndromes.

1.6. Cognitive effects of targeting miR-134 and safety profile

An important aspect in the translation of a new treatment to the
clinic is safety and a lack of off-target effects. During early studieswe ob-
served that ant-134 causes a small reduction in dendritic spine density
in CA3 pyramidal neurons [14]. Further analysis showed that the re-
maining spines had a greater volume in the ant-134 treated group
[48]. Nevertheless, mice injectedwith antagomirs did not display differ-
ences in natural behaviour in an ethogram test [14] (Fig. 3A). We used
the novel object location test [53] to probe spatial memory in vivo,
since this is thought to be a largely hippocampal dependent task [54].
We observed no difference in object location discrimination between
animals injected with ant-134 or vehicle control, in both mice [48]
and rats [51], suggesting that ant-134 spares normal hippocampal func-
tion (Fig. 3A). Likewise, biophysical properties of pyramidal neurons,
along with electrophysiological readouts of glutamatergic neurotrans-
mission, were not changed by ant-134 [51] (Fig. 3B). Further validation
of safety will be required, but ant-134 does not appear to have a large
impact on normal cognitive function.

1.7. Is there an opportunity to co-develop miR-134 as a circulating
biomarker?

Several brain-enrichedmiRNAs including miR-134 have been found
to be present in biofluids, including blood, raising the intriguing possi-
bility of their use as diagnostic biomarkers. Overall, miRs are attractive
in this regard. In addition to several being brain-specific (and thus
their presence in the circulation could reflect damage to the brain or
opening of the blood-brain barrier which is known to accompany
Seizure phenotype Histology References

↓ EEG power in SE ↓ neuronal death in CA3 [14]
↓ spontaneous seizures ↔ neuronal death in CA3 [14]
↓ proportion of mice with SE N/A [48]
↑ delay to seizure onset
SE unchanged N/A [15]
↓ spontaneous seizures
No epilepsy in 6/7 rats N/A [15]
↑ delay to seizure onset N/A [15]
↓ seizure severity
↓ EEG power
↓ spontaneous seizures ↓ neuronal death in CA3 [52]

↓ mossy fibre sprouting
↑ delay to activity onset N/A [15,51]

arpine; PPS, perforant pathway stimulation; PTZ, pentylenetetrazol; N/A, not available; SE,



Fig. 2. miR-134 knockdown is therapeutic in various in vivo experimental models and species. A - In vivo intracerebroventricular injection of ant-134 in mice mediates a significant
knockdown of miR-134 for one month (reproduced with permission from [14]). B - IAKA - intra-amygdala kainic acid (reproduced with permission from [14]): Spectrograms show
that status epilepticus is reduced by pre-treatment with ant-134 (left panel). Post-treatment with ant-134 leads to a reduction in spontaneous seizures during the chronic phase of this
model (right panel). C - An overview of seizure reduction mediated by ant-134 in different animal models. For pre-treatment studies, we measured the % reduction in total EEG power
after KA administration. For post-treatment studies, we measured the % reduction in number of spontaneous seizures in the chronic epilepsy phase of the models. Black bars represent
mouse studies and grey bars rat studies. IAKA - intra-amygdala kainic acid; PILO - pilocarpine; PTZ - pentylenetetrazol; PPS - perforant path stimulation.
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Fig. 3.miR-134 knockdown does not appear to alter normal rodent behaviour or biophysical properties. A - Normal rodent behaviour is unaffected by ant-134 administration. Activity
counts in mice (left panel - reproduced with permission from [14]) and novel object location discrimination in mice (middle panel - reproduced with permission from [48]) and rats
(right panel - reproduced with permission from [51]) were not changed by ant-134. B - Rat hippocampal pyramidal neuron biophysics are not changed by ant-134. Both miniature
excitatory post-synaptic potentials (left panel) and action potentials (right panel) were unchanged (reproduced with permission from [51]).
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seizures [55]), they are stable and amenable to rapid detection using
techniques such as PCR. While profiling studies have not yet picked
out miR-134 as a biomarker of epilepsy, several studies focusing on
miR-134 specifically have suggested it may have biomarker potential.
We and other groups have detected higher levels of miR-134 in plasma
and CSF from patients with epilepsy [20,56]. In contrast, Avansini and
coworkers [57] reported lower miR-134 levels in plasma from patients
with TLE. Accordingly, more research, perhaps combining samples
fromdifferent sites, is needed to clarify whethermiR-134 is a biomarker
of epilepsy. Indeed, other neurological disorders may also cause a spike
in miR-134 levels in the circulation meaning it may not be sufficiently
specific for epilepsy [58,59]. Finally, we recently showed that injection
of a disease-modifying dose of ant-134 into mice could also normalise
levels of other circulating miRNA biomarkers [60]. Taken together,
these results suggest that a circulating miR-based diagnostic test could
be co-developed with a miR-134-targeting therapy for epilepsy.

1.8. Outstanding questions: remaining barriers to clinical translation of ant-
134

TargetingmiR-134 is an attractive novel approach for seizure control
and disease modification. Foremost, it has shown consistent efficacy –
seizures are reduced in six of seven tested models (Table 1, Fig. 2).
This is as good as and better than the performance of many current
AEDs. The apparent anti-epileptogenic actions of ant-134 are highly
promising [14,15,52] and it does not appear to have any obvious
adverse effects in rodents [48,51]. However, there are still several re-
maining hurdles before ant-134 can be realistically translated to the ep-
ilepsy clinic.

Firstly, in all published studies to date ant-134 was administered ei-
ther before or immediately after the epileptogenic insult. Whilst this is
appropriate for demonstrating anti-seizure and anti-epileptogenic ef-
fects, it is not realistic in the clinical setting, where patients usually pres-
ent with established epilepsy. The more relevant challenge will be to
administer ant-134 in rodent models after epilepsy has developed. Al-
though ant-134 has not been tested in such amodel, a study recently re-
ported antagomirs targetingmiR-135a reduced spontaneous seizures in
epileptic rodents [61].

Another obstacle to clinical translation is how to deliver ant-134 to
the brain in patients with epilepsy. Rodent studies to date have all
used direct administration of ant-134 to the brain via stereotaxic intra-
cerebroventricular injection - a highly invasive surgical procedure. This
would not be impossible for use in humans with pharmacorefractory
epilepsy - such patients may have to undergo surgery anyway - but a
less invasive route of delivery would be highly preferable. Perhaps, if
the blood brain barrier is open as a result of recent seizure activity or
briefly opened (for example using ultrasound or a hyper-osmotic solu-
tion) then a systemic injection could reach the brain. We recently
showed this was possible in principal, delivering antagomirs systemi-
cally after SE in mice and demonstrating they still have potent, long-
lasting anti-seizure effects [62]. Another potential delivery method is
via intrathecal injection.
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There may be other methods for silencingmiR-134. A gene therapy-
based approach could use a sponge construct with multiple binding
sites for miR-134 to reduce its levels. If delivered via a viral vector it
could reach the target tissue and provide lasting, cell-specific miR-134
suppression [63]. Another approach might be to use target site blockers
[64]. These are antisense oligonucleotides that block the site within the
3’UTR where a miR binds. This preserves the main targets of the miR
while protecting one site. This could reduce off-target effects, particu-
larly if a miR's main effects are through a single target (in the present
context, a target site blocker against the miR-134 site in the LimK1
mRNA).

The majority of in vivo studies reported to date have tested
antagomirs in adult rodents.Would ant-134 suppress seizures in thede-
veloping brain? This could increase the therapeutic use of the molecule
since it could be used in paediatric SE or refractory epilepsy. However,
the safety of ant-134 in the developing brain requires further validation.
This is because miR-134 may play a role in synaptic development and
maturation via LimK1 [11] and in neuronal migration via DCX [38].

Could ant-134 be effective in genetic epilepsies? Such conditions are
highly pharmacorefractory and often very severe [65], indicative of a
strong need for new treatment strategies. There is evidence that other
antisense oligonucleotide-based therapies can be therapeutic in genetic
epilepsies [66]. Does ant-134 have any effects against the co-morbidities
that accompany epilepsy? Cognitive impairments are a feature of sev-
eral models of acquired epilepsy and it would be important to explore
whether treatmentwith ant-134 has protective effects on these in addi-
tion to or independent of seizure control.

Finally, ant-134 has not been tested in human-derived tissue.Whilst
the efficacy of ant-134 has been demonstrated inmultiple species, there
remains a possibility that it could be ineffective in human epilepsy. First,
it has yet to be demonstrated that antagomirs can be taken up into
human neurons, or that they can effectively target human miRs. An-
other concern iswhether themRNApathways targeted bymiRs are con-
served in humans. One of the most relevant examples is that the 3’UTR
of LimK1 mRNA, a key miR-134 target in the context of epilepsy [14], is
not well-conserved between rodents and humans [11]. However, ant-
134 does also seem to mediate anti-epileptic effects through other tar-
gets and so it remains to be seen whether it can be therapeutic in
human tissue. These questions can be answered using two types of
human-derived tissue. First, induced pluripotent stem cells (iPSCs) can
be obtained from patients with epilepsy. These cells can be maintained
in culture and reprogrammed to derive the desired cell type, which can
then be used to probe the uptake of ant-134 into human cells and its
ability to knockdown miR-134 and restore miR-134 targets in single
neurons. However, questions remain about the possibility to re-
capitulate realistic epileptic networks using human iPSCs. This may be
overcome in the future with the use of three-dimensional human neu-
ronal cultures [67,68], which formmore (patho)physiologically realistic
networks. It would be possible to create such cultures using iPSC-
derived neurons donated by patients [69] with genetic epilepsies to re-
alisticallymimic a range of epilepsy-related impairments such as neuro-
nal migration (eg RELN mutation [70,71]), transcriptional alterations
(eg PURA [72]), or channelopathies (eg SCN1A [73]). Further, there are
some doubts about the maturity of iPSC-derived neurons [74]. This lim-
itation is overcome by the second approach: the use of surgically
resected tissue from patients with pharmacoresistant epilepsy. This tis-
sue can be used to model epileptiform activity in human brain [75] and
is thus the most clinically relevant challenge remaining for ant-134.

2. Conclusion

miRs represent a completely new class of therapeutic target for epi-
lepsy. A leading candidate in this regard is miR-134 for which we now
have extensive preclinical data. The barriers to translation are signifi-
cant. Ant-134 represents an enormously promising novel disease-
modifying therapy for epilepsy. It has shown consistent efficacy in
multiple disease models with anti-seizure effects that outlast the pres-
ence of ant-134 in the brain. Ongoing work will be required to confirm
efficacy in humans with established epilepsy and to establish the opti-
mum delivery method for ant-134.

2.1. Search strategy and selection criteria

Sources for this reviewwere identified by searches of PubMed using
the search terms ‘miR-134’ or ‘microRNA-134’ and ‘epilepsy’. Further
sources were identified from references within these articles. Only arti-
cles published in English were included.
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