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Abstract

Bronchopulmonary dysplasia (BPD) still carries a heavy burden of morbidity and

mortality in survivors of extreme prematurity. The disease is characterized by

simplification of the alveolar structure, involving a smaller number of enlarged al-

veoli due to decreased septation and a dysmorphic pulmonary microvessel growth.

These changes lead to persistent abnormalities mainly affecting the smaller airways,

lung parenchyma, and pulmonary vasculature, which can be assessed with lung

function tests and imaging techniques. Several longitudinal lung function studies

have demonstrated that most preterm‐born subjects with BPD embark on a low

lung function trajectory, never achieving their full airway growth potential. They are

consequently at higher risk of developing a chronic obstructive pulmonary disease‐
like phenotype later in life. Studies based on computer tomography and magnetic

resonance imaging, have also shown that in these patients there is a persistence of

lung abnormalities like emphysematous areas, bronchial wall thickening, interstitial

opacities, and mosaic lung attenuation also in adult age. This review aims to outline

the current knowledge of pulmonary and vascular growth in survivors of BPD and

the evidence of their lung function and imaging up to adulthood.
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1 | INTRODUCTION

Rates of preterm birth (gestational age < 37weeks) have increased

globally and now account for 11% of live births.1 Thanks to re-

markable advances in perinatal care, more than 95% of subjects born

preterm survive and reach adulthood.2 The improved survival rate

may come at the expense of future health risks, however, including

bronchopulmonary dysplasia (BPD), which is the most common

complication of prematurity.

BPD affects between 10% and 89% of preterm infants and about

45% of those born at less than 29 weeks of gestation (WG),

depending on the countries and the definition used,3–5 remains a

major cause of mortality and long‐term respiratory consequences in

these populations.5–8

The lungs of survivors of prematurity with and without BPD face

a deranged parenchymal and vascular growth, and with frequent

respiratory infections in the first 2 years of life. In addition, several of

these patients fail to reach the optimal peak of lung function in early

adulthood.9

BPD and prematurity are clear examples of how a perinatal in-

sult can be associated with a functional impairment that persists into

adult age.10 Pulmonary disease is just one of the multiple morbidities
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experienced by individuals born preterm. In parallel with aberrant

lung development, preterm birth also interrupts the development

and maturation of several other organ systems. In fact, it has been

suggested that prematurity be considered a chronic condition itself,

given its adverse consequences in terms of growth failure, neuro-

developmental sequelae, systemic hypertension, pulmonary hy-

pertension, chronic kidney disease, type 1 and type 2 diabetes,

ischemic heart disease in mid‐adulthood, and mortality rate.11 Sub-

jects born prematurely require early assessment, long‐term follow‐
up, and preventive action to reduce the risk of multiple chronic

diseases later in life.

In this review, we describe the effects of BPD on lung growth,

function, and structure in infants who survive the disease.

2 | LUNG AND VASCULAR GROWTH IN
SURVIVORS OF BPD

In term‐born healthy infants, multiplication of the alveoli and ma-

turation of the microvasculature in the lung start in utero and con-

tinue in postnatal life.12,13 Alveolarization persists throughout

childhood and adolescence, and even into adulthood,14 resulting in a

20‐fold increase in the surface area from birth (0–50million alveoli)

to adulthood (>300million). Similarly, intra‐acinar arteries and veins

continue to develop after birth by angiogenesis as long as the alveoli

increase in number and size.15 Blood vessel formation and alveolar

growth are inter‐related processes, with the former actively pro-

moting the latter, and contributing to maintaining the alveolar

structures for the rest of an individual's life.16–19

Extremely low gestational age newborns (i.e., <28 WG) are born

before the alveoli precursors (saccules, alveolar ducts, alveolar air

sacs) have formed, the capillary bed has increased,12,17,20 and a

sufficient amount of surfactant has been produced by Type II cell

(AT2 cells).13,16 In addition to this picture of lung immaturity, BPD is

also a clinical syndrome in which alveolarization and microvascular

development are disrupted, resulting in abnormal gas exchange and

lung mechanics.13

Most of our current knowledge of BPD histology comes from

autoptic findings in infants who died of severe BPD (which happened

more frequently in the last century than in recent years, which have

seen a reduction in BPD‐related mortality). The oldest evidence

comes from the pre‐surfactant era, when generalized emphysema-

tous changes were found in mechanically ventilated extremely pre-

mature infants who died of BPD.21 These findings were also

confirmed in the post‐surfactant era by Husain et al.22 and classically

described what is called “old” BPD.

Premature infants born in more recent years, since the in-

troduction of early rescue surfactant treatment, antenatal gluco-

corticoids, and more gentle ventilation techniques, show a modified

BPD histology or the so‐called “new” BPD. This form of the disease is

characterized by less severe injury in very immature lungs. The

picture is dominated by a simplified alveolar and a smaller number of

enlarged alveoli due to reduced septation, associated with a

dysmorphic pulmonary microvessel growth that leads to a decreased

surface area for alveolar‐capillary gas exchange. Histological speci-

mens from infants up to 3 years of age13 and imaging studies in BPD

survivors reveal areas of reduced alveolarization, cystic emphysema,

fibrosis, and some airway alterations like trachea‐ and bronchoma-

lacia, and subglottic stenosis.23 The small airways may be affected as

well, with mucus gland hyperplasia, epithelial edema, and smooth

muscle cell proliferation causing bronchoconstriction. Recent animal

studies suggest that immune cells, such as macrophages, may be

causally implicated in the disruption of postnatal lung

organogenesis.24,25

It is still unclear how these abnormalities evolve, however, as

lung specimens of grown‐up BPD patients are rare. Some informa-

tion may be inferred indirectly from lung function studies assessing

pulmonary gas exchange, which confirm a decreased alveolar‐
capillary membrane function by showing a lower carbon monoxide

diffusing capacity in BPD subjects.26,27 One of the few studies ex-

ploring the histopathology of grown‐up BPD survivors was recently

published by Galderisi et al.,28 who analyzed endobronchial biopsy

specimens from three adolescents with reduced lung function and

recurrent wheezing exacerbations. They revealed a lymphocytic in-

filtrate pointing to an ongoing active inflammatory process in the

airways and a prominent bronchial vascular density reflecting in-

creased angiogenesis.29

The vascular aspect of the “new” form of BPD is particularly

intriguing, since angiogenesis and vessel branching drive alveolar

growth.17,19 The alveolar‐capillary membrane grows considerably

between 22 and 32weeks of gestation, and that is why prematurity

and lung injury during the neonatal period impair the growth,

branching, and distribution of the pulmonary vasculature.30–32 The

vascular abnormalities typical of BPD include dysmorphic growth

and an altered vascular remodeling, tone, and reactivity, with a

higher risk of pulmonary hypertension beyond the first few months

of life. Various animal models of BPD and autopsy studies on humans

who died of BPD have consistently shown a reduction in the number

of small arteries, and an abnormal distribution of vessels in the distal

lung.33 The current working hypothesis, the so‐called “vascular

hypothesis,”34 is that disrupted angiogenesis interferes with alveo-

larization, while preserved vascular growth and endothelial survival

promote growth and sustain the architecture of the distal airspace.19

Vascular endothelial growth factor (VEGF) seems to be the most

critical angiogenic growth factor for both vascular and alveolar de-

velopment. Interestingly, among the avenue of promising future

therapies for BPD are mesenchymal stem/stromal cells (MSCs) or

their effectors, the extracellular vesicles (EV‐MSCs), which proved

encouraging results in preclinical studies and are now under testing

in Phase 1 and Phase 2 trials. These new drugs have shown clear

histological improvements in animal models of BPD,35 with evidence

of larger numbers of smaller‐sized alveoli, and a reduction in medial

arteriolar thickness compared with sham‐treated animals. These ef-

fects are thought to stem from the paracrine effects of MSC‐derived
humoral factors, such as interleukin (IL)‐6, IL‐8, VEGF, collagen, and
elastin.36,37
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3 | RESPIRATORY OUTCOMES AND LUNG
FUNCTION IN INFANCY AND CHILDHOOD

Being born preterm predisposes infants to a high risk of respiratory

sequelae in both the short term and the long term.9

Children with BPD have a hospitalization rate of as high as 50%

during the first 2 years of life.38,39 This figure varies among studies, and

shows no significant difference between preterm infants with and with-

out BPD.40 Respiratory syncytial virus (RSV) and rhinovirus may increase

the risk of hospital admissions in this age group, as they frequently

precipitate pulmonary exacerbations.41 This may be due to the infants'

immature humoral and adaptive immunity, which increases the risk of

severe viral respiratory infections in the first 2 years of life,42 and of

earlier and more frequent respiratory symptoms compared to their term

counterparts.43,44 Respiratory infections and exacerbations in infancy

and childhood may worsen an already impaired lung structure, giving rise

to frequent coughing and recurrent wheezing disorders.40,45 Further-

more, neonates with BPD and tracheobronchomalacia, a common co-

morbidity of BPD, are more likely to be mechanically ventilated upon

discharge and longer hospitalized compared to their peers without

tracheobronchomalacia.46

Lung function in infants and pre‐school age can be assessed

using tidal flow–volume loops, multiple breath washout, whole‐body
plethysmography, single‐breath occlusion, rapid thoracho‐abdominal

compression technique (RVRTC) or forced oscillation technique.

Studies on neonatal lung function have mostly failed to predict BPD

development or duration of mechanical ventilation and supplemental

oxygen,47 but lung mechanics measurements reflecting severity of

neonatal disease have shown a correlation with a reduced lung

function in BPD toddlers.48

Studies applying the raised volume rapid thoraco‐abdominal

compression technique and the measurement of the maximal ex-

piratory flow at functional residual capacity (VmaxFRC) on preterm

infants with and without BPD have shown reduced expiratory flows

up to 2 years of age,43,49–52 with infants having lower respiratory

system compliance at 10–20 days of life demonstrating lower forced

expiratory flows at the 2‐year follow‐up.51 Ventilation with high‐
frequency oscillatory ventilation (HFOV) during neonatal hospitali-

zation, in combination with surfactant treatment, may lessen the

neonatal lung injury with positive effects on later lung function.53 In

children with BPD, the need for supplemental oxygen or ventilation

at 2 years has been associated with a worse VʹmaxFRC/FRC.
54

Respiratory morbidity at the time of follow‐up may better pre-

dict airway function and respiratory compliance than BPD severity at

36 weeks postmenstrual age (PMA), as demonstrated by a long-

itudinal cohort of preterm infants where those with BPD and re-

spiratory symptoms had lower VʹmaxFRC, forced mid‐expiratory
flows (MEF50) and respiratory system compliance (Crs) compared to

those without symptoms at 6 and 18months of postnatal age.55

Whereas lung compliance seems to improve with increasing age,

lung volumes and FRC measured with dilution techniques51,56 and

plethysmography55,57,58 tend to normalize or even rise by 1 year,

suggesting obstructive airway disease with air trapping. Parameters

of airway function (forced expiratory volume in 0.5 s (FEV0.5), forced

expiratory flow at 75% (FEF75) and FEF25–75), instead, tend to remain

low up to 3 years of age.59 Interestingly, Sheperd and colleagues

proposed a classification of pulmonary function in BPD survivors

based on infant pulmonary function testing (PFT) at approximately

52weeks PMA, recognizing an obstructive, a restrictive, and a mixed

phenotype according to functional residual volume in 0.5 s (FRV0.5),

forced vital capacity (FVC), and total lung capacity (TLC). Patients

with characteristics of obstruction were about a half (51%) of the

total and were also more responsive to bronchodilators (74%).60

The airflow limitation, however, affects infants born preterm

without BPD as well, although infants with a previous diagnosis of

BPD show lower z scores of airflow parameters. Ethnic differences

should be taken into account when conducting PFT in nonwhite in-

fants, as differences in expiratory parameters may derive from eth-

nicity and not to worse lung function or disease, as occurs in older

subjects.61

Expiratory airflow limitation persists at school age and beyond in

former preterm infants with and without BPD43 compared with their

term‐born peers,62 with no apparent catch‐up growth in the former's

lung function. On the other hand, structural imaging studies at school

age (10–14 years) show that, despite their lower forced expiratory

volume in 1 s (FEV1), children born extremely preterm have com-

parable alveolar dimensions to those of term‐born and mildly pre-

term children.63 This may be partly explained by the concept of

dysanapsis.

4 | RESPIRATORY OUTCOMES AND LUNG
FUNCTION IN ADOLESCENCE AND
ADULTHOOD

Several longitudinal studies following up cohorts of preterm‐born
infants with and without BPD demonstrate tracking of lung function

over time, as measured by FEV1—a powerful spirometric parameter

of flow limitation—regardless of whether subjects were born before

or after the introduction of surfactant.64–66 According to a review

and meta‐analysis on patients aged 5–23 years, the %FEV1 deficit in

those born preterm with and without BPD was about 16.8% and

7.2%, respectively.67 Some reports reveal a gradual decline in lung

function with age, raising concern that children with BPD are at

higher risk of early‐onset chronic obstructive pulmonary disease

(COPD).18,68 In a recent Australian study, Simpson et al. found that

preterm infants had a worrying decline in spirometric values from 4

to 12 years of age (0.1 z score per year for FEV1, FEF25–75, and FEV1/

FVC), with the poorest trajectories in BPD survivors. Children with

bronchial wall thickening on chest computed tomography (CT)

(suggestive of inflammation), those exposed to tobacco smoke, born

at earlier gestational age, or requiring more supplemental oxygen

after birth showed a faster decline in FEV1 (Figure 1).69 Another

study conducted by Doyle et al. demonstrated a reduction in all lung

function variables reflecting airflow in a BPD group at a mean age of

18.9 years. In 42.4% of this sample, the FEV1/FVC ratio was <75%
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(the recognized threshold for airway obstruction). This value dete-

riorated more between 8 and 18 years old than in previous years.70

Other authors, however, did not report such an early decline of

airflow parameters. Hurst et al.71 documented impaired FEV1 z score

and higher bronchodilator reversibility at 19 years of age in subjects

born before 26 GW compared to controls, but with similar differ-

ences compared to a previous evaluation at 11 years. Similarly,

Vollsæter et al.72 found a significant reduction in z scores for FEV1,

FEF25–75, and FEV1/FVC in subjects born extremely preterm (GA ≤

28 GW) only from 18 to 25 years of age, but these lung function

changes were similar in the term‐born group and there were no

trends related to BPD. Children born preterm in 1999–2000 com-

pared to those born in the early 1990s apparently show better

pulmonary outcomes, suggesting positive effects of antenatal ster-

oids and surfactant treatment.73

Although the decline of lung function and the time at which it

may occur are still a matter of debate, it is clear that preterm infants

with and without BPD do not catch up to the lung function of their

matched term peers, failing to reach the normal peak at 20–25 years

of age and being therefore at risk for early chronic obstructive lung

disease.18

Factors contributing to chronic lung dysfunction in children

with BPD may include nonsynchronous increases in lung size and

airway caliber, chronic airway inflammation, air trapping, and

emphysematous changes.13,74,75 The concept of “dysanaptic

growth,” meaning a disproportionate growth between lung size

and airway caliber, may explain the difference in expiratory flows

between individuals with BPD and term‐born ones despite simi-

lar lung sizes.76,77 Dysanapsis may also explain other spirometric

alterations characteristic of adult survivors of very preterm

birth, with and without BPD, such as a significantly higher

average slope ratio throughout the effort‐independent portion of

the maximal expiratory flow–volume curve compared with adult

controls. This higher slope ratio during early expiration may in-

deed be due to structural and mechanical properties of the air-

ways,78 and to the persistence of active airway inflammation, as

demonstrated by studies on exhaled breath condensate and nitric

oxide.79,80

Available data show that most preterm‐born infants and BPD

patients embark on a lower than normal lung function trajectory with

a higher risk of developing a COPD‐like phenotype later in

life.20,54–57 To better understand the evolution of pulmonary func-

tion in preterm‐born subjects with and without BPD, clinicians and

researchers should be encouraged to follow‐up these patients long-

itudinally into adult age. More insight on this topic could come from

the new ERS Clinical Collaboration on Chronic Airway Diseases Early

Stratification (CADSET).81

Lung function should be considered as a global health biomarker.

Poor lung development early in life can point to a poor development

of other organ systems too, possibly predisposing to non‐
communicable diseases later in life.82

5 | EXERCISE PERFORMANCE

Preterm‐born children with and without BPD may show a higher

prevalence of exercise intolerance and reduced physical activity at

school‐age (8–12 years) compared to their term‐matched peers,83,84

although some follow‐up studies do not report exercise limitation in

this population.85,86 Several studies demonstrate that impaired ex-

ercise tolerance is predominant in survivors of moderate‐severe
BPD87–89 and may stem from different pathophysiological changes,

from expiratory flow limitation,83,84,89,89,90 to decreased peak oxy-

gen consumption and anaerobic threshold,87,91,92 to altered re-

spiratory mechanics.88,90 The lower aerobic exercise capacity,

derived from the impaired and inadequate respiratory and cardio-

pulmonary systems to the challenge, may persist into adolescence

and adulthood.93 Nevertheless, prematurity regardless of BPD ap-

pears to be related to a more sedentary behavior as monitored by

accelerometry87 despite the still contrasting results.85,92

Finally, the few studies conducted in the post‐surfactant era

have produced conflicting results regarding the diffusing capacity of

the lung for carbon monoxide (DLCO) in BPD survivors. Some found

a significantly lower DLCO in infants and children born very preterm

with BPD, while others showed no difference.94 Nevertheless, de-

spite a decrease in DLCO with the reduction in both membrane

component of diffusion capacity (Dm) and pulmonary capillary blood

volume (Vc) in infants with BPD, Chang et al.95 found a constant

Dm/Vc, indicating both impaired alveolar development and reduced

pulmonary vascular bed.

F IGURE 1 Trajectories of FEV1 through childhood in very
preterm children with and without bronchopulmonary dysplasia.69

Slopes in preterm groups represent the rate of lung function decline
relative to the term group and show significant declines in lung
function trajectory throughout childhood. Solid red and dashed red
lines show the 95% CIs for the respective group. FEV1, forced
expiratory volume in 1 s. Reprinted from Simpson et al.,69 copyright
(2018), with permission from Elsevier [Color figure can be viewed at
wileyonlinelibrary.com]
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6 | IMAGING

Various imaging methods have been used to shed light on BPD ever

since the first description published by Northway et al.96 They have

initially involved chest radiography (CR), classically supported by CT,

but magnetic resonance imaging (MRI) and lung ultrasound (LU) have

also recently gained in importance.

All these imaging techniques can at least partially visualize the

structural changes that occur in the lung of patients with BPD, and

monitor their evolution over time. They are currently used as de-

scriptive tools, but there is increasing evidence to support their ap-

plication for predictive and prognostic purposes as part of the BPD

diagnostic package.

7 | CHEST RADIOGRAPHY

CR has demonstrated its capability to predict the evolution of BPD in

preterm infants at high risk. Hyödynmaa et al.97 showed that most

(89.5%) of the patients who would develop moderate‐to‐severe BPD

at 36 weeks PMA had one of the two radiological patterns of leaky

lung syndrome (LLS) with hazy/opaque lungs, or cystic BPD (cBPD)

with bubbly lung changes. Oxygen demand at discharge is an in-

dependent risk factor for cBPD (odds ratio OR 3).98 So far, CR

performed at 7 days of life has been tested as a predictor of BPD or

death before 36 weeks PMA,99 with satisfactory results: an inter-

stitial pneumonia pattern had a positive predictive value of 89% and

a negative predictive value of 66%.

8 | COMPUTED TOMOGRAPHY

CT has been used to assess former preterm infants at various ages,

from discharge home after birth up to adulthood.100 When Boechat

et al.101 applied a scoring system based on High‐resolution computed

tomography (HRCT) abnormalities to the youngest infants, they

found it was able to identify those likely to develop respiratory

morbidities in the first year of life. Other studies confirmed a good

correlation between CT abnormalities and clinical scores at 36weeks

PMA, duration of oxygen therapy, and risk of hospitalization for

respiratory tract infections.102–104 HRCT abnormalities correlate

better with BPD than CR.98,105

Chest CT frequently shows bronchial wall thickening, hy-

poattenuation, emphysematous areas and linear or triangular

opacities in preterm‐born infants and toddlers with BPD,104,106

and these signs tend to decrease with age.103,107

An interesting feature that can be analyzed with CT is airway

cross‐sectional area, which has been found larger in the upper air-

ways and smaller in the lower airways of patients with BPD com-

pared with controls.108,109

Some studies examined the correlation between CT scoring

outcomes and lung function results. Mahut et al.104 reported an

inverse correlation between CT score and FRC, while Sarria

et al.107 did not found such relationships between CT scores and

forced expiratory flows or pulmonary diffusing capacity.

Regarding school age, Simpson et al.94 described the persistence of

an extensive damage in preterm‐born infants with BPD compared with

controls. Comparing these data with functional test results, the authors

found that infants with increased subpleural opacities, bronchial wall

thickening, and hypoattenuated lung areas had more signs of obstructive

lung disease, as expressed by decreased FEV1, FEV1/FVC, and FEV25–75 z

scores. Lower z scores for residual volume were associated with areas of

collapse and consolidation, while a higher TLC was characteristic of in-

fants with bronchiectasis. The same group recently suggested that infants

with CT changes reflecting inflammation (bronchial wall thickening,

subpleural opacities or hypoattenuation on inspiratory scans) have the

poorest respiratory trajectories, and may be at greater risk of chronic

lung disease in elder life.69 Similarly, Ronkainen et al.110 confirmed the

inverse relationship between structural CT lung abnormalities and FEV1

on spirometry in school children with a history of BPD.

A few studies focused on chest CT in adult BPD patients.

Wong et al. described the common presence of triangular, linear

opacities and gas trapping,111 and more importantly reported

that the extent of radiological emphysema was inversely related

to the FEV1 z score (Figure 2).112

The main issue related to CT is the use of ionizing radiation,

limiting the chance to repeat the exam. Another reported pro-

blem is the possible need for sedation in young children, in-

creasing the procedural risk. Modern pos‐processing techniques

are particularly well suited to demonstrate previously unevalu-

able areas of low attenuation alternated with others of higher

attenuation (variegate mosaic attenuation) seen in patients with

BPD with small airways obstruction components.113

9 | MAGNETIC RESONANCE IMAGING

The evaluation of lung parenchyma with MRI has the advantage

of using a nonionizing technique, allowing repeated exams. One

limitation, however, is the lower spatial resolution compared

with CT (0.86 mm3 vs. 0.2 mm3). Additionally, the low proton

density of lung tissue with many air–tissue interfaces can de-

termine extremely low levels of rapidly decaying signal, resulting

in the formation of extremely low‐resolution images of the lung

parenchyma.113 Also, different relaxation times between fibrotic

and inflamed tissues and normal and hypodense ones (alveolar

simplification, emphysema, cysts) could limit MRI lung evalua-

tion. These issues are partially addressed using ultrashort echo

times, as shown by Higano et al.23 Many authors have explored

the use of MRI as a diagnostic tool for BPD in recent years. Hahn

et al.114 identified a significantly higher signal from the lung

parenchyma of BPD patients compared with controls, and at-

tributed this to a greater degree of lung disease (fibrosis, edema,

and atelectasis). Walkup et al.115 reported instead that the most

severe cases had a drop of signal that they attributed to alveolar

simplification. Forster et al.116 found a longer lung T2 relaxation
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time and a shorter T1 relaxation time as indicators of BPD. When

scores similar to those used for CT were applied to the lung MRI

findings in BPD patients, Walkup et al.115 described higher

scores in the BPD group than in controls, and Higano et al.23

described a good correlation between MRI scores and the

duration of respiratory support. Yoder et al.117 demonstrated

that MRI can quantify hyperinflation in BPD patients and that

their lung volume parameters (FRC, tidal volume, and minute

ventilation) increased consistently with disease severity.

Narayanan et al.63 used MRI to study older patients

(10–14 years). When they analyzed alveolar size, they found si-

milar results for survivors of extreme prematurity and term‐born
children, suggesting a catch‐up of alveolarization. Contrasting

results were published by Flors et al.,118 who described a sig-

nificantly greater apparent diffusion coefficient (a surrogate of

average alveolar dimensions) in patients with BPD, but same lung

volumes as age‐matched healthy controls, consistently with BPD

patients' alveoli being fewer in number and larger in size.

F IGURE 2 Thin‐section (A) inspiratory and (B) expiratory computed tomography scans of a 25‐yr‐old nonsmoking male, born weighing
1100 g at 29weeks gestation, dependent upon supplementary oxygen until 60 days postpartum. The forced expiratory volume in 1 s z score
was −4.75. There was moderate‐to‐severe emphysema (arrows; voxel index 46.7%).112 Reproduced with permission of the © ERS 2021: Wong
et al.112

F IGURE 3 Pulmonary structure–function relationship in survivors of BPD and preterm birth. Relationship between lung function (blue
rectangles on the top) and lung structure as shown by imaging techniques (green rectangles on the bottom) from infancy till early adult age. The
large green arrow from left to right depicts the pulmonary function tests and imaging methods that have been used in previous studies at
different ages (i.e., lung ultrasound, rapid thoracoabdominal compression technique, chest CT, etc.). BPD, bronchopulmonary dysplasia; CT,
computed tomography. Icons from Macrovector (freepik.com) and VectorStock [Color figure can be viewed at wileyonlinelibrary.com]
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10 | LUNG ULTRASOUND

Ultrasound interaction with the highly reflective pleura produces

different artifact patterns which correlate with pulmonary

aeration.119 LU does not expose the preterm infant to ionizing

radiation or require a transfer from the neonatal intensive

care unit.

When studied with LU, BPD appears as a nonhomogeneous disease

with coalescent B‐lines interspersed with intact areas, and always ac-

companied by multiple different‐sized subpleural consolidations, as well

as thickened pleural lines. LU has also proved capable of detecting co-

existing diseases like atelectasis, pulmonary edema, or consolidations.

This suggests that LU could also be of preventive value, guiding treat-

ment decisions and reducing the risk of ventilator‐induced lung

injury.120,121

A few studies tested LU as a predictor of BPD development.

It seems promising as a way to identify infants that will develop

the disease using a semi‐quantitative score (with a different

sensibility and specificity depending on the cutoff applied and

the time of the assessment).122,123 A recently published large

multicenter study has corroborated previous evidence of the

predictive power of LU. The method has revealed a good capacity

to monitor lung aeration and function in extremely preterm in-

fants, with LU scores correlating significantly with oxygenation

metrics and work of breathing. Scores adjusted for gestational

age can also significantly predict the occurrence of BPD, starting

from the seventh day of life.124

Figure 3 represents the pulmonary structure–function relation-

ship in survivors of BPD and preterm birth.

11 | CONCLUSION

Several longitudinal lung function studies have demonstrated

that most preterm newborn and BPD patients embark on a low

lung function trajectory, never achieve their full airway growth

potential, and are at a higher risk of developing a COPD‐like
phenotype later in life.

To improve the care of BPD survivors and prevent long‐term
respiratory morbidities, it is fundamental to develop a structured

and standardized cardiopulmonary follow‐up, and to identify

early predictive biomarkers to guide treatment decisions. Lung

function and imaging techniques are essential surrogates for

monitoring survivors of prematurity with and without BPD from

infancy to adult age.125,126 The long‐term surveillance and

treatment of these subjects should be strongly promoted.127 Not

only pediatricians, but also chest physicians, internists, and fa-

mily doctors should be aware of their potential for developing a

“novel” chronic obstructive lung disease and the multiple asso-

ciated adverse sequelae.
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