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Abstract: Virtually all polyunsaturated fatty acids (PUFA) originate from primary 

producers but can be modified by bioconversions as they pass up the food chain in a 

process termed trophic upgrading. Therefore, although the main primary producers of 

PUFA in the marine environment are microalgae, higher trophic levels have metabolic 

pathways that can produce novel and unique PUFA. However, little is known about the 

pathways of PUFA biosynthesis and metabolism in the levels between primary producers 

and fish that are largely filled by invertebrates. It has become increasingly apparent that, in 

addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower 

animals. The unequivocal identification of PUFA biosynthetic pathways in many 

invertebrates is complicated by the presence of other organisms within them. These 

organisms include bacteria and algae with PUFA biosynthesis pathways, and range from 

intestinal flora to symbiotic relationships that can involve PUFA translocation to host 

organisms. This emphasizes the importance of studying biosynthetic pathways at a 

molecular level, and the continual expansion of genomic resources and advances in 

molecular analysis is facilitating this. The present paper highlights recent research into the 

molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, 

particularly focusing on cephalopod molluscs. 
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1. Introduction 

Recent special issues of this journal have highlighted the importance of the marine environment as a 

source of bioactive lipids (“Marine Lipids”) and of marine algae as a source of polyunsaturated fatty 

acids (PUFA) (“Marine Algae”) (e.g., [1]). As part of the special issue on “Marine Fatty Acids” the 

present article aims to build on these collections and considers marine invertebrates, especially 

molluscs, as potential sources of PUFA with a particular focus on recent studies investigating 

molecular mechanisms of PUFA biosynthesis and metabolism. In comparison to the terrestrial 

ecosystem, the marine ecosystem is characterized by high levels of n-3 long-chain PUFA (LC-PUFA; 

≥C20 and ≥3 double bonds), particularly 20:5n-3 (eicosapentaenoic acid, EPA) and 22:6n-3 

(docosahexaenoic acid, DHA), and consequently fish and seafood are the most important sources of 

these vital nutrients in the human diet [2]. Virtually all PUFA originate from primary producers but 

can be modified as they pass up the food chain. This is generally termed trophic upgrading and various 

aspects of this phenomenon have been described in recent reviews [3–5]. Although the main primary 

producers of PUFA in the marine environment are microalgae (phytoplankton), the higher trophic 

levels have metabolic pathways that can produce novel and possibly unique PUFA. 

1.1. Pathways of PUFA Synthesis in Primary Producers 

Primary production of PUFA in the marine environment can occur in photosynthetic microalgae, 

heterotrophic protists, and bacteria. De novo synthesis of PUFA in microalgae is largely through an 

aerobic pathway involving sequential addition of double bonds to saturated fatty acids, mainly 18:0 

(and 16:0), via Δ9 and Δ12 (or ω6) desaturases to produce 18:2n-6 (linoleic acid, LA), which can then 

be further desaturated by Δ15 (or ω3) desaturase to give 18:3n-3 (α-linolenic acid, LNA) [6]. A 

sequence of front-end desaturases, inserting double bonds between the Δ9 bond and the carboxyl 

terminus, and elongases convert LNA to EPA and DHA. Conventionally this sequence is Δ6 

desaturase → elongase → Δ5 desaturase → elongase → Δ4 desaturase, but in some species the initial 

step can be elongation to 20:3n-3 followed by Δ8 desaturation, and Δ17 desaturation of 20:4n-6 to 

produce EPA has also been shown to occur [6]. However, some PUFA such as 16:4n-3 and 18:5n-3, 

which are abundant in some classes of marine microalgae including prymnesiophytes and 

dinoflagellates, do not fit on the conventional pathway and, together with DHA, can be the main PUFA 

in these species [7]. In recent years it was discovered that PUFA could be synthesized in both 

prokaryotes and eukaryotes via a completely novel anaerobic pathway involving polyketide synthases 

(PKS) [8]. The polyketide pathway requires six enzyme proteins: 3-ketoacyl synthase (KS),  

3-ketoacyl-ACP-reductase (KR), dehydrase (DH), enoyl reductase (ER), dehydratase/2-trans 3-cis 

isomerase (DH/2,3I), dehydratase/2-trans, and 2-cis isomerase (DH/2,2I), and consists of a defined 

sequence of steps adding C2 units and double bonds. Thus, the PKS pathway adds double bonds to 

nascent acyl chains whereas the aerobic desaturase pathway inserts double bonds into intact acyl 
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chains. The PKS pathway was first discovered in Shewanella sp. that, along with Vibrio sp., comprise 

the majority of the PUFA-producing bacterial species isolated from the guts of fish and invertebrates. 

A review of PUFA in marine bacteria had concluded that conventional aerobic pathways must be used 

to synthesize PUFA [9]. However, the discovery of the PKS pathway suggests that both aerobic and 

anaerobic pathways can operate in marine bacteria. A similar PKS-based pathway operates in 

Schizochytrium, a thraustochytrid-like marine protist that accumulates large amounts of C22  

LC-PUFA, DHA and 22:5n-6 [10]. The enzyme complex in Schizochytrium (named PUFA synthase) 

has sequence homology to 8 of the 11 domains of Shewanella PKS and comprises three genes that 

account for the production of DHA and 22:5n-6 [11]. Interestingly, a Δ4 desaturase has also been 

cloned from a thraustochytrid species closely related to Schizochytrium showing that enzymes of the 

aerobic pathway are also present in these organisms [12]. The PKS pathway for the production of 

DHA goes 16:4n-3 → 18:5n-3 → 20:6n-3 → DHA, while LNA, 18:4n-3, 20:4n-3 and EPA do not lie 

on the PKS pathway [13]. The PKS pathway may provide an explanation for the presence of 16:4n-3 

and 18:5n-3 in certain microalgae and the fact that they are associated with DHA but not EPA. It may 

also explain the presence of PUFA > C22 such as 28:7n-6 and 28:8n-3 that have been reported in some 

species of marine dinoflagellates [14] as both these fatty acids lie on the PKS pathway. Although still 

largely speculation, these data suggest that both aerobic and anaerobic pathways may be present in 

different microalgal species [6,15]. Similarly, the fact that many marine bacteria produce either EPA or 

DHA but not both [16] may hint at differential pathways of PUFA synthesis in prokaryotes. Very 

recently, the marine ichthyosporean protist Sphaeroforma arctica was demonstrated to possess seven 

enzymes of PUFA biosynthesis including Δ12, ω3, Δ8, Δ5, and Δ4 desaturases, and two elongases, 

one with efficient elongating activity towards C18 and C20 substrates, and another with specific 

affinity for elongation of C20 PUFA [17]. 

1.2. LC-PUFA Biosynthesis in Fish 

Fish, like all vertebrates, cannot synthesize PUFA de novo from saturated and monounsaturated 

fatty acids and so PUFA are essential dietary nutrients [18]. However, fish do contribute to trophic 

upgrading and so can metabolize C18 PUFA, LNA and LA, to LC-PUFA, although whether they are 

able to produce EPA or DHA depends upon species. Synthesis of EPA in vertebrates is achieved by Δ6 

desaturation of 18:3n-3 to produce 18:4n-3 that is elongated to 20:4n-3 followed by Δ5 desaturation, 

with synthesis of ARA from 18:2n-6 using the same enzymes [19] (Figure 1). In some marine fish 

species, the Δ6 enzyme also has Δ8 activity and so the first two steps can be reversed in order [20]. 

DHA synthesis from EPA requires two further elongation steps, a second Δ6 desaturation using the 

same Δ6 enzyme, and a chain-shortening step [21]. This pathway may operate in some species like 

rainbow trout (Oncorhynchus mykiss) [22], but recently it was shown that some species of marine fish 

such as rabbitfish (Siganus canaliculatus) and Senegalese sole (Solea senegalensis) have Δ4 

desaturases that would enable a more direct route for the synthesis of DHA [23,24]. Therefore, the 

ability of a fish species to convert C18 PUFA to LC-PUFA is associated with their complement of 

fatty acyl desaturase (Fad) and elongase (Elovl, Elongase of very long-chain fatty acids) enzymes [13]. 

The molecular basis of these enzyme activities is being elucidated. This has involved cloning the 

cDNAs of the genes and characterising their functions by expressing the cDNAs in the heterologous 
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yeast vector, Saccharomyces cerevisiae, which has no endogenous expression of LC-PUFA Fad or 

Elovl genes, and determining the enzyme activities through incubation of the transformed yeast with 

appropriate PUFA substrates. The cDNAs for Δ6 Fad have been cloned and characterized from all fish 

so far investigated including marine species [25]. Although a Δ6 Fad has so far not been isolated from 

S. senegalensis, nutritional and biochemical data suggest one should be present [24]. In contrast until 

recently, a cDNA for a discrete Δ5 Fad had only been cloned from Atlantic salmon (Salmo salar) [26]. 

Zebrafish expresses a bifunctional Δ6/Δ5 Fad [27] and a similar bifunctional Δ6/Δ5 Fad has recently 

been isolated from the marine herbivorous teleost, rabbitfish [23]. However, despite significant efforts, 

no Δ5 Fad has been found in any other marine teleost including those with sequenced genomes [28]. In 

mammals, several Elovl genes are known and at least two, Elovl2 and Elovl5, participate in LC-PUFA 

biosynthesis [29]. The cDNAs for Elovl5 have been characterized in all finfish studied, including 

marine species but, in contrast, Elovl2 has not been isolated from any marine fish species [25]. 

Functional characterization of the fish Elovls showed that Elovl5 had activity predominantly towards 

C18 and C20 PUFA, whereas Elovl2 had activity predominantly towards C20 and C22 PUFA. 

However, a further elongase, Elovl4, that predominantly elongates very long-chain PUFA > C22 in 

mammals [30], may be able to compensate for the lack of Elovl2 in some fish species [31]. Therefore, 

the varying competences of different species to biosynthesize LC-PUFA probably depends on their 

genome complement of both desaturase and elongase genes, with many, predominantly marine species, 

appearing to lack Δ5 Fad and Elovl2 elongase. 

Figure 1. Biosynthetic pathways of LC-PUFA from C18 PUFA, α-linolenic acid (18:3n-3) 

and linoleic acid (18:2n-6) in vertebrates. Blue horizontal arrows represent desaturation 

reactions mediated by fatty acyl desaturases with Δx specificity. Red downward arrows 

represent elongation reactions mediated by elongases of very long-chain fatty acids (Elovl). 

Vertical upward arrows indicate peroxisomal β-oxidation. 
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1.3. PUFA Production in Marine Invertebrates 

The interest in LC-PUFA biosynthesis pathways in fish has been stimulated by the drive towards 

increasing sustainability of aquaculture through replacing the traditional major feed ingredients, fish 

meal and fish oil, derived from pelagic (reduction) fisheries with more sustainable alternatives such as 

plant meals and vegetable oils. As vegetable oils do not contain LC-PUFA, but are rich in C18 PUFA, 

there has been considerable research into the pathways of endogenous production of EPA and DHA in 

fish species [13,18,25,32]. Although algae have always been of interest as sources of LC-PUFA [6,15], 

they have been the subject of renewed and increased attention as genetic resources for the 

establishment of LC-PUFA synthesis in transgenic oilseed crops [33,34]. In contrast, little is known 

about the pathways of de novo synthesis or trophic upgrading of PUFA in the levels between the 

primary producers and fish, which are largely filled by invertebrates [35]. Indeed, the paradigm a 

couple of decades ago was that PUFA could not be synthesized by “animals” and that they could only 

contribute to trophic upgrading (e.g., conversion of dietary PUFA to LC-PUFA), but it has become 

increasingly apparent over the years that this was a gross generalization and that PUFA may indeed be 

able to be synthesized in lower animals [13]. The study of PUFA biosynthesis and metabolism in 

invertebrates has some interesting methodological challenges. As alluded to above, many marine 

bacteria known to produce LC-PUFA have been isolated from intestines of cold-water invertebrates. 

Thus, bacteria producing EPA and DHA were found in the culturable intestinal flora of 10 Arctic and 

sub-Arctic invertebrates [16]. In total, a third of all strains of bacteria tested contained n-3 PUFA with 

highest prevalences (>50%) from two species of bivalve Chlamys islandica and Astarte sp., and the 

amphipod Gammarus wilkitzkii. This emphasizes the importance of studying biosynthetic pathways 

and mechanisms at a molecular level. In this context, the present paper focuses on recent research into 

the molecular and biochemical mechanisms producing LC-PUFA in marine invertebrates, particularly 

cephalopod molluscs, that are of particular interest due to their potential as aquaculture species. 

2. Molluscs Can Biosynthesize PUFA 

Molluscs are arguably the group among marine invertebrates in which biosynthesis of PUFA has 

been most extensively investigated, in part due to commercial interest and perceived nutritional value 

of molluscs as sources of “omega-3” for humans [36]. Comprehensive reviews on the fatty acid 

composition of a wide variety of mollusc classes have been published previously [36,37]. A series of 

studies combining analytical and biochemical approaches have aimed to elucidate the ability that 

different mollusc species from classes including gastropods [38–41] and bivalves [42–46] have for 

endogenous production of PUFA. Generally, it is accepted that molluscs have some ability for PUFA 

biosynthesis but, as mentioned above for fish, such capability appears to vary among species 

depending upon on the enzymatic complement of desaturase and elongase enzymes involved in these 

metabolic reactions. 

Molluscs, like other marine invertebrates [47], possess a particular group of PUFA called  

non-methylene-interrupted (NMI) fatty acids that can be biosynthesized endogenously [48]. While the 

biosynthetic pathways of NMI fatty acids have been described in detail previously [45,48] and 

summarized below (see Section 4), it is easy to foresee that at least two distinct desaturase activities 
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exist accounting for the characteristic ∆5,9 unsaturation pattern of NMI fatty acids found in a wide 

range of mollusc species. The first is stearoyl-CoA desaturase (Scd), an enzyme universally present in 

living organisms [49], and confirmed to be present in molluscs [50–52]. Scd shows ∆9-desaturase 

activity and is responsible for the production of palmitoleic acid (16:1n-7 or 
∆9

16:1) and oleic acid 

(18:1n-9 or 
∆9

18:1), from palmitic acid (16:0) and stearic acid (18:0), respectively [53]. Second, a 

further desaturase with ∆5-desaturation activity is required for introducing a double bond at the ∆5 

position. We recently demonstrated for the first time in molluscs that a fatty acyl desaturase isolated 

from the common octopus, Octopus vulgaris, was a ∆5-like desaturase (Section 3). Fatty acyl 

desaturases having ∆5-like specificity appear to be widely distributed among molluscs. Thus, two 

putative ∆5 desaturases were recently cloned from the abalone Haliotis discus hannai [54]. Functional 

assays in yeast confirmed the abalone desaturases had ∆5 activity and showed that they had only 53% 

identity to mammalian Fads [55]. In contrast, it was claimed that the Jade Tiger hybrid abalone had a 

∆6 desaturase that was regulated in response to dietary fatty acid composition, although this was based 

solely on gene expression studies using primers based on rainbow trout ∆6 Fad sequences [56–58]. 

Consequently, while ∆6-desaturase activity was reported in some molluscs like the clam Mesodesma 

mactroides [42], the low sequence homology of the ∆5 of H. discus hannai with vertebrate Fads 

indicates that the presence of a ∆6-desaturase in Jade Tiger hybrid abalone cannot be inferred from 

sequence homology but rather must be confirmed through cloning and functional assays [55]. A 

misleading nomenclature was also used for referring to an elongase from the Jade Tiger hybrid  

abalone [56]. These authors reported the existence of an ‘Elongase-2’ but it is unclear whether the 

authors referred to this as a homolog of the vertebrate Elovl2 family. 

Biochemical studies have suggested that molluscs possess elongase(s) involved in the biosynthetic 

pathways of PUFA including NMI fatty acids. Thus, M. mactroides was able to elongate 18:3n-3 and 

18:2n-6 to 20:3n-3 and 20:2n-6, respectively, when maintained in seawater containing radiolabeled 

fatty acids [42]. Moreover, the Pacific oyster Crassostrea gigas had the ability to produce EPA and 

DHA when fed microalgae lacking these fatty acids [43], and other bivalves including Scapharca 

broughtoni, Callista brevisiphonata, and Mytilus edulis were capable of elongating the NMI dienes 
Δ5,11

20:2 and 
Δ5,13

20:2 to 
Δ7,13

22:2 and 
Δ7,15

22:2, respectively [45,46]. Further evidence of active fatty 

acid elongase systems in molluscs was provided by determination of fatty acid compositions in 

specimens subjected to different experimental regimes. The abalone Haliotis fulgens accumulated 

significant levels of elongated PUFA derived from C18 precursor fatty acids present in formulated 

diets containing different oil sources [59]. Elongases also accounted for the biosynthesis of unusual 

NMI fatty acids from the bivalve Megangulus zyonoensis [60]. Interestingly, these studies suggested 

that Δ5 desaturases were also involved in the biosynthetic pathways of some minor NMI fatty acids. 

Unlike desaturases, the individual enzymes responsible for the above elongation reactions have not 

been identified in any mollusc, with the sole exception of the common octopus elongase described 

below [61]. 

The increasing availability of DNA sequence data has revealed the presence of elongase-like genes 

in the genomes of several species of molluscs. Thus, in silico searches by the authors revealed that two 

transcripts encoding putative elongases with potential roles in the biosynthetic pathways of LC-PUFA 

in the owl limpet, Lottia gigantea, can be identified, one with high homology to the octopus Elovl 

(jgi|Lotgi|224291|), and another to Elovl4 proteins (jgi|Lotgi|178149|). Similarly, assembly of EST hits 
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enabled us to deduce the partial amino acid sequences of Elovl-like enzymes in the molluscs Mytilus 

galloprovinciallis (gb|FL495089.1| and gb|FL499406.1|), C. gigas (gb|CU989853.1|, gb|HS232816.1|, 

gb|HS186171.1| and gb|HS245897.1|), Euprymna scolopes (gb|DW256301.1|), Lymnaea stagnalis 

(gb|FC701557.1|, gb|FC773093.1|, gb|FC770692.1| and gb|FC696214.1|), and Aplysia californica 

(gb|EB285681.1|, gb|GD233360.1| and gb|EB325217.1|). A similar strategy enabled us to identify 

sequences of putative Fads from H. discus hannai (gb|ADK38580.1| and gb|ADK12703.1|),  

A. californica (gb|XP_005090573.1| and gb|XP_005090577.1|), C. gigas (gb|EKC33620.1|), and  

L. gigantea (jgi|Lotgi|113523| and jgi|Lotgi|143229|). It is noteworthy that more than one  

Fad-encoding gene appears to exist in the genomes of some molluscs, such as H. discus hannai and  

L. gigantea, as this contrasts with previous assumptions on the presence of a single Fad gene in  

molluscs [62]. The continual publication of updated versions of whole-genome projects from mollusc 

species will help to elucidate and clarify the Fad and Elovl complements present among different 

mollusc classes. More importantly, functional analysis of the newly discovered genes/enzymes will be 

necessary to fully understand their roles in the pathways of LC-PUFA biosynthesis. 

3. Molecular Studies on the Biosynthesis of PUFA in Cephalopods 

Long-chain PUFA have been regarded as essential nutrients for cephalopods, particularly in early 

life-cycle stages [63]. However, which specific fatty acids were essential had not been determined due, 

in part, to difficulties in conducting feeding trials in species such as the common octopus (O. vulgaris), 

which experiences massive mortalities at the paralarval developmental stage [64]. In order to identify 

which fatty acids were essential nutrients for cephalopods, we recently conducted a series of studies 

aimed at the molecular and functional characterization of genes encoding specific Fad- and Elovl-like 

enzymes with key roles in LC-PUFA biosynthetic pathways. While the description below corresponds 

to investigations performed in O. vulgaris [61,62], this can be likely extended to the cephalopod class 

as very similar results were recently obtained with Fad and Elovl genes of the common cuttlefish, 

Sepia officinalis [65]. 

A cDNA encoding a front-end desaturase was isolated from O. vulgaris [62]. Sequence analysis 

indicated that the octopus Fad contained three histidine boxes (HXXXH, HXXHH and QXXHH), a 

putative cytochrome b5-like domain, and the haem-binding motif, HPGG, similar to vertebrate 

desaturases of the “Fads” family [53,66]. When expressed in yeast S. cerevisiae, the octopus Fad 

exhibited Δ5-desaturase activity on both saturated and polyunsaturated fatty acyl substrates. The 

yeast’s endogenous 16:0 and 18:0 were efficiently converted to the ∆5-desaturated monoenes 16:1n-11 

(
∆5

16:1) and 18:1n-13 (
∆5

18:1), respectively. This ability of octopus Fad was consistent with the fatty 

acid compositions reported for other molluscs including Littorina littorea and Lunatia triseriata that 

showed the presence of ∆5-desaturated monoenes including 18:1n-13 and 20:1n-15 (
∆5

20:1) [36]. The 

∆5-like specificity of the cephalopod Fad extended to PUFA substrates and thus 20:4n-3 and 20:3n-6 

were converted to EPA and ARA, respectively (Figure 2). In contrast, no apparent ∆4, ∆6 or ∆8 

activities were exhibited by the cephalopod Fad. While these results suggested that endogenous 

biosynthesis of both EPA and ARA from less saturated PUFA was possible in O. vulgaris, the 

biosynthetic rates in vivo may be of limited biological relevance due to the likely limiting availability 

of precursor PUFA for the Δ5 Fad. In addition to the low contents of 20:4n-3 and, especially, 20:3n-6 
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in natural diets of common octopus, their endogenous biosynthesis from C18 PUFA appears to also be 

restricted by the absence of key desaturation activities required in the initial steps of the pathways 

(Figure 2). Similar to the pathway described above for fish, enzymes with either Δ6- or Δ8-desaturation 

activities are required for the production of 20:4n-3 and 20:3n-6 from the C18 precursors LNA and 

LA, respectively (Figure 2). However, there is currently no evidence to support the existence of neither 

Δ6- nor Δ8-desaturase activities among cephalopods. It can, thus, be concluded that both EPA and 

ARA cannot be biosynthesized endogenously at physiologically significant rates and are therefore 

essential dietary nutrients for cephalopods. Similarly, the currently available molecular data suggest 

that DHA is also an essential fatty acid for cephalopods. First, no Δ4 desaturase enabling DHA 

biosynthesis from 22:5n-3 has been detected in cephalopods (Figure 2). Second, there is no evidence in 

cephalopods for the alternative, vertebrate-like, pathway involving elongation of 22:5n-3 to 24:5n-3, 

Δ6 desaturation to 24:6n-3, and chain-shortening to DHA [21], as the cephalopod Fad above does not 

have Δ6-activity. 

Figure 2. Putative PUFA biosynthetic pathways in cephalopods from C18 PUFA,  

α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6). Solid arrows indicate demonstrated 

activities, whereas dashed arrows show vertebrate-based activities not determined in 

cephalopods. Horizontal dark blue arrows are desaturation reactions and red arrows are 

elongation reactions. 

 

We have recently confirmed the existence of a cDNA encoding an Elovl involved in the production 

of LC-PUFA in the cephalopod O. vulgaris [61]. Phylogenetic analysis comparing the amino acid 

sequence of the cephalopod Elovl along with other putative mollusc elongases and vertebrate 

elongases (Elovl1-7) showed that all the mollusc elongases, including the cephalopod Elovl, clustered 

as a group along at the base of the vertebrate Elovl2 and Elovl5 groups [61]. This indicated that the 

octopus and the other mollusc Elovl were closely related to the Elovl family members (Elovl5 and 

Elovl2) with well-demonstrated roles in the biosynthesis of LC-PUFA [29]. It was particularly 

noteworthy that the phylogenetic analysis clearly delineated the octopus and other mollusc Elovl as 

basal sequences to the distinct vertebrate families Elovl5 and Elovl2, and so we designate the octopus 

elongase as “Elovl5/2”. Functionally, however, the octopus Elovl5/2 did not show all the elongation 
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capabilities of its vertebrate partners Elovl2 and Elovl5 [60]. More specifically, the octopus Elovl5/2 

efficiently elongated C18 and C20 PUFA substrates, but had no activity towards C22 PUFA  

(Figure 2). Such specificity aligned with that of vertebrate Elovl5, and clearly differed from that of 

vertebrate Elovl2, which elongate C20 and C22, with only marginal activity on C18 PUFA [29,32,53]. 

Consequently, the cephalopod Elovl5/2 is not itself capable of performing the elongation of 22:5n-3 to 

24:5n-3 required for DHA biosynthesis through the Sprecher pathway, and further supports the 

abovementioned hypothesis that endogenous biosynthesis of DHA is not possible, suggesting DHA is 

an essential nutrient in cephalopods. In order to investigate if other elongases could possibly 

complement the functions that Elovl5/2 plays in the LC-PUFA biosynthesis in cephalopods, we have 

recently cloned a second elongase with high homology to vertebrate Elovl4 proteins, elongases with 

demonstrated roles in the biosynthesis of very long-chain (C > 24) PUFA in vertebrates [30,31,67–69]. 

Functional characterization data suggest that the octopus Elovl4-like protein shows an apparent ability 

for the elongation of C22 PUFA substrates, thus producing polyenes with chain-lengths up to 34 

carbons. However, these results require further confirmation and are not considered in the pathways 

depicted in Figure 2. 

4. Molecular Mechanisms of Non-Methylene-Interrupted Fatty Acid Biosynthesis 

As alluded to above, marine invertebrates are a possibly unique source of unusual PUFA, the NMI 

fatty acids, as opposed to the common methylene-interrupted PUFA, in that their double (ethylenic) 

bonds are separated by more than one methylene group. First discovered (reported) in the 1970s, these 

ubiquitous, although generally minor, components of the lipids of invertebrates have been extensively 

studied ever since (for review, see [47,48]). Although their biological role and function is not fully 

understood, it has been suggested that NMI fatty acids play structural and protective roles in cell 

membranes [48]. This hypothesis is supported by their esterification into polar lipid classes [36,70], 

occurrence in amounts that are often in a reverse relation to common LC-PUFA, EPA and  

DHA [71,72], and their selective retention in fasting animals [71]. Their presence in the body 

composition of filter feeders (mainly bivalves and sponges), and even predator snails [36,73,74] has 

often led to their association with a dietary origin. However, endogenous biosynthetic systems have 

been demonstrated in marine invertebrates, particularly marine sponges and molluscs [46,48,72,75]. 

The occurrence and biochemistry of the biosynthetic pathways of NMI fatty acids in marine 

invertebrates have been reviewed recently [47,48]. Here we briefly describe our recent findings on the 

presence of NMI fatty acids in the common octopus and discuss the molecular mechanisms likely to be 

involved in the biosynthetic pathways based on functional assays of the Δ5 Fad and Elovl5/2 described 

above [61,62]. 

The fatty acid composition of polar lipids prepared from adult octopus tissues (nephridium, male 

gonad, eye, and caecum) revealed the presence of four NMI fatty acids that were identified as 
Δ5,11

20:2, 
Δ7,13

20:2, 
Δ5,11,14

20:3, and 
Δ7,13

22:2, using GC-MS methodologies [61]. The biosynthesis of the three 

dienes, namely 
Δ5,11

20:2, 
Δ7,13

20:2, and 
Δ7,13

22:2, can be speculated to proceed as follows. De novo 

biosynthesis of 16:0 and 18:0 is followed by desaturation via Scd (Δ9-desaturase) to produce 16:1n-7 

(
Δ9

16:1) and 18:1n-9 (
Δ9

18:1), respectively. Preliminary data have confirmed that O. vulgaris expresses 

an Scd with the necessary enzymatic abilities [76]. Subsequent elongation to 18:1n-7 (
Δ11

18:1) and 
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20:1n-9 (
Δ11

20:1) and further Δ5-desaturation results in the formation of 
Δ5,11

18:2 and 
Δ5,11

20:2, and a 

further elongation would result in the production of 
Δ7,13

20:2 and 
Δ7,13

22:2. Direct evidence for the 

production of 
Δ5,11,14

20:3 was obtained through functional assays on the octopus Δ5 Fad [62]. Yeast 

expressing the octopus Fad and grown in the presence of 20:2n-6 (
Δ11,14

20:2) was efficiently converted 

into the NMI fatty acid 
Δ5,11,14

20:3 (Figure 2). The octopus Δ5 Fad also accounted for the conversion of 

20:3n-3 (
Δ11,14,17

20:3) to 
Δ5,11,14,17

20:4 (Figure 2), another NMI fatty acid that has been found in 

bivalves [44,60] and gastropods [77]. Although there is currently no direct evidence to confirm that the 

octopus Elovl5/2 is involved in the specific production of NMI PUFA as described above, functional 

characterization clearly showed it was able to elongate C18 and C20 PUFA, consistent with the above 

activities [61]. 

5. Biosynthesis of PUFA in Other Marine Invertebrates 

5.1. Sponges 

Fatty acids from sponges, particularly of the class Demospongiae, have unique structural 

characteristics that include long fatty acyl chains (up to 34 carbons), presence of branched chains and 

functional groups, relatively high degrees of unsaturation (up to six double bonds), and a particular 

pattern of unsaturation within the fatty acyl chain [48,78]. Among the great variety of NMI fatty acids 

detected from sponges, those with a ∆5,9 double bond pattern are the most abundant and several 

studies have been conducted to establish the biosynthetic pathways [47,77]. A series of elongation 

reactions convert 16:0 to 26:0 and it appears the two double bonds can be introduced in either order. 

Therefore, the first double bond can be introduced at either ∆5 or ∆9 positions, and the second double 

bond may be inserted on either side of the first one as necessary to produce the ∆5,9 diene. From this 

brief description, it is clear that active desaturation and elongation systems are present in sponges [48]. 

Isolation of uncommon ∆6,11 NMI fatty acids in the sponge Euryspongia rosea [79] revealed 

alternative desaturase specificities including ∆6 may also occur in some species. Unfortunately, 

however, no molecular studies aimed at the identification of the individual enzymes that catalyse these 

biosynthetic reactions have been published. In silico searches for putative Fad and Elovl genes in the 

genome of the demosponge Amphimedon queenslandica [80] revealed the presence of candidate 

enzymes involved in the LC-PUFA biosynthetic pathways in this species. More specifically, a Fad-like 

sequence (gb|XP_003385370.1|) and two elongases annotated as Elovl2- (gb|XP_003387250.1|) and 

Elovl4-like (gb|XP_003388651.1|) proteins were identified. 

5.2. Crustaceans 

Data available in the literature demonstrate that the ability of crustaceans for LC-PUFA 

biosynthesis varies among species, with no obvious patterns associated with phylogenetics 

(classes/subclasses) or habitat (freshwater/marine). For example, harpacticoid copepods, but not 

calanoid species, have the ability to biosynthesize LC-PUFA, possibly related to poor quality of food 

available in detritus-rich habitats. Thus, the presence of desaturases and elongases involved in the 

biosynthesis of PUFA have been demonstrated in harpacticoid copepods [81–85]. Similarly, 

biochemical and analytical data indicated that the freshwater cyclopoid copepod Eucyclops serrulatus 
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had the ability to endogenously produce DHA when fed on microalgae devoid of this fatty acid [86]. 

On the contrary, calanoid copepods appear to be unable to endogenously synthesize LC-PUFA at 

physiologically significant rates, similar to other species of marine zooplankton including Dropanopus 

forcipatus and Euphausia superba [13,87,88]. 

While the ability for endogenous LC-PUFA biosynthesis in some crustaceans has often been 

indicated through indirect analytical (compositional) approaches, more direct (biochemical and/or 

molecular) evidence demonstrating the above mentioned enzymatic activities are scarce and thus the 

specific biosynthetic pathways remain elusive. Recent investigations have shown the existence of a 

putative desaturase from the Chinese mitten crab, Eriocheir sinens [89,90]. While representing pioneer 

molecular studies on the biosynthesis of PUFA in crustaceans, no functional analyses were presented, 

with gene/protein annotation as Δ9- and Δ6-like desaturases being based on phylogenetic analysis 

alone. It is necessary to emphasize that assessment of the actual enzyme activity should be determined 

before function is ascribed. This is particularly critical in species in which the precise LC-PUFA 

biosynthetic pathways are likely to vary with respect to the accepted vertebrate model. However, the 

Chinese mitten crab desaturases were shown to be regulated through diet and increased expression was 

observed in individuals fed on diets formulated with relatively high contents of vegetable oil (soybean 

oil), similarly to well-established regulatory responses in desaturase expression observed in vertebrate 

species including fish [32]. This result may suggest a putative role for the desaturases in the 

biosynthesis of PUFA in E. sinens. 

Some ability for endogenous production of LC-PUFA has also been reported in other crustaceans 

including the branchiopoda Daphnia pulex, which showed increased LC-PUFA content in response to 

low temperature exposure [91], and Artemia, with an apparent ability to interconvert fatty acids from 

the n-6 to n-3 series. [92,93]. The latter studies, in which radiolabeled LA (18:2n-6) was converted to 

LNA (18:3n-3), were particularly interesting as they implied the existence of an n-3 (or Δ15) 

desaturase in crustaceans, enzymes that were believed to be absent in animals but now confirmed to 

exist in some invertebrates like the nematode C. elegans [94,95]. Interestingly, BLAST searches 

revealed the existence of a sequence with high homology to n-3 desaturases in the copepod Caligus 

rogercresseyi (gb|ACO10720.1|), an ectoparasite that causes major issues in the Atlantic salmon 

farming industry. In addition, within this species, other sequences for potential candidate enzymes 

were identified including desaturases (gb|ACO10922.1), annotated as “Delta-5 fatty acid desaturase”, 

and elongases homologous to vertebrate Elovl2 (gb|ACO10776.1|) and Elovl4 (gb|ACO11542.1|). 

5.3. Cnidarians 

The presence of other organisms, including primary producers, within some invertebrates, which 

complicates the unequivocal identification of PUFA and/or LC-PUFA biosynthetic pathways, is 

particularly pertinent when considering cnidarians that have symbiotic interactions with dinoflagellate 

microalgae (zooxanthellae) that are able to synthesize PUFA [96]. Furthermore, fatty acid 

translocation has been reported or implied to occur from endosymbiotic dinoflagellates into various 

host organisms including tridacnid bivalve molluscs (giant clams) [97], and cnidarians including 

anthozoans (corals and sea anemones) [98] and scyphozoans (jellyfish) [99]. Thus, active transport of 

saturated and unsaturated fatty acids from zooxanthellae to the host has been reported, and lipids from 
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symbiosis can account for up to 46% of coral tissue dry weight [100,101]. Therefore, fatty acid 

compositions of polytrophic organisms like corals will reflect the derivation of nutrients from various 

sources, including zooxanthellae and other endogenous algae and bacteria, and fatty acids can serve as 

markers of these sources [102]. Analysis of the distribution of PUFA in zooxanthellae, polyp tissue, 

and intact colonies in soft coral Sinularia sp. and hard coral Acropora sp. provided clues to what 

biochemical pathways of PUFA synthesis were present in the different fractions [103]. The results 

showed that 18:3n-6, 18:4n-3, EPA, 22:5n-3 and DHA were mainly synthesized by the zooxanthellae, 

and that 20:3n-6, ARA, and 22:4n-6 were synthesized in the polyp tissue. Soft coral polyps were also 

able to synthesize 24:5n-6 and 24:6n-3. These tetracosapolyenoic fatty acids are chemotaxonomic 

markers of soft corals [102], regardless of the presence or not of zooxanthellae [104], showing that 

their biosynthesis from C22 PUFA occurs only in the coral polyps. The zooxanthellae also synthesized 

16:2n-7, 16:3n-4, and 16:4n-1. The authors speculated that the biosynthesis of 16:2n-7 in  

Sinularia sp. and 18:3n-6 in Acropora sp. was catalyzed by a Δ6 desaturase, and that the relatively 

even distribution of 18:2n-6, 18:3n-6, and 16:2n-7 among the different fractions indicated translocation 

between zooxanthellae and coral polyps [103]. Consistent with this, the polyps synthesized 18:2n-7, 

perhaps suggesting the action of a C16 elongase in the coral. In contrast, a recent study with the model 

anemone, Aiptasia pulchella, using enriched stable isotopic (
13

C) incorporation from dissolved 

inorganic carbon, showed fatty acid synthesis rates were attributed to only a complex integration of 

lipogenesis pathways within the dinoflagellate symbionts, and that there was no evidence of  

symbiont-derived enriched isotope fatty acids being directly utilized in host PUFA synthesis [105]. 

5.4. Other Non-vertebrate Groups 

Little is known about PUFA biosynthesis and metabolism in tunicates, formerly known as 

urochordates. However, embryonic development in ascidian tunicates (sea squirts) is simple, rapid, and 

easily manipulated which, along with transparency, has made them suitable models for studying the 

fundamental developmental processes of chordates. As a result, good genomic resources are available 

and, indeed, the genome of the sea squirt, Ciona intestinalis, was one of the first published a decade 

ago. A search of the C. intestinalis genome using the Δ6 elongase sequence from the moss 

Physcomitrella patens as a query, indicated the presence of an elongase, and functional 

characterization of the ORF in the yeast S. cerevisiae revealed it was capable of elongating both  

18:4n-3 and EPA [106]. However, it is not know if these activities are representative of their functional 

role in this tunicate. 

As mentioned previously, increasing availability of genomic data from invertebrate organisms is a 

useful tool for the identification of possible desaturase and elongase genes with potential roles in the 

biosynthesis of PUFA and/or LC-PUFA. Thus, some desaturases with high homology to vertebrate 

Fads-like proteins, and to the ∆5-like desaturases from molluscs, can be found in the GenBank public 

database. These include desaturases in C. intestinalis (gb|NP_001029014.1|), the polychaete worm 

(Annelida) Capitella teleta (gb|ELT94279.1|), and the Acorn worm (Hemichordata) Saccoglossus 

kowalevskii (gb|XP_002739666.1), among others. Putative Elovl2- and Elovl5-like elongases include 

those from the polychaete C. teleta (ELU02248.1) and the purple sea urchin (Echinodermata) 

Strongylocentrotus purpuratus (gb|XP_789039.2|). 
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6. Concluding Remarks 

Almost all PUFA originate in microalgae, bacteria and heterotrophic protists inhabiting aquatic 

ecosystems. Fish, occupying relatively high trophic levels within aquatic systems, can significantly 

contribute to trophic upgrading as they have the ability to metabolize PUFA to produce LC-PUFA. 

However, the pathways of PUFA biosynthesis in invertebrates, organisms occupying trophic levels 

between the primary producers and fish in aquatic ecosystems, have remained largely unexplored. 

Particularly challenging in the study of fatty acid metabolism in invertebrates is the potential presence 

of microflora and symbiotic organisms with active metabolic pathways that can hinder the unequivocal 

assignment of enzymatic activities to the host invertebrate. Molecular studies clearly emerge as a 

valuable strategy to address this challenge and, thus, significant progress is now being made to 

understand the biosynthetic pathways and mechanisms producing LC-PUFA in marine invertebrates. 

Data available in the literature provide evidence that marine invertebrates possess and express genes 

encoding desaturase and elongase enzymes with a role in the endogenous production of LC-PUFA. 

Ever-increasing genomic data derived from sequencing projects conducted for a wide range of marine 

invertebrates is providing an excellent source of molecular evidence supporting the existence of these 

biosynthetic pathways. While potential candidates for both desaturase and elongase genes have been 

identified in sponges, cnidarians, annelids, echinoderms, hemichordates, and tunicates, a more robust 

set of data combining analytical, biochemical and molecular evidence is available for crustaceans and, 

particularly, molluscs. Using the common octopus as model species, we have begun to elucidate 

pathways for the biosynthesis of PUFA in cephalopods and possibly other molluscs. To this end, 

several genes encoding desaturases and elongases that are directly involved in the production of PUFA 

have been identified by molecular cloning, and functionally characterized by heterologous expression 

in yeast. A Δ5 desaturase has been confirmed in the cephalopods, octopus and cuttlefish [62,65], and in 

the gastropod, abalone [54] and, thus, appears to be a common enzyme component involved in PUFA 

biosynthetic pathways in molluscs. Furthermore, although not yet demonstrated at a molecular level, 

the ubiquitous distribution of Δ5,9 NMI fatty acids (as well as their corresponding elongation 

products) among marine invertebrates including sponges, cnidarians, and echinoderms [47] suggests 

the presence of Δ5-like desaturases in these groups. In addition, the biosynthesis of Δ5,9 NMI fatty 

acids implies the action of a Δ9 desaturase, an enzymatic activity of Scd, a desaturase universally 

distributed in all living organisms and confirmed in the common octopus [76]. Other desaturases 

involved in LC-PUFA pathways have been hypothesized to exist in some invertebrate groups. Thus, 

the sponge Euryspongia rosea [79] was found to contain uncommon ∆6,11 NMI fatty acids of which 

production would suggest the action of a ∆6-desaturase. Additionally, some crustaceans appear to 

express an n-3 (or Δ15) desaturase, an enzyme catalyzing the interconversion of n-6 to n-3 fatty  

acids [92,93]. Further studies are required to determine the distribution of these desaturases among 

marine invertebrates. More importantly, these studies must be accompanied by functional 

characterization analyses that confirm the precise activities of the enzyme. 

Fatty acid elongation systems have also been described in marine invertebrates. In silico searches 

for Elovl-like sequences in the genome of marine invertebrates indicate that homologs to vertebrate 

Elovl2, Elovl4, and Elovl5 exist. Interestingly, while the proteins are distinguished as three distinct 

families in vertebrates [29], only two appear to be present in invertebrates. Thus, in addition to an 
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Elovl4-like sequence, cephalopods appear to possess a single Elovl5/2 protein that is basal to the 

distinct vertebrate families Elovl5 and Elovl2. Such Elovl5/2 basal proteins are also present in the 

demosponge Amphimedon queenslandica, the copepod Caligus rogercresseyi, the polychaete Capitella 

teleta, and the purple sea urchin Strongylocentrotus purpuratus. Functionally, the cephalopod Elovl5/2 

is similar to that of vertebrate Elovl5, with ability to efficiently elongate C18 and C20 PUFA 

substrates, but no activity on C22 PUFA. These results reveal an interesting evolutionary scenario 

predicting the divergence of the Elovl5/2 basal protein into distinct protein families in vertebrates. 

Ongoing investigations in O. vulgaris suggest that the cephalopod Elovl4-like protein participates in 

the biosynthesis of very LC-PUFA (34 carbons). 

Studies of the molecular mechanisms underlying PUFA and LC-PUFA biosynthesis in marine 

invertebrates are not only illuminating alternative and unusual biosynthetic pathways and metabolism, 

but are also providing insights to gene and pathway evolution, as well as being a resource that can 

supply potentially valuable molecular tools in the form of genes involved in PUFA biosynthesis  

and metabolism. 
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