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ABSTRACT: While the exact cause of neurodegenerative diseases
such as Alzheimer’s disease and Parkinson’s disease is not
completely understood, compelling evidence implicates the
aggregation of specific proteins and peptides. Co-solvents can
provide molecular insight into protein aggregation mechanisms and
the chemical nature of potential aggregation inhibitors. Here, we
study, through molecular simulations, the hydration and binding
free energies of an amphiphilic peptide from the nonamyloid-β
component (NAC), a key aggregation-prone domain of α-
synuclein, in water and an 8 M aqueous urea solution. Isoleucine,
glycine, and serine peptides of the same length are also studied to
unravel the role of urea in the hydration and aggregation of
hydrophobic and hydrophilic domains. A strong impact of urea in
hindering the aggregation of the NAC subdomain is observed. A slightly weaker aggregation inhibition is observed for the Gly and
Ser peptides, whereas a much lower aggregation inhibitory activity is found for the Ile peptide, seemingly contrasting with urea’s
protein unfolding mechanism. This behavior is shown to derive from a lower profusion of urea next to the hydrophobic side chains
and the backbone of the Ile’s peptide in the dimeric form. As a consequence, β-sheets, formed upon aggregation, remain nearly
intact. Hydrophilic neighbor groups in the amphiphilic NAC subdomain, however, are shown to anchor enough urea to weaken
hydrophobic interactions and disrupt β-sheet structures. Our results indicate that urea’s activity is potentiated in amphiphilic
domains and that potential drugs could disrupt hydrophobic β-sheet-rich regions while not binding primarily to hydrophobic amino
acids.
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I. INTRODUCTION

Protein aggregation is implicated in several neurodegenerative
diseases, including Alzheimer’s disease and Parkinson’s disease
(PD).1,2 PD and other synucleinopathies, in particular, have
been associated3−8 with the formation of cytotoxic oligomers
primarily composed of α-synuclein9 (α-syn) that accumulate in
neuronal inclusions, called Lewy bodies and Lewy neurites.
Although the cytotoxicity mechanism remains elusive, these
abnormal aggregates, generally referred to as amyloids, are
thought to be responsible for the loss of dopaminergic neurons
in the substantia nigra pars compacta.6,7 α-Syn belongs to the
class of natively unfolded proteins, among intrinsically
disordered proteins10 (IDP), although some compactness,
associated with hydrophobic interactions, and transient long-
range contacts have been reported fromNMR and paramagnetic
relaxation enhancement (PRE) experiments.11−18 The disor-
dered nature of IDPs is, in general, connected with a relatively
low hydrophobic character and a high net charge (qα‑syn = −9e).
However, while the hydrophobicity of α-syn is insufficient to
induce the formation of stable secondary and tertiary structures,
hydrophobic domains seem to be nuclear to aggregation.19

Thus, various domains within a largely hydrophobic 35-amino-
acid central region, coined nonamyloid-β component (NAC),20

comprising residues 61−95, were shown to be pivotal to the
aggregation process.
Giasson et al.21 reported that the 12-amino-acid region,

71VTGVTAVAQKTV82, of α-syn is necessary and sufficient for
its fibrillization. Du et al.22 showed that the elimination of the 9-
amino-acid sequence 66VGGAVVTGV74 eliminates α-syn
fibrillization and cell toxicity. El-Agnaf23 concluded that the
74−86 region of NAC was the main binding region responsible
for aggregation. Rodriguez et al.24 studied the crystal structure of
an 11-residue segment comprising residues 68GAVVTGVTA-
VA78; they coined NACore, indicating its relevance in both the
aggregation and cytotoxicity of α-syn. A slightly smaller region,
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encompassing residues 68−76, had been previously suggested to
be pivotal to the cytotoxicity of α-syn.25 Another similar-size
domain of special interest concerns the domain 72−84 of α-syn,
absent in β-synuclein, which, although sharing 78% similarity
with α-syn, does not aggregate.26

The fact that α-syn can adopt distinct (transient) conforma-
tional states can be explored for the development of potential
aggregation inhibitors. Bertoncini et al.15 and Dedmond et al.16

showed that the monomer of α-syn assumes conformations that
are stabilized by long-range (tertiary) interactions, involving the
C-terminal regions and the NAC, that inhibit aggregation. By
contrast, the heterogeneous aggregational nature27−29 of α-syn
poses serious challenges concerning a comprehensive under-
standing of the relationship between the aggregation mecha-
nism(s)/kinetics and the onset of idiopathic PD. While several
aggregation pathways are possible, a conformational trans-
formation of the natively unfolded protein into a partially folded
intermediate with increased β-sheet content, more aggregation-
prone, is believed to occur.30,31

In the light of the above, a potential inhibitor should either
induce or stabilize a less aggregation-prone conformational state
of the monomer or repress the growth of nascent aggregates by
interacting with specific domain(s) of the natively disordered
protein. Nevertheless, the magnitude of the hydration and
binding free energy of the above-mentioned domains of α-syn is
unknown, limiting a comprehensive understanding of the
molecular interactions at play in the early steps of aggregation.
Molecular details on the aggregation mechanism and key

protein domains that may serve as potential targets, drugs, or
drug leads, in drug design, can be assessed through studies of
protein denaturants such as urea. The latter was widely studied
concerning protein denaturation32−39 and direct and indirect
mechanisms put forward. The indirect mechanism posited that
protein unfolding was associated with putative structural
transformations of water,40 which would favor solvation,41

weakening hydrophobic interactions,39 whereas the direct
mechanism36 envisaged that interactions of urea with the
backbone and side chains are dominant. The direct mechanism
is now widely accepted,42−44 although the importance of urea,
concerning hydrophobic interactions and hydrogen bond (HB)
interactions involving backbone and hydrophilic side chains,37

remains a matter of debate. Further, while there is
experimental15,45 and simulation46−48 evidence on the role of
urea as an antiamyloid agent, its action mechanism and impact

on the binding free energy of α-syn or the above-mentioned
protein domains remain largely unexplored.
In this work, we studied a C-terminal domain (11-amino-acid

peptide) of NAC, composed of the residues 85AG-
SIAAATGFV95, aiming at getting insight into the magnitude
of the hydration and binding free energy in water and an 8 M
aqueous urea solution. This domain was chosen as a prototypical
region of the NAC, being involved in conformations of the
monomer, which could potentially inhibit aggregation.15 In
particular, the formation of a hydrophobic cluster that
comprised the C-terminal domain of NAC (residues 85−95)
and the C terminus (residues 110−130), probably mediated by
M116, V118, Y125, and M127 was identified.

15 Release of such long
interactions was shown to potentiate aggregation of native α-
syn.15,16,18

In addition, isoleucine (Ile), serine (Ser), and glycine (Gly)
peptides of the same length were studied to probe the role of
urea in the hydration and aggregation of, respectively,
hydrophobic groups, hydrophilic groups, and the backbone.

II. METHODS
Molecular dynamics (MD) simulations in the isothermal−isobaric
(N ,p ,T) ensemble of the C-terminal segment of NAC
(85AGSIAAATGFV95), in the zwitterionic form, denoted hereinafter
NACterm, were performed in water and an 8 M aqueous urea solution
with the program GROMACS.49 The peptide and urea were described
by the AMBER99sb50 force field, whereas water was described by the
TIP4P-Ew51 model. Further, isoleucine (ILE-11), glycine (GLY-11),
and serine (SER-11) peptides composed of 11 amino acids, in the
zwitterionic form, were studied; these peptides were chosen to
represent a “hydrophobic” (i.e., hydrophobic side chain) peptide, the
backbone, as the side chain of Gly is a single H atom, and a hydrophilic
peptide. We note that the GLY-11 peptide differs from the backbone of
a peptide in that it can be more solvated due to the small size of the Gly
side chain. This influences the aggregation of GLY-11 relative to the
backbone contribution to aggregation of other peptides where steric
effects associated with larger-side-chain amino acids hamper solvation
to some extent. Thus, in this sense, GLY-11 can be seen as an ideal
model of the backbone for which solvent effects are maximal.

MD of the monomers and dimers were performed at 298 K and 0.1
MPa. The starting conformation of the NACterm monomer and dimer
(Figure 1) was obtained from the α-syn protofibril reported by Tuttle et
al.52 (PDB code: 2n0a) from solid-state NMR spectroscopy.

The peptide (A1G1SIA2A3A4TG2FV) “dimer” in the protofibril
exhibits a β-sheet region and an apparent hydrophobic cluster involving
I, A4, and F (see Figure 1).

Molecular dynamics of the monomers were carried out in a cubic box
with periodic boundary conditions (PBC), to assess the secondary

Figure 1. NACterm “dimer”, (A1G1SIA2A3A4TG2FV), extracted from the α-syn experimental protofibril:52 (a) cartoon representation showing a β-
sheet domain (residues 4 to 8: IA2A3A4T) and (b) ribbons and ball-and-stick representation showing an apparent hydrophobic pocket formed by Ile,
Ala (A4), and Phe side chains.
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structure53 and the radius of gyration in water and an 8M aqueous urea
solution; the secondary structure was studied with the program
DSSP.53,54 The AMBER99sb-ILDN55 model was also used for the
NACterm for comparison purposes; no significant differences were
found (see Figure S1a); a similar secondary structure was also found for
theα-synmonomer (140 amino acids) with the AMBER99sb force field
in TIP4P-EW water, although a lower content of random coil was
observed (see Figure S1b).
The trajectories of the peptides were propagated for 1.5 μs in the

NpT ensemble. The T and p were controlled with the Nose−Hoover
thermostat56,57 and the Parrinello−Rahman barostat,58 and the
equations of motion were solved with the Verlet leap-frog algorithm
with a 2 fs time-step. Electrostatic interactions were computed via the
particle-mesh Ewald (PME) method.59 A cutoff of 1 nm was used for
nonbonded van der Waals and for the PME real space electrostatic
interactions. Heavy atom−hydrogen covalent bonds were constrained
with the LINCS algorithm.60

The hydration free energy, ΔGhyd (i.e., the excess chemical
potential), of the monomers in water and an 8 M aqueous urea
solution were calculated through “alchemical” free energy calcula-
tions,61 with the Bennett acceptance ratio62 method. Further details are
available elsewhere63,64 and in the Supporting Information.
Although the solvation free energy in the aqueous urea solution is not

a hydration free energy, the latter designation will be used herein both
for water and the aqueous urea solution, for the sake of simplicity. The
ΔGhyd values of the side-chain analogues

65 of the amino acids that form
the NACterm, with the exception of Gly, were obtained through a
similar approach, to validate the peptides and urea force fields,
concerning the hydration free energies. The side-chain analogues were
built by replacing the Cα with an H atom with the same charge as the
other H−Cβ, whereas the charge of the Cβwas changed to turn the side-
chain analogue neutral. The remaining force field parameters were kept
unchanged.
The binding free energy of the different peptides in water and the 8

M aqueous urea solution was probed through the calculation of the
potential of mean force (PMF).66,67 The PMFs were calculated through
umbrella sampling68−70 for a system composed of the respective dimers
in a cubic box with PBC, large enough to allow a center of mass (COM)
separation of∼2.7 nm. The reaction coordinate, ξ, was chosen to be the
COM distance, ξ = rCOM−COM. The starting configuration of the
peptides was the same for the distinct peptides, namely, the position of
the peptides A and B in the α-syn protofibril reported by Tuttle et al.52

(PDB code: 2n0a); mutations were carried out on the NACterm dimer
to generate the remaining peptides.
Following the steepest descent energy minimization and a 20 ns

equilibration period in the NpT ensemble, the peptides were pulled
away with a spring constant of 5000 kJ mol−1 nm−2 and a pull rate of
0.01 nmps−1, through steered MD, to generate initial configurations. A
spacing of 0.05 nm was adopted, and the umbrella sampling MD was
performed for 200−250 ns after steepest descent energy minimization,
a 100 ps equilibration in theNVT ensemble, and a 10 ns equilibration in
the NpT ensemble. The PMFs were obtained through the weighted
histogram analysis method71,72 (WHAM), and the Bayesian bootstrap
method73 was used to estimate the PMF errors. The PMFs were
corrected for the entropy,74 by adding the factor 2RT ln(rCOM−COM),
associated with the increasing sampling volume with the COM−COM
distance increase. The PMFs were then shifted to have zero free energy
at the longest separations.
PMFs of the amino acid analogues Ile/butane and Ser/methanol

were also computed through a similar approach; 80−100 ns long
umbrella trajectories were carried out to calculate the PMFs.

III. RESULTS AND DISCUSSION

The PMFs for the distinct peptides in water and an 8M aqueous
urea solution are shown in Figure 2. The lowest binding free
energy in water is observed for the ILE-11 peptide (∼−12.5 kJ
mol−1), consistent with the importance of hydrophobic
interactions to protein aggregation.75,76

The PMF, W(ξ), is the average work required to bring two
objects from infinite separation to a distance r, and it can be
written in the form67,77

W G G G( ) ( ) ( ) ( )ξ ξ ξ ξ= Δ = − = ∞ (1)

where G(ξ) is the free energy of the system along the reaction
coordinate ξ. The COM distance is not, in principle, an optimal
reaction coordinate to study the PMF of nonspherical objects, as
this can often be located away from the peptide. The choice of
suitable reaction coordinates is an intrinsic difficulty of IDPs
because of the multiple conformations the proteins can sample.
For a small peptide such as NACterm, this is less acute, and
previous studies63 for a linear alkane of similar length (n-
dodecane, C12H26) showed that although the shape of the PMF
varies with the choice of either the geometric center or the
COM, similar binding free energies are found.
Concerning the effect of urea, a destabilization of the PMF can

be observed for the NACterm, with the replacement of a contact
minimum by a repulsive state; W(ξ) increases by
ΔWW → U(ξmin) ∼130% at the equilibrium distance, ξmin, upon
the transference of the peptides from water to aqueous urea
solution. A destabilization is also found for the GLY-11 and
SER-11 peptides, with the appearance of shallow minima at
longer distances, resembling a solvent-separated state. The most
remarkable feature of Figure 2 is, however, the much lower
aggregation inhibitory activity of urea on the ILE-11 peptide
dimer; ΔWW → U(ξmin) ∼32%. While unforeseen, in view of
urea’s induced protein unfolding mechanism,38 this behavior is
consistent with recent results63 for OPLS-aa n-dodecane in
TIP4P/2005 water, which showed that urea slightly enhances
aggregation in spite of favoring hydration. However, the
“mutation” of some CH2 groups into charged groups allowed
inverting this enhanced aggregation propensity.63

Figure 3a,b shows the PMF of the Ile/butane and Ser/
methanol analogues, confirming that urea induces a slight
stabilization of the PMF of the former, whereas a minor
destabilization is observed in the latter. Notice that unlike for the
peptides a desolvation barrier can be seen, separating a contact
minimum from a solvent-separated minimum. Urea stabilizes
the solvent-separated minimum in the Ile/Butane analogue, but
no increase in the desolvation barrier is observed, whereas in
Ser/Methanol, the solvent-separated minimum remains un-
changed but the desolvation barrier is enhanced.
To understand whether a direct or inverse relationship is

observed for the peptides, concerning the hydration and
aggregation propensity, the hydration free energy was
calculated. Further, ΔGhyd of the side-chain analogues of each
amino acid in the NACterm was computed. These results are
displayed in Figure 3c,d. A good agreement with experimental
data is found for theΔGhyd of the side-chain analogues, with the
exception of Phe/Toluene for which a small positive value is
found, opposite to the experimental value (see Table 1). Table 1
also shows that the urea model accurately describes the positive
experimental41 free energy of transfer from water to aqueous
urea solution (ΔΔGhyd > 0) of methane and ΔΔGhyd < 0 for
alkanes larger than ethane. This result was recently shown by our
group63 to be accurately reproduced with the OPLS-aa force
field for urea but not by a force field78 for urea that provides a
more accurate description of urea−water mixtures, when
combined with the alkanes’ OPLS-aa force field.
A significant effect of urea can be seen for Phe/Toluene

(ΔΔGhyd = −4.0 ± 0.2), indicating that urea has a pronounced
influence on the solvation of aromatic rings. In this sense, a Phe-
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11 peptide also represents a relevant model to probe the effect of
urea in peptide aggregation. However, aromatic rings have both

hydrophobic (CH groups) and hydrophilic regions (π-electrons
modeled by the excess negative charge in some C atoms),

Figure 2. Potential of mean force (PMF) for the (a) NACterm, (b) ILE-11, (c) GLY-11, and (d) SER-11 peptides, in water and an 8 M aqueous urea
solution. Umbrella samplingMD snapshots of the respective dimers are shown on the rhs; springs represent intra- and interpeptide backbone and side-
chain hydrogen bonds (HBs).
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forming HBs as proton acceptors, thus turning the disentangle-
ment of hydrophobic and hydrophilic effects more difficult. In
addition, α-syn has only four tyrosine (Tyr39, Tyr125, Tyr133,
Tyr136), two phenylalanine (Phe4, Phe94), and no tryptophan
amino acids, of which only Phe94 is in the NAC segment. That
suggests that aromatic rings are not key players in the α-syn
aggregation or the urea-induced disaggregation.
The ΔGhyd values in neat water for the amino acid analogues

are also in very good agreement with a previous simulation
study,65 although with the TIP3P water model. The good
agreement with experimental hydration free energies and the
fact that the AMBER99sb/TIP4P-Ewmodels can reproduce the
structure79 of the Aβ42 peptide, implicated in Alzheimer’s
disease, supported our choice of this force field.
Concerning the peptides, Figure 3d shows that urea favors the

solvation of the NACterm, ILE-11, and GLY-11, whereas, for
SER-11, urea seems to play a minor role. The most marked
decrease of ΔGhyd is found for ILE-11, challenging the common

idea that a solvation enhancement reduces the aggregation
propensity of the peptide.83

The decrease of theΔGhyd of hydrophobic solutes in aqueous
urea solutions is entropic41 and is thought to be associated with a
water depletion next to the solute, restoring water molecules’
rotational and translational freedom, as these are replaced by
urea.63,84 Although solute−solvent interactions are favorable,
these are overwhelmed by urea−water and urea−urea
interactions,63 resulting in a positive hydration enthalpy.41,63

Although ILE-11 is amphiphilic, because of the backbone,
comparison with GLY-11 indicates that urea should favor the
solvation of the side chains (n-butane), in keeping with the
negative transfer free energy ΔΔGhyd < 0 of the Ile/butane
analogue (see Table 1).
The reason for urea to significantly favor solvation, while not

reducing the aggregation propensity of ILE-11, should then be
connected with differences between solvation when in the
monomeric and dimeric forms. The hypothesis exploited herein

Figure 3. PMF for the (a) Ile/butane and (b) Ser/methanol analogues and hydration free energy in water and an 8M aqueous urea solution for the (c)
NACterm amino acids’ side-chain analogues and (d) the peptides.

Table 1. Hydration Free Energy of the Amino Acid Side-Chain Analogues that form NACterm, with the Exception of Gly, in
Water and an 8 M Aqueous Urea Solution

aa/analogue MDa water ΔGhyd (kJ mol−1) exp.b water ΔGhyd (kJ mol−1) MD urea 8 M aqueous ΔGhyd (kJ mol−1) MD ΔΔGhyd
c (kJ mol−1)

Ala/methane +10.6 ± 0.07 +8.4 11.4 ± 0.1 +0.8 ± 0.1d

Val/n-propane +11.1 ± 0.1 +8.2 10.0 ± 0.2 −1.1 ± 0.2
Ile/n-butane +11.8 ± 0.09 +8.7 9.7 ± 0.1 −2.0 ± 0.1
Phe/toluene +0.8 ± 0.1 −3.7 −2.9(5) ± 0.2 −4.0 ± 0.2
Ser/methanol −18.9 ± 0.1 −21.3 −19.4 ± 0.2 −0.45 ± 0.2
Thr/ethanol −17.7 ± 0.1 −21.0 −18.8 ± 0.1 −1.1 ± 0.1

aThe hydration free energies were estimated from two independent calculations; the errors were estimated through error propagation analysis.
bExperimental values: ref 80.80 cWater to aqueous urea solution transfer free energy; ΔΔGhyd = ΔGsolv(U) − ΔGhyd(W); U = urea; W = water.
dThe experimental value41 of ΔΔG for methane is 0.8 kJ mol−1 when converted to the Ben−Naim standard state;81,82 the values of ΔGhyd(W) and
ΔGhyd(U), respectively, obtained with the OPLS-aa force field in TIP4P/2005 water are63 9.4 ± 0.1 and 10.5 ± 0.1.
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foresees that whereas the urea-induced dehydration next to a
hydrophobic group favors solvation (ΔΔGhyd < 0), a similar
dehydration would favor aggregation unless urea’s profusion is

enough to form a “surfactant” layer43 that prevents the
hydrophobic collapse and the formation of interpeptide
backbone hydrogen bonds (HBs). That is to say, unless enough

Figure 4. (a−d) Radius of gyration, Rg, distributions for the peptides (monomers) and (e−h) secondary structure for the peptides (monomers) in
water and 8 M aqueous urea solution.
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Figure 5. Secondary structure of the peptides (dimers), calculated from the umbrella sampling trajectories in (a−d) water and an (e−h) 8 M aqueous
urea solution; lines are only a guide to the eye.
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urea remains in the solvation layers of the hydrophobic groups
upon the peptides’ approximation, neither hydrophobic
interactions nor backbone HBs may be completely disrupted.
Before we discuss solvation, however, we analyze the

structural differences between the peptides in water and the
aqueous urea solution. The structure was probed by calculating
the radius of gyration, Rg, and the secondary structure of the
peptides. Rg provides a measure of the peptide compactness,
with larger values corresponding to more extended conforma-
tions. These results are shown in Figure 4a−d for themonomers.
The most compact average conformation in water is found for
GLY-11, whereas the least compact is observed for ILE-11,
possibly because of steric effects. Urea induces a less compact
conformation for the four peptides, similar to the effect observed
in hydrophobic polymers85 and globular proteins.43

Figure 4e−h shows the main secondary structures of the
monomers; an energetic HB criterion (EHB < −0.5 kcal mol−1 =
−2.09 kJ mol−1) is used to define backbone NH···O HBs in the
DSSP53 analysis.
The peptides exhibit neither α-helix nor β-sheet structures,

with the highest percentage of random coil observed for the
NACterm and ILE-11. Urea induces an increase in the
percentage of random coil for every peptide and the decrease
of turns (single HB helix segment53) and 310-helices, nearly
absent in the NACterm, even in water.
Figure 5a−d displays the secondary structure of the dimers

assessed from the umbrella sampling trajectories in water at
every COM−COM distance. These show the appearance of β-
sheet structures in the NACterm and ILE-11, upon aggregation,
consistent with the β-sheet structures that characterize α-syn
and other IDPs transient oligomers. In α-syn, these structures
appear in the region of the NAC, a largely hydrophobic domain.
Thus, it is interesting to observe that the β-sheet structures
appear primarily in ILE-11 but are nearly inexistent in GLY-11
and SER-11. Furthermore, it can be seen that the distances at

which the β-sheets appear nearly overlap with the respective
minima of the PMFs, indicating that this is a structural hallmark
of the dimer in the equilibrium state.
Similar plots for the dimers Figure 5e−h in the aqueous urea

solution show the disruption of these β-sheet structures and the
increase in the random coil content, similar to the monomers,
with the exception of ILE-11. Thus, urea is unable to disrupt
these structures in ILE-11, suggesting that interpeptide
backbone HBs survive upon urea’s intrusion into the solvation
spheres.
To gain further insight into the dimers’ structural trans-

formations upon transference from water to the aqueous urea
solution, interpeptide backbone carbonyl−amino (O−N)
neighbor maps were computed from the umbrella sampling
trajectories at every COM−COM distance. These were built by
calculating the backbone carbonyl−amino (O−N) interpeptide
radial distribution functions (RDFs). Every pair at a distance r≤
3.5 Å was considered to be a neighbor with the potential to
engage in an interpeptide HB. This is nearly the distance of the
first minimum of the O−N RDF at most interpeptide distances
where neighbors are found and the distance commonly used in
geometric HB definitions of water.
Figure 6 shows a general decrease in the number of

interpeptide backbone O−N contacts upon the transference
from water to the aqueous urea solution. The lowest and highest
number of interpeptide backbone neighbors are found,
respectively, for ILE-11 and GLY-11. This shows that hydro-
phobic interactions, and not interpeptide backbone HBs, are
responsible for the lower binding free energy of ILE-11 (see
Figure 2). However, in the aqueous urea solution, there is a slight
strengthening of the number of neighbors in the central amino
acids (I5−I7) in ILE-11, not observed for the other peptides.
This confirms that urea does not significantly destabilize the
interpeptide backbone HBs involved in the formation of the β-
sheet structures, suggesting a milder penetration of the

Figure 6. Interpeptide backbone carbonyl−amino (O−N) neighbor maps computed from umbrella sampling trajectories at every COM−COM
distance in (a−d) water and (e−h) an 8M aqueous urea solution. Each number of neighbors is averaged over the same amino acid in the two peptides.
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denaturant. We anticipate that this is indeed the reason and that
a significantly lower profusion of urea is found next to the side
chains and backbone of ILE-11.
To probe the hydration level next to the peptides, hydration

maps were calculated from the umbrella sampling trajectories.
These were built by calculating the amino acids Cβ−OW (Cα−
OW for glycine) (see Figure 7) and the backbone O−OW
(Figure S2) and N−OW (Figure S3) coordination numbers
(CNs), along the PMF reaction path, where OW is the water
molecules’ oxygen atom
The CNs in water and urea were both normalized by the

maximum CNs for each amino acid in water
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where CNi is the CN of amino acid i averaged over the two
peptides, g(r) is the RDF, rmin is the first minimum of the
respective RDF, and CNi

norm is the normalized CN for amino
acid i.
Figure 7a−d shows a clear hydration/dehydration transition

as the peptides approach. An even larger dehydration is observed
next to the backbone O atoms and especially the N atoms (see
Figures S2 and S3). The most prominent dehydration, upon
aggregation, is found for ILE-11 in consonance with the

expected dewetting and hydrophobic collapse, the hallmarks of
hydrophobic aggregation.86,87 For the NACterm, the alanine
residues (A2, A3, and A4) including the respective backbone O
and N atoms, and T and G2, to a less extent, are significantly
more dehydrated than the remaining amino acids. A more
pronounced dehydration is naturally expected in the central
region, where interpeptide backbone contacts are also
maximized upon association (see Figure 6).
In the aqueous urea solution (Figure 7e−h), most residues

display a dehydration of ∼50% at large separations and >65%
when the peptides are in contact (<1 nm). This is consistent
with urea’s ability to displace water molecules next to both
hydrophobic and hydrophilic groups because of a more
favorable interaction of these groups with urea than with
water.43 However, the most striking dehydration is observed for
ILE-11, which could suggest a larger profusion of urea.
Urea solvationmaps, however, contradict this expectation and

show a lower intrusion of urea in the interpeptide region in ILE-
11 (Figure 8), specially marked near the backbone atoms
(Figures S4 and S5).
A larger urea depletion is also observed next to the central Ala

amino acids in NACterm, although less pronounced.
Thus, depletion of both water and urea is found near long

hydrophobic regions, explaining the poor aggregation inhibitory
effect of urea observed for ILE-11.
Nonetheless, the larger impact of urea in the aggregation of

theNACterm than inGLY-11 and SER-11 indicates that the role
of urea in blocking hydrophobic interactions is especially
important. However, that depends on the retention of enough
urea around the peptides. This is achieved in NACterm through
the interaction of hydrophilic groups with urea. Thus, for

Figure 7. Hydration maps for the distinct peptides in (a−d) water and (e−h) an 8 M aqueous urea solution computed from umbrella sampling
trajectories at every COM−COMdistance. Hydration is defined by the number of water molecules in the first hydration sphere of the Cβ (Cαwas used
for Gly) of the amino acids; the hydration spheres were defined by the first minimum of the respective RDFs. Hydration numbers in water and the
aqueous urea solution were normalized by the maximum hydration numbers of each amino acid in water. Note that the N-terminus (−NH3

+; amino
acid 1) and the C terminus (−COO−; amino acid 11) are significantly less dehydrated than the remaining residues.
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instance, Ile in the NACterm is well solvated by urea because it
shares the solvation layer with a neighbor Ser.
Finally, while the binding entropy and enthalpy cannot be

assessed from our results alone, an interesting aspect concerns
the role of urea in the intrapeptide and interpeptide interactions
(enthalpic). We found a major increase in the interpeptide
potential energy (Figure S6) for every peptide, except ILE-11,
for which the potential energy profile shows only a moderate
increase. A similar behavior is found for Uintra(r) (Figure S7).
Thus, urea increases the binding enthalpy via interpeptide and
intrapeptide interactions favoring the disaggregated state. The
urea-induced release of water molecules around the peptides to
the bulk is also expected to favor disaggregation through both
entropy and enthalpy, whereas water−urea and urea−urea may
exert the opposite effect as these were found to disfavor the
solvation of hydrophobic solutes.63

IV. CONCLUSIONS

Urea is routinely used as a denaturant in protein unfolding/
refolding and aggregation studies in vitro. While a molecular
picture of urea’s protein unfolding mechanism emerged in
recent years, less is known concerning peptide and protein
aggregation, implicated in several cell and neurodegenerative
diseases. Here, we studied the solvation and aggregation of
NACterm, an amphiphilic peptide from NAC, a key
aggregation-prone domain of α-syn, implicated in several

synucleinopathies. Furthermore, “hydrophobic”, backbone,
and hydrophilic peptide models were studied. Our results
indicate that urea’s role in the aggregation of long hydrophobic
domains is limited by a poor profusion near the side chains and
the backbone, upon aggregation. Thus, while urea’s profusion
around the monomer is enough to favor solvation, in the dimer,
this is insufficient to compensate for dehydration, and, therefore,
overcome hydrophobic interactions.
These results demonstrate that the effect of urea on protein

aggregation (and denaturation) is amplified in amphiphilic
domains, as hydrophilic groups anchor enough urea molecules
to inhibit hydrophobic interactions as seen for the NACterm,
and in protein denaturation.38 This explains the seemingly
paradoxical result that a significant solvation enhancement does
not translate into a significant aggregation propensity inhibition,
a result consistent with the inverse relationship between
solvation and aggregation in alkanes larger than ethane.63

In spite of the heterogeneous nature of α-syn oligomers, there
is a common acceptance that any drug, either a small molecule or
a peptide-based drug,88 that can shield the NAC region15,16 is of
potential therapeutic interest. In this respect, small molecules
are generally less specific and potent than peptide-based
antiamyloid drugs because the main target domains are
hydrophobic, and, therefore, molecules with large hydrophobic
surface areas are desired. This rationale is used, for instance, in
designing peptide-based drugs.23 Our results, however, indicate
that drugs without a primary binding affinity toward hydro-

Figure 8. Urea solvation maps of the peptides computed from umbrella sampling trajectories at every COM−COM distance. Solvation is defined by
the number of urea molecules in the first urea coordination sphere of the Cβ (Cα was used for Gly), normalized by the respective maximum
coordination number found for each amino acid.
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phobic domains can still have antiamyloid activity by interacting
with neighbor hydrophilic groups in the NAC region. This may,
thus, be explored in the design of small molecules and/or
macrocyclic peptides with antiamyloid activity. A limitation of
this study, however, concerns the size of the peptide studied, in
that, despite the expected importance of the NACterm to the
aggregation of α-syn, it cannot reproduce transient structural
conformations associated with intramolecular interactions
between the NAC and the terminal regions of the α-syn.
These have an impact on urea and/or drug profusion, which, in
turn, also impact the structure of α-syn.
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