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Abstract: 5-aminolevulinic acid (ALA) increases plant tolerance to low-temperature stress, but
the physiological and biochemical mechanisms that underlie its effects are not fully understood.
To investigate them, cucumber seedlings were treated with different ALA concentrations
(0, 15, 30 and 45 mg/L ALA) and subjected to low temperatures (12/8 ◦C day/night temperature).
The another group (RT; regular temperature) was exposed to normal temperature (28/18 ◦C day/night
temperature). Low-temperature stress decreased plant height, root length, leaf area, dry mass
accumulation and the strong seedling index (SSI), chlorophyll contents, photosynthesis, leaf and
root nutrient contents, antioxidant enzymatic activities, and hormone accumulation. Exogenous
ALA application significantly alleviated the inhibition of seedling growth and increased plant height,
root length, hypocotyl diameter, leaf area, and dry mass accumulation under low-temperature
stress. Moreover, ALA increased chlorophyll content (Chl a, Chl b, Chl a+b, and Carotenoids) and
photosynthetic capacity, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2

concentration (Ci), and transpiration rate (Tr), as well as the activities of superoxide dismutase
(SOD), peroxidase (POD, catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)
enzymes, while decreasing hydrogen peroxide (H2O2), superoxide (O2

•−), and malondialdehyde
(MDA) contents under low-temperature stress. In addition, nutrient contents (N, P, K, Mg, Ca, Cu, Fe,
Mn, and Zn) and endogenous hormones (JA, IAA, BR, iPA, and ZR) were enhanced in roots and leaves,
and GA4 and ABA were decreased. Our results suggest the up-regulation of antioxidant enzyme
activities, nutrient contents, and hormone accumulation with the application of ALA increases
tolerance to low-temperature stress, leading to improved cucumber seedling performance.
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1. Introduction

Plants are challenged by a variety of biotic and abiotic stresses throughout their life cycle [1].
Low-temperature stress limits agriculture production severely in large parts of the world, especially
northern parts of China [2–4]. Low temperature is one of the most common problems for offseason
vegetable production [2,3]. Numerous studies have shown that low temperatures negatively affect
plant nutritional uptake and accumulation, chlorophyll content, photosynthetic capacity, oxidative
stress, metabolic processes, defense system, and hormonal imbalance [5], in addition to having adverse
effects on almost all developmental stages from seed germination to maturation [6]. Plants exposed to
low temperatures can increase the overproduction of 1O2, O2

•−, H2O2, and OH, also known as reactive
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oxygen species (ROS), which damage chloroplasts and mitochondria and can lead to cell death [7].
To eliminate the overproduction of ROS, plants have evolved antioxidant enzymes (superoxide
dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase
(GR), and dehydroascorbate reductase (DHAR)) and nonenzymatic antioxidants (glutathione (GSH),
ascorbic acid (AA), and carotenoids) that are responsible for scavenging superfluous ROS [6–8].
Phytohormones (abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), brassinosteroid (BR),
jasmonic acid (JA), and indole-3-propionic acid (iPA)) also play key roles in increasing antioxidant
enzyme activities under various kinds of abiotic stress to reduce their harmful effects [5,9–11].

5-aminolevulinic acid (ALA) is a kind of nonprotein amino acid found in plants, animals,
fungi, and bacteria [8]. ALA is a key precursor in the biosynthesis of all porphyrin compounds,
like chlorophyll, heme, and phytohormones [11]. Exogenous ALA application has been reported to
regulate chlorophyll biosynthesis and photosynthesis, thus increasing crop yields [8,12]. As an essential
biosynthetic precursor of all heterocyclic tetrapyrrole molecules, ALA is considered a plant growth
regulator, and is involved in improvements in plant growth and yield, and variety of abiotic stress
tolerance, suggesting that ALA has great application potential in agriculture production, because
it is a nontoxic endogenous substance [8,13,14]. ALA alleviates the harmful effects of salinity as
well as increasing the chlorophyll content, photosynthetic rate, antioxidant enzymatic capacity,
and nutrient content [8]. Exogenous ALA application increases the plant defense system in response
to NaCl [12], low-temperature stress and light condition [13], salinity stress [14], and drought [15].
In rice, microarray analysis suggests that ALA upregulated transcripts highlight particular biological
processes, transcription factors, post-transcription factors, signal transduction, carbohydrate and
monoacids metabolism, and chlorophyll biosynthesis [16] thus, leads to increase stress tolerance [17–19].
These findings suggest that ALA can broadly reduce the harmful effects of abiotic stress, but little
about its role in endogenous hormone regulations in response to low-temperature stress is known.

The optimum growth temperature for cucumber is between 24 and 28 ◦C [9,20]. Temperatures
above 30 ◦C or below 12 ◦C cause significant reduction in growth [9,10]. Subjecting cucumber plants
to low-temperature stress can also induce ROS and malondialdehyde (MDA) production in leaves,
and increase their susceptibility to a variety of diseases and pathogens [7,11]. Low-temperature stress
reduced chlorophyll biosynthesis [2,14,17], impaired photosynthesis and respiration [21,22], membrane
damage, overproduction of ROS [8], and hormonal imbalance [10–13], causing a significant reduction
in plant growth and yield [23]. China is the world leader in cucumber production, in part due to
intensive cultivation in the northern region, where the climate is ideal for growing cucumber. However,
low temperatures in early spring are a problem for many horticulture crops, including cucumber [21].

Here, we provide the first evidence that ALA protects cucumber seedlings against
low-temperature stress by regulating endogenous hormones levels. We also investigate ALA’s role
in promoting low-temperature stress tolerance, and would be useful for greenhouse and protected
vegetables production.

2. Results

2.1. The Effect of ALA on Cucumber Seedling Growth and Strong Seedling Index

The results of the present study indicate that low-temperature stress had a negative effect on
cucumber seedling growth and the strong seedling index (SSI), but these were significantly enhanced
by exogenous ALA application (Table 1). Plant height, root length, hypocotyl diameter, leaf area, plant
dry weight, and SSI of cucumber seedlings were significantly reduced by 41.73%, 42.11%, 26.55%,
44.78%, 48.65%, and 36.84%, respectively, in low-temperature stress (CK), and by 14.93%, 19.14%,
5.19%, 18.93%, 24.32%, and 10.53%, respectively, in T2 (30 mg/L ALA), when compared to RT (regular
temperature). ALA treatment T2 significantly enhanced plant height, root length, hypocotyl diameter,
leaf area, plant dry weight, and SSI by 46%, 39.68%, 29.07%, 46.81%, 47.36%, and 41.66%, respectively,
compared with CK. SSI was highest in RT followed by T2 and T3 treatments, respectively. SSI was
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significantly lower in CK and T1, which did not differ from one another (Table 1). These results
suggest that exogenous ALA reduced the harmful effects of low-temperature and also increased
cucumber seedling size metrics, as measured seven days after exposure to low-temperature stress
(Table 1). Among the treatments T2 showed the greatest growth and was the only treatment selected
for further analysis.

Table 1. Effect of 5-aminolevulinic acid (ALA) on cucumber seedling growth under low-temperature stress.

No. Hypocotyl (mm) Root Length (cm) Height (cm) Leaf Area (cm2) Total DW (g) SSI

RT 5.01 ± 0.12 a 17.50 ± 1.15 a 7.50 ± 0.32 a 97.21 ± 6.31 a 0.74 ± 0.10 a 0.57 ± 0.04 a

CK 3.68 ± 0.06 c 10.13 ± 0.85 c 4.37 ± 0.25 c 53.68 ± 2.83 c 0.38 ± 0.03 d 0.36 ± 0.03 c

T1 3.76 ± 0.12 c 10.88 ± 0.85 c 4.63 ± 0.47 c 50.42 ± 5.01 c 0.44 ± 0.03 c 0.41 ± 0.04 c

T2 4.75 ± 0.23 b 14.15 ± 1.07 b 6.38 ± 0.25 b 78.81 ± 4.51 b 0.56 ± 0.03 b 0.51 ± 0.05 b

T3 4.72 ± 0.29 b 14.25 ± 0.95 b 6.13 ± 0.25 b 73.56 ± 4.84 b 0.53 ± 0.04 b 0.49 ± 0.02 b

RT; regular temperature; CK: control, T1: (15 mg/L ALA), T2: (30 mg/L ALA), T3: (45 mg/L ALA). Treatments
indicated by the same letters are not significantly different at p < 0.05.

2.2. The Effect of ALA on Chlorophyll and Photosynthesis

Low-temperature stress induced a significant reduction in chlorophyll contents (Chl a, Chl b,
Chl a+b, and carotenoid) (Figure 1). The results showed that Chl a, Chl b, Chl a+b, and carotenoid
contents in CK decreased by 38.27%, 42.46%, 32.88%, and 39.32%, respectively, and 14.25%, 7.28%,
11.32%, and 12.12% in ALA treatments, when compared to the RT treatment. The Chl b, Chl a+b,
and carotenoid contents of RT were not significantly different than ALA, while Chl a was significantly
higher in RT. Moreover, Chl a, Chl b, Chl a+b, and carotenoid contents decreased by 27.37%, 38.10%,
23.98%, and 30.87%, respectively, in the low-temperature stress (CK) treatment, as compared with ALA
treatment. The findings suggest that ALA protected chlorophyll contents under low temperature stress.
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Figure 1. The effect of ALA on chlorophyll (A: Chlorophyll A (Chl a); B: Chlorophyll b (Chl b);
C: Carotenoid; and D: Chlorophyll a+b (Chl a+b)) accumulation under low-temperature stress
conditions. RT = regular temperature, CK = control; ALA = 30 mg/L ALA. Treatments indicated
by the same letters are not significantly different at p < 0.05.

The photosynthetic capacity was significantly enhanced by exogenous ALA application in
cucumber seedling under low temperature stress (Figure 2). The results indicate that net photosynthesis
(Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr)
decreased by 11.32%, 29.41%, 22.36%, and 7.73%, respectively, compared to ALA-treated seedlings
(Figure 2). Compared to the RT treatment, the Pn, Gs, Ci, and Tr in CK decreased by 8.28%, 38.12%,
9.48%, and 19.2%, respectively. ALA treatment resulted in a remarkable increase in Pn and Ci,
by 3.43% and 16.59%, but Gs and Tr decreased by 12.33% and 12.66%, respectively, suggesting that
ALA reduced the damaging effects of low-temperature stress by increasing photosynthetic capacity.
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Together, these findings indicate that ALA increases chlorophyll contents and photosynthetic capacity
in cucumber under low-temperature stress.
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indicate a significant difference at p < 0.05.

2.3. Effect of ALA on Antioxidant Enzyme Activities, MDA, and ROS Contents

Plants subjected to abiotic stress tend to overproduce reactive oxygen species (ROS), which can
lead to oxidative stress that damages proteins, lipids, carbohydrates, chlorophyll, and the
photosynthetic machinery. Plants have antioxidant enzymes (SOD, POD, CAT, APX, and GR) that
respond to stress tolerance and regulate ROS and MDA production. Compared with the ALA treatment,
the SOD, POD, CAT, APX, and GR enzymatic activities in cucumber seedling leaves were significantly
reduced in CK. The results show that exogenous ALA application increased the SOD, POD, CAT, APX,
and GR enzymatic activities, by 31.33%, 9.09%, 50.82%, 14.05%, and 15.99%, respectively, as compared
to CK (Figure 3). Compared with RT, the SOD, POD, CAT, APX, and GR enzyme activities were
enhanced by 54.15%, 28.67%, 39.72%, 36.30%, and 21.33%, respectively, in the CK treatment, and 65.10%,
34.61%, 60.03%, 57.26%, and 31.02%, respectively, in the ALA treatment (Figure 3).

Further, we investigated the H2O2 and O2
•− and MDA contents in cucumber seedling leaves.

Low-temperature stress increased the levels of H2O2 and O2
•− and MDA, by 39.51%, 52.26%,

and 12.91%, respectively, relative to seedlings treated with ALA (Figure 4). Moreover, H2O2 and
O2

•− and MDA contents were significantly lower in RT, but increased by 68.60%, 63.63%, and 32.80%,
respectively, in the CK treatment and 56.12%, 42.68%, and 26.91% in ALA-treated seedlings (Figure 4).
These findings suggest ALA regulates a plant’s defense system to reduce ROS overproduction and
improve growth under low temperature stress.
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2.4. Effect of ALA on Total Nutrient Contents

Exogenous ALA application leads to significant changes in root and leaf nutrient content when
cucumber seedlings were exposed to low-temperature stress compared to the CK treatment (Figures 5
and 6). The N, K, P, Mg, Cu, Ca, and Zn contents in root of ALA treated seedlings, increased by 28.94%,
14.01%, 14.66%, 17.27%, 12.62%, 17.71%, and 9.83%, respectively, but Mn and Fe contents were the
same compared to CK (Figure 5). Moreover, N, K, P, Mg, Cu, Ca, and Zn contents in roots of CK
seedlings decreased by 32.07%, 3.40%, 25.92%, 8.52%, 10.28%, 28.73%, 18.66%, 16.18%, and 15.53%,
respectively, as compared to RT (Figure 5). The ALA treated seedlings showed a remarkable increase in
K, Mg, Ca by 12.34%, 10.51% and 8.99%, respectively, but N, P, Cu, Fe, Mn, and Zn contents decreased
by 4.67%, 13.23%, 18.55%, 21.87%, 20.59%, and 5.92%, respectively.
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E; Calcium, F; Copper, G; Iron, H; Manganese, and I; Zinc) in cucumber seedling leaves under
low-temperature stress. RT = regular temperature; CK = control; ALA = 30 mg/L ALA. Different letters
indicate a significant difference at p < 0.05.

In addition, ALA also increases leaf nutrient content of N, K, P, Mg, Mn, Cu, Fe, Ca, and Zn
compared to the CK treatment by 12.49%, 4.84%, 31.15%, 35.35%, 34.13%, 22.27%, 35.10%, 37.51%,
and 27.17%, respectively (Figure 6). To compared with RT, the N, K, P, Mg, Mn, Cu, Fe, Ca and Zn
of leaves decreased by 6.33%, 16.95%, 34.94%, 21.94%, 50.22%, 21.84%, 28.08%, 35.54%, and 15.07%,
respectively, in the CK treatment, but the ALA treatment showed no significant difference with
RT (Figure 6). Taken together, these results suggest that the difference between RT and ALA were
not significant, but CK and RT resulted in a significant difference under low temperature stress in
cucumber seedling.
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2.5. Effect of ALA on Endogenous Hormones Accumulation

Plant hormones play an important role in stress tolerance. Cucumbers subjected to
low-temperature stress during the seedling stage had a significant reduction in endogenous hormone
accumulation in their leaves (Figure 7). The result indicated that ALA significantly increased the
levels of JA, IAA, BR, iPA, and zeatin-riboside (ZR) by 6.54%, 25.87%, 19.43%, 23.53%, and 16.34%,
respectively, while GA4 and ABA decreased by 15.95% and 24.61%, respectively, compared to CK.
Additionally, the RT treatment led to a significant increase in BR and GA4 contents when compared
to the CK and ALA treatments, while IAA, ZR, and ABA were the same with ALA, but significantly
higher than the CK treatment (Figure 7). The JA, iPA, and ABA contents in the RT treatment were
significantly downregulated compared to CK and ALA. These results suggest that ALA induces
endogenous hormones accumulation to increase low-temperature stress tolerance and enhanced
growth of cucumber seedlings.Int. J. Mol. Sci. 2018, 19, x 8 of 17 
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Indole-3-propionic Acid, F; Zeatin riboside, G; Abscisic Acid, and H; Protein. RT= regular temperature;
CK = control; ALA = 30 mg/L ALA. Different letters indicate a significant difference at p < 0.05.



Int. J. Mol. Sci. 2018, 19, 3379 8 of 16

3. Discussion

ALA is a critical precursor in the tetrapyrrole biosynthetic pathway and is considered to be
plant growth regulator that improves plant growth and stress tolerance [7,14]. Low-temperature
stress can lead to the overproduction of ROS (H2O2 and O2

•−), which are highly reactive, toxic,
and as such have negative effects on chlorophyll content, photosynthetic rate, antioxidant enzyme
activities, hormone, and nutrient accumulation [7,13,21]. Low-temperature stress inhibits melon and
watermelon growth, chlorophyll levels, and photosynthetic capacity [21,22]. Our study shows that
exogenous ALA application significantly reduces the damaging effects of low-temperature stress
on cucumber seedlings, and leads to a significant increase in a number of plant growth parameters
(plant height, root length, leaf area, dry weight, and strong seedling index) (Table 1). The results
were similar to those of earlier studies, which reported that ALA alleviates the harmful effects of a
range of environmental stresses (low temperature, salinity, and heavy metal stresses) by protecting
chlorophyll and the photosynthetic machinery, stimulating a plant’s defensive response and increasing
growth [22–25].

Chlorophyll (Chl) content is an important parameter frequently used to indicate chloroplast
development [2,6,23]. Chl is sensitive to abiotic stresses and very easy to degrade [22], and can lead
to a reduction in photosynthetic capacity [26,27]. Previous studies reported that low-temperature
stress can induce a serious decline in chlorophyll content and photosynthetic capacity [22], leading
to a significant reduction in plant growth [9,21,28]. ALA alleviate the harmful effects of salinity by
regulating Chl synthesis pathway and leads to improve cucumber seedlings growth [14]. In the
present study, chlorophyll content (Chl a, Chl b, Chl a+b, and carotenoids) significantly increased
after ALA treatment (Figure 1). Additionally, ALA alleviated the degradation of chlorophyll and
may be involved in chlorophyll biosynthesis or the inhibition of chlorophyll-degrading enzymatic
activity [16,17,22]. Moreover, the results suggested that the decrease of Chl was lower in ALA-treated
seedlings than CK, when compared to RT (Figure 1). The results are consistent with previous
studies, which reported that ALA increased chlorophyll contents in tomato, cucumber, melon,
and watermelon under drought, salinity and low-temperature stress [21–23,29]. The previous study
reported that exogenous ALA application increases the activities of Glutamyl-tRNA reductase (GluTR)
and glutamate-1-semiadelhyde 2,1-aminomutase (GSA-AT) enzymes, which catalyze the biosynthesis
of ALA [30] and might induce the biosynthesis of Chl by inducing the expression of psbA and psbD
under drought stress [31]. Transcriptome analysis indicated that ALA activated thousands of genes
involved in a variety of biological process, e.g., Chl biosynthesis genes, the cell cycle, transcription
factors, post-transcriptional regulation, and metabolism of macromolecules [16,23,32]. In addition, a
previous study reported that ALA increased the expression levels of ChlD, ChlH, and Chl1-1 genes,
which are involved in Chl biosynthesis in cucumber, B. napus and Pakchoi [12,14,27]. These findings
suggest that ALA protects Chl biosynthesis under low temperature, thus improving cucumber seedling
growth (Table 1).

Photosynthesis is the basis of plant growth and development, and is sensitive to abiotic
stresses [6,8,27,33]. Exogenous ALA application affects several physiological and biochemical
processes, including photosynthesis whether under stress or normal conditions [34–36]. One recent
study shows that the promotion of pepper seedling growth by exogenous ALA application under
low-temperature stress leads to improvements in photosynthesis [37]. ALA is protecting photosynthetic
machinery in numerus plant species from various kind of abiotic stresses and caused a significant
increase growth [6,13,15,18]. The results of present study show that low-temperature stress induces
a decline in photosynthetic capacity (Pn, GS, Ci, and Tr) in cucumber seedling leaves, but that
capacity was significantly enhanced by exogenous ALA application (Figure 2). Previous studies
have reported that exogenous ALA application increases photosynthetic capacity in cucumber and
maize under chilling stress [9,38], Pakchoi under normal conditions [27], spinach under high-salinity
and normal conditions [25], and oilseed rape under salinity and drought stress [8,15]. ALA might
reduce the negative effects of low-temperature stress by increasing the photosynthetic capacity in
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cucumber seedlings (Figure 2). ALA is an essential precursor for chlorophyll biosynthesis under stress
conditions [14,39,40], and may help increase harvest quantum under low-temperature stress [15,37,40].
The transcriptome analysis of Kentucky bluegrass suggested that ALA upregulates genes involved in
photosynthesis, chloroplast developments, thylakoid membrane, and chlorophyll biosynthesis [30,31],
which is the prime contributor of photosynthetic machinery [40–43]. Moreover, in the present study,
ALA enhanced chlorophyll content (Figure 1), especially chlorophyll b, which might improve the ability
of quantum harvesting of leaves leading to enhanced photosynthetic rate and probably improved
growth [29,37,44].

To alleviate oxidative injury induced by stress, plants have evolved mechanisms to scavenge
these toxic and reactive species through antioxidation of enzymatic and nonenzymatic systems, which
leads to damage and possibly caused cell death [7,26,36,40,45]. SOD is a key antioxidant enzyme
scavenger of O2

•−, catalyzing the dismutation of superoxide radicals to H2O2 and O2, while CAT
directly scavenges H2O2. APX and GR remove O2

•− and H2O2 by activating AsA and GSH (a
nonenzymatic pathway) [7,33,40]. Our results show that ALA significantly increased antioxidant
enzyme activities (SOD, POD, CAT, APX, and GR, Figure 3), while decreasing the MDA content
(Figure 3F) and H2O2 and O2

•− contents in cucumber leaves under low-temperature stress (Figure 4).
Previous studies reported that ALA-treated seedlings significantly increased antioxidant enzyme
activities in cucumber under salinity and drought stress [19,29], pepper [37], and melon exposed to
low-temperature stress [21]. In strawberry and rice seedlings, ALA activates a plant’s antioxidant
defense system and the expression of defense-encoded genes (SOD, POD, CAT, and APX) to alleviate
the damaging effects of salinity and photodynamic stresses [46,47], decreasing the overproduction
of ROS and MDA [7,14,20,26,28]. The previous study suggested that CAT, POD, and APX contain a
heme prosthetic group, while ALA is a key precursor of heme biosynthesis [18], which might be the
reason that ALA-treated seedlings showed increased antioxidant enzyme activity (Figure 3), reducing
the overproduction of ROS and MDA (Figure 4) in cucumber seedling under low-temperature stress.
Thus, it can be concluded that exogenous ALA application increased low-temperature stress tolerance
and stabilized ROS and MDA production, and might be associated with an increased expression of
genes encoding antioxidant enzymes, like SOD, POD, CAT, APX, and GR, all of which resulted in a
significant increase in cucumber seedling growth (Table 1) [24,26,29,48].

The uptake and distribution of essential nutrients are crucial for the maintenance of homeostasis
and plant growth under unfavorable conditions [48,49]. Stress mostly limits nutrient (both macro and
micro) acquisition and translocation in plant tissue [50,51]. Abiotic stress decreases ion homeostasis and
accumulation in maize and halophyte, causing a significant reduction in plant growth, photosynthetic
activity, and plant defenses [8,23,49]. Cucumber plants exposed to low-temperature stress had
significantly decreased levels of vital macro- (N, P, K, Ca, and Mg) and micronutrients (Cu, Fe,
Mn, and Zn) in the leaves and roots, but Mn increased in the roots (Figures 5 and 6). Treatment with
exogenous ALA significantly increased both macro- and micronutrient contents in cucumber seedling
roots and leaves (Figures 5 and 6). Earlier studies suggested that exogenous ALA application positively
affected uptake, translocation, and accumulation of these essential nutrients in Brassica napsus [39]
and watermelon [52]. ALA application also improved the uptake of essential nutrients under salinity
stress in Brassica napus [8], while increasing nitrogen metabolism (NR, GOGAT enzymes activities)
under NaCl stress in Isatis indigotica Fort and watermelon, leads to increased plant growth [52,53].
In this study, the nutrient contents in the ALA and RT treatments were almost similar, but both
were significantly higher than CK (Figures 5 and 6), which might be the reason that ALA leads
to improve cucumber seedling growth. These results are consistent with previous studies, which
reported that ALA regulates ion uptake under salinity and drought stress, and activates the defense
system in Brassica spp. [8,41,52]. It can be concluded that ALA plays a key role in ion homeostasis
and balance, which is involved in virtually all metabolic and cellular functions, such as energy
metabolism, primary and secondary metabolism, gene and hormonal regulation, reproduction,
and signal transduction pathways [6,20,38,47,54], thus improving growth (Table 1).
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Plant resistance to abiotic stress is strongly associated with phytohormones that regulate various
biological and developmental processes during growth [5,7,32,55]. Interaction and cross-talk between
plant hormones can control a broad spectrum of physiological and developmental processes through
the activation of various transcriptional factors [3,5,41]. The previous decade saw a rapid rise in studies
of plant hormone signal transduction pathways and regulatory mechanisms [1,5,7,9,41]. The results of
the present study suggest that exogenous ALA application induces endogenous hormone (BR, IAA,
JA, SA, and iPA) to accumulate except ABA and GA4, (Figure 7). A recent study suggested that ALA
increased ABA contents under drought stress in wheat seedlings, indicating that ALA interacts with
endogenous plant hormones to induce stress tolerance [31]. The BR contents were significantly higher
in the ALA treatment than CK (Figure 7). These are supported by a previous study, which reported
that BR increases the transcriptional levels of the ethylene biosynthesis genes (CsACS1, CsACS2,
CsACS3, CsACO1, CsACO2, and CsAOX) in response to abiotic stresses in cucumber, especially to
low-temperature stress [56], while ryegrass and cucumber improved salt and low-temperature stress
tolerance by increasing endogenous hormonal accumulation (BR, IAA, ABA, SA, JA, iPA, and GA4)
and ion homeostasis (Na, K, Ca, and Mg), as treated with exogenous BR [1,55]. These findings strongly
suggest that ALA interacts with endogenous phytohormones, especially JA, IAA, BR, iPA, and ZR, to
induce low-temperature stress tolerance in cucumber. Taken together, ALA increases low-temperature
stress tolerance by regulating endogenous hormone accumulation (Figure 7) to activate the plant’s
defense system (Figure 3), protecting chlorophyll (Figure 1) and photosynthesis (Figure 2), improving
cucumber seedling growth (Table 1). Recent studies reported that various phytohormones increased
the plant defense system and reduced the overproduction of ROS, are support our findings [6,19,46,55].

Plant hormones and their cross-talk are important for plant growth and development [57],
activating various transcriptional factors and signal transduction pathways, which play a fundamental
role in plant defense system [55]. Cross-talk and interactions between ALA and phytohormones
may have been implicated in the regulation of several developmental and physiological processes,
including responses to abiotic stress, and for discovery of new genes and transcriptional factors.

This study provides insight into the hormonal regulation by exogenous ALA application to induce
low-temperature stress tolerance. Low-temperature stress caused lipid peroxidation and decreased
antioxidant enzyme activities, chlorophyll levels, photosynthetic capacity, and ion and hormone
accumulation, thus inhibiting cucumber seedling growth. Exogenous ALA protects cucumber seedlings
against low-temperature stress by regulating endogenous hormones; increasing Chl, photosynthetic
capacity, and nutrient accumulation; antioxidant enzyme activities; and preventing lipid peroxidation.
The application of 30 mg/L ALA could alleviate the harmful effects of low temperature by boosting
the plant’s defense system and decreasing ROS production, thus enhancing low-temperature stress
tolerance. ALA regulates chlorophyll accumulation and leads to a significant increase in photosynthetic
capacity. In addition, ALA effectively increases endogenous hormone accumulation, which is a novel
finding. The versatile role of ALA may be attributed to its interaction with plant hormones that activate
the post-transcriptional factor of the target pathway to increase low-temperature stress tolerance in
cucumber seedlings. More research is required to further elucidate the ALA mechanism and interaction
with hormones that confer abiotic stress tolerance.

4. Materials and Methods

4.1. Plant Material and Growth Condition

The experiment was conducted from March to November 2017 in a controlled growth chamber
at the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
Cucumber Cucumis sativus L. Cv. Zhongnong 26, obtained from the Institute of Vegetables and Flowers,
Chinese Academy of Agricultural Sciences was used. After germination on moist gauze in petri
dishes in the dark at a 28 ◦C, the sprouting seeds were transplanted to a seedling tray (32-hole plate)
filled with a soil medium and placed at 28/18 ◦C day/night temperature, with 70–75% humidity and
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300–350 µmol·m−2·s−1 photosynetically-active radiation provided for 14 h. When cotyledons fully
extended, same-size seedlings were transplanted to a plastic container (34 cm × 26 cm × 12 cm),
6 seedlings per container) filled with half-strength hoagland nutrient solution and allowed to grow for
7 days, then exposed to low-temperature stress.

The experiment consisted of two parts: in the 1st experiment we investigated the effect of different
concentrations of ALA on cucumber seedling growth, and identified the best ALA level. In the 2nd
experiment we explored the role ALA by using the selected treatment for further analysis; regulation
of antioxidant enzymes activities, endogenous hormones, and nutrients accumulation.

4.2. Treatments and Sampling

Once fully expended, 1st-leaf-stage cucumber seedlings were divided into five groups as follows.
RT (Regular temperature; 28/18 ◦C day/night temperature)
CK (Control; 12/8 ◦C day/night temperature)
T1 (15 mg/L ALA + 12/8 ◦C day/night temperature)
T2 (30 mg/L ALA + 12/8 ◦C day/night temperature)
T3 (45 mg/L ALA + 12/8 ◦C day/night temperature)
ALA was sprayed on cucumber seedlings leaves until they were is wet, with three days’ interval.

The CK treatments were treated with same concentration of ethanol, while RT was untreated (treated
same amount of with water). ALA stock solution was prepared by dissolving ALA in ethanol and
storing it at 4 ◦C, with 0.02% v/v Tween-20 was used as a surfactant. The whole experiment was
repeated three times, with each treatment having three pots (containers). The treated seedlings were
exposed to a low temperature at 12/8 ◦C day/night. The photoperiod was kept at 14 h. Seedlings
were exposed to low-temperature stress for 7 days. The fully expended second and third leaves were
sampled after 7 days, immediately snap-frozen in liquid nitrogen, and stored at −80 ◦C until required
for analysis.

4.3. Measurement of Growth Parameters

Plant height, root length, and hypocotyl diameter were determined by using a ruler and digital
Vernier calipers. To determine fresh weight, roots and shoots were separated and weighed, and the
same plants were also used for leaf area determination. The same plants were placed in an oven at
105 ◦C for 30 min and then dried at 75 ◦C. These plants were weighed to record plant dry weight.
The strong seedling index (SSI) was determined as follows.

Strong Seedling Index =

(
Hypocotyl Diameter

Plant Height
+

Root Dry Weight
Shoot Dry Weight

)
× Total Dry Weight (1)

4.4. Measurement of Chlorophyll Contents

Total chlorophyll contents were extracted in 95% ethanol. Chlorophyll contents were measured
using a spectrophotometer [55].

4.5. Measurement of Gas Exchange Parameters

The net photosynthesis (Pn), stomatal conductance (Gs), transpiration rate (Tr), and intercellular
CO2 concentration (Ci) on the second fully expended leaves were measured by using a portable
photosynthesis system (LI-6400XT). Five plants with leaves of the same size were selected from each
treatment under the controlled growth chamber between 11 am and 12 pm to ensure maximum
photosynthesis [55].
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4.6. Leaf Antioxidants Enzymes Activity and MDA Contents

Half a gram of fresh leaf was ground with a chilled pestle and mortar in 4 mL ice-cold 0.05 mol/L
sodium phosphate buffer (pH 7.8). The homogenate was centrifuged at 10,500 rpm for 20 min at
4 ◦C. The supernatant was used to determined antioxidant activities. Superoxide dismutase activity
(SOD) was determined by measuring its ability to inhibit the photochemical reduction of nitro blue
tetrazolium (NBT) according to a previously described method [58,59]. The absorbance was read at
560 nm. Catalase (CAT) activity was measured as the decline in absorbance at 240 nm due to decrease
of extinction of H2O2. Peroxide (POD) activity was measured as the increase in absorbance at 470 nm.
Ascorbate peroxidase (APX) activity was measured by the increase in absorbance at 290 nm as ASA
was oxidized. Glutathione reductase (GR) activity was measured depending on the rate of decrease in
absorbance of NADPH at 340 nm [12,58]. The MDA content was determined by the method previously
described [11,59].

4.7. Determination of H2O2 and O2
•− Contents

The concentration of H2O2 and O2
•− were determined by using an assay kit (COMINBIO) with a

UV-1800 spectrophotometer, following the manufacturer’s instructions [60].

4.8. Total Nutrients Contents Determination

The total nutrient contents in plant root and leaf samples were determined by an element analyzer
(Vario MAX CN Elemental Analyzer, Elementar, Hanau, Germany). The samples were first digested
in HNO3 by using a microwave digestion system (Mars X press Microwave Digestion system, CEM,
Matthews, NC, USA). Samples were then analyzed for total nutrient concentrations with an inductively
coupled plasma optical emission spectrometer (ICP-OES, Optima 5300 DV, Perkin Elmer, Waltham,
WA, USA). The Jaldal Method was used to determine total N content.

4.9. Leaf Hormones Extraction and Quantification

Leaf hormone content (ABA, IAA, GA4, JA, ZR, iPA, and EBR) was determined by ELISA (Enzyme
Linked Immune Sorbent Assay) technology, as previously described [20]. The fresh samples (0.5 g leaf)
were homogenized in liquid nitrogen and extracted in ice-cold methanol (80% v/v) with butylated
hydroxytoluene (1 mmol/L) and kept at 4 ◦C overnight. The samples were centrifuged for 20 min
at 10,000× g (4 ◦C), after which the extracts were passed through a C18 Sep-Pak Cartridge (water,
Milford, MA, USA) and dried with liquid nitrogen. The residues were dissolved in PBS (0.01 mol/L,
pH 7.4) to determine the hormone levels. Microtitration plates (Nunc) were coated with synthetic
ABA, IAA, GA4, JA, ZR, iPA, and EBR ovalbumin conjugates in NaHCO3 buffer (50 mmol/L, pH 9.6)
and kept at 37 ◦C overnight. Ovalbumin solution (10 mg/mL) was added to each well in order
to block nonspecific binding. The samples were again incubated for 30 min at 37 ◦C, and then the
desired hormones and antibodies were added and again incubated for 45 min at 37 ◦C. The antibodies
against hormones were obtained as described by Zhao et al. [61]. Horseradish peroxidase-labeled goat
antirabbit immunoglobulin was then added to each well and samples were again incubated for 1 h
at 37 ◦C. The buffer enzyme substrate was added and the enzymatic reaction was carried out in the
dark at 37 ◦C for 15 min. Reactions were stopped using 3 mol/L H2SO4. Finally, the absorbance was
recorded at 490 nm. The hormone contents were calculated by adding a known amount of standard
hormones to split extract [55].

4.10. Statistical Analysis

There were four independent biological replications for each treatment and the whole experiment
was repeated three times. The data were analyzed using an analysis of variance (ANOVA),
and treatments were compared using an LSD test (p < 0.05), performed with Statistix 8.1 software
(Analytical Software, Tallahassee, FL, USA).
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45. Kočová, M.; Rothová, O.; Holá, D.; Kvasnica, M.; Kohout, L. The effects of brassinosteroids on photosynthetic
parameters in leaves of two field-grown maize inbred lines and their F1 hybrid. Biol. Plant. 2010, 54, 785–788.
[CrossRef]

46. Wenwen, W.U.; Yuyan, A.N.; Wang, L. Study on Time Effects of Exogenous 5-Aminolevulinic Acid Treatment
on Alleviating Salinity Injury in ‘Benihoppe’ Strawberry. Acta Hortic. Sin. 2017, 44, 1038–1048.

47. Phung, T.-H.; Jung, S. Differential antioxidant defense and detoxification mechanisms in photodynamically
stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and
oxyfluorfen. Biochem. Biophys. Res. Commun. 2015, 459, 346–351. [CrossRef] [PubMed]

48. Amtmann, A.; Leigh, R. Ion Homeostasis. In Abiotic Stress Adaptation in Plants: Physiological, Molecular and
Genomic Foundation; Pareek, A., Sopory, S.K., Bohnert, H.J., Eds.; Springer: Dordrecht, The Netherlands, 2010;
pp. 245–262.

49. Yin, D.; Zhang, J.; Jing, R.; Qu, Q.; Guan, H.; Zhang, L.; Dong, L. Effect of salinity on ion homeostasis in three
halophyte species, Limonium bicolor, Vitex trifolia Linn. var. simplicifolia Cham and Apocynaceae venetum.
Acta Physiol. Plant. 2018, 40, 40. [CrossRef]

50. Zhu, J.-K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [CrossRef]
51. Jiang, C.; Cui, Q.; Feng, K.; Xu, D.; Li, C.; Zheng, Q. Melatonin improves antioxidant capacity and ion

homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol. Plant. 2016, 38, 82. [CrossRef]
52. Chen, G.; Fan, P.S.; Feng, W.M.; Guan, A.Q.; Lu, Y.Y.; Wan, Y.L. Effects of 5-aminolevulinic acid on nitrogen

metabolism and ion distribution of watermelon seedlings under salt stress. Russ. J. Plant Physiol. 2017, 64,
116–123. [CrossRef]

53. Tang, X.-Q.; Wang, Y.; Lv, T.-T.; Xiao, Y.-H. Role of 5-aminolevulinic acid on growth, photosynthetic
parameters and antioxidant enzyme activity in NaCl-stressed Isatis indigotica Fort. Russ. J. Plant Physol. 2017,
64, 198–206. [CrossRef]

http://dx.doi.org/10.1626/pps.18.443
http://dx.doi.org/10.1007/s10661-013-3139-x
http://www.ncbi.nlm.nih.gov/pubmed/23443638
http://dx.doi.org/10.1016/j.envexpbot.2009.07.009
http://dx.doi.org/10.1071/CP17401
http://dx.doi.org/10.1016/j.indcrop.2013.11.033
http://dx.doi.org/10.1016/j.phytochem.2010.07.012
http://www.ncbi.nlm.nih.gov/pubmed/21051062
http://dx.doi.org/10.1080/00380768.2016.1198216
http://dx.doi.org/10.1007/s11099-016-0197-7
http://dx.doi.org/10.1016/j.envexpbot.2017.02.007
http://dx.doi.org/10.1007/s10535-010-0143-7
http://dx.doi.org/10.1016/j.bbrc.2015.02.125
http://www.ncbi.nlm.nih.gov/pubmed/25735982
http://dx.doi.org/10.1007/s11738-018-2616-9
http://dx.doi.org/10.1016/S1369-5266(03)00085-2
http://dx.doi.org/10.1007/s11738-016-2101-2
http://dx.doi.org/10.1134/S1021443717010046
http://dx.doi.org/10.1134/S1021443717020121


Int. J. Mol. Sci. 2018, 19, 3379 16 of 16

54. Marzec, M.; Alqudah, A.M. Key Hormonal components regulate agronomically important traits in Barley.
Int. J. Mol. Sci. 2018, 19, 3. [CrossRef] [PubMed]

55. Anwar, A.; Bai, L.; Miao, L.; Liu, Y.; Li, S.; Yu, X.; Li, Y. 24-Epibrassinolide Ameliorates Endogenous Hormone
Levels to Enhance Low-Temperature Stress Tolerance in Cucumber Seedlings. Int. J. Mol. Sci. 2018, 19, 2497.
[CrossRef] [PubMed]

56. Wei, L.J.; Deng, X.G.; Zhu, T.; Zheng, T.; Li, P.X.; Wu, J.Q.; Zhang, D.W.; Lin, H.H. Ethylene is Involved
in Brassinosteroids Induced Alternative Respiratory Pathway in Cucumber (Cucumis sativus L.) Seedlings
Response to Abiotic Stress. Front. Plant Sci. 2015, 6, 982. [CrossRef] [PubMed]

57. Druege, U.; Franken, P.; Hajirezaei, M.R. Plant Hormone Homeostasis, Signaling, and Function during
Adventitious Root Formation in Cuttings. Front. Plant Sci. 2016, 7, 381. [CrossRef] [PubMed]

58. Farid, M.; Ali, S.; Rizwan, M.; Ali, Q.; Saeed, R.; Nasir, T.; Abbasi, G.H.; Mia, R.; Ata-Ul-Karim, S.T.;
Sah, B. Phyto-management of chromium contaminated soils through sunflower under exogenously applied
5-aminolevulinic acid. Ecotoxicol. Environ. Saf. 2018, 151, 255. [CrossRef] [PubMed]

59. Liu, D.; Pei, Z.F.; Naeem, M.S.; Ming, D.F.; Liu, H.B.; Khan, F.; Zhou, W.J. 5-Aminolevulinic Acid Activates
Antioxidative Defence System and Seedling Growth in Brassica napus L. under Water-Deficit Stress. J. Agron.
Crop Sci. 2011, 197, 284–295. [CrossRef]

60. Bai, L.; Liu, Y.; Mu, Y.; Anwar, A.; He, C.; Yan, Y.; Li, Y.; Yu, X. Heterotrimeric G-Protein γ Subunit CsGG3.2
Positively Regulates the Expression of CBF Genes and Chilling Tolerance in Cucumber. Front. Plant Sci. 2018,
9, 488. [CrossRef] [PubMed]

61. Zhao, J.; Li, G.; Yi, G.X.; Wang, B.M.; Deng, A.X.; Nan, T.G.; Li, Z.H.; Li, Q.X. Comparison between
conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA
for small molecules. Anal. Chim. Acta 2006, 571, 79. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/ijms19030795
http://www.ncbi.nlm.nih.gov/pubmed/29534434
http://dx.doi.org/10.3390/ijms19092497
http://www.ncbi.nlm.nih.gov/pubmed/30149495
http://dx.doi.org/10.3389/fpls.2015.00982
http://www.ncbi.nlm.nih.gov/pubmed/26617622
http://dx.doi.org/10.3389/fpls.2016.00381
http://www.ncbi.nlm.nih.gov/pubmed/27064322
http://dx.doi.org/10.1016/j.ecoenv.2018.01.017
http://www.ncbi.nlm.nih.gov/pubmed/29353175
http://dx.doi.org/10.1111/j.1439-037X.2011.00465.x
http://dx.doi.org/10.3389/fpls.2018.00488
http://www.ncbi.nlm.nih.gov/pubmed/29719547
http://dx.doi.org/10.1016/j.aca.2006.04.060
http://www.ncbi.nlm.nih.gov/pubmed/17723423
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	The Effect of ALA on Cucumber Seedling Growth and Strong Seedling Index 
	The Effect of ALA on Chlorophyll and Photosynthesis 
	Effect of ALA on Antioxidant Enzyme Activities, MDA, and ROS Contents 
	Effect of ALA on Total Nutrient Contents 
	Effect of ALA on Endogenous Hormones Accumulation 

	Discussion 
	Materials and Methods 
	Plant Material and Growth Condition 
	Treatments and Sampling 
	Measurement of Growth Parameters 
	Measurement of Chlorophyll Contents 
	Measurement of Gas Exchange Parameters 
	Leaf Antioxidants Enzymes Activity and MDA Contents 
	Determination of H2O2 and O2- Contents 
	Total Nutrients Contents Determination 
	Leaf Hormones Extraction and Quantification 
	Statistical Analysis 

	References

