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ABSTRACT

Motivation: Mutations play fundamental roles in evolution by introdu-

cing diversity into genomes. Missense mutations in structural genes

may become either selectively advantageous or disadvantageous to

the organism by affecting protein stability and/or interfering with inter-

actions between partners. Thus, the ability to predict the impact of

mutations on protein stability and interactions is of significant value,

particularly in understanding the effects of Mendelian and somatic

mutations on the progression of disease. Here, we propose a novel

approach to the study of missense mutations, called mCSM, which

relies on graph-based signatures. These encode distance patterns

between atoms and are used to represent the protein residue envir-

onment and to train predictive models. To understand the roles of

mutations in disease, we have evaluated their impacts not only on

protein stability but also on protein–protein and protein–nucleic acid

interactions.

Results: We show that mCSM performs as well as or better than other

methods that are used widely. The mCSM signatures were success-

fully used in different tasks demonstrating that the impact of a muta-

tion can be correlated with the atomic-distance patterns surrounding

an amino acid residue. We showed that mCSM can predict stability

changes of a wide range of mutations occurring in the tumour sup-

pressor protein p53, demonstrating the applicability of the proposed

method in a challenging disease scenario.

Availability and implementation: A web server is available at http://

structure.bioc.cam.ac.uk/mcsm.
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1 INTRODUCTION

1.1 Background

Mutations play fundamental roles in evolution by introducing

diversity into genomes, most often through single nucleotide

polymorphisms (SNPs). Non-synonymous single nucleotide sub-

stitutions (nsSNPs) are of particular interest, as they can disrupt

function by interfering with protein stability and/or interactions

with partners. Such mutations can be selectively advantageous in

evolution or they may cause a change in stability often leading to

malfunction and resulting in disease. Thus, predicting the im-

pacts of mutations in proteins is of major importance to under-

standing function, not only of molecules and cells but also of the

whole organism.
Mutagenesis studies that experimentally determine free en-

ergy differences between wild-type and mutant proteins

(Fersht, 1987) produce accurate results but are usually costly

and time-consuming. However, the advent of databases with ex-

perimental thermodynamic parameters for both wild-type and

mutant proteins such as ProTherm and ProNIT (protein-nucleic

acid) (Kumar et al., 2006) and more recently the SKEMPI (Moal

and Fernandez-Recio, 2012), which describes protein–protein

complexes, has been helpful to the study of mutations on a

larger scale. These provide an experimental basis for novel in

silico paradigms, models and algorithms to study more exten-

sively missense mutations and their impacts on protein stability

and function.

The several different approaches used to study the impacts of

mutations on protein structure and function can be broadly clas-

sified into those that seek to understand the effects of mutations

from the amino acid sequence of a protein alone, and those that

exploit the extensive structural information now available for

many proteins. The first group includes well-established and

widely used sequence-based methods such as SIFT (Ng and

Henikoff, 2003) and PolyPhen (Adzhubei et al., 2010). Here,

we focus on the second approach that takes advantage of the

protein structural information that has been accumulated on the

impact of mutations within the 3D space of a natively folded

protein.

Structure-based approaches, which may be categorized as ma-

chine learning methods and potential energy functions, typically

attempt to predict either the direction of change in protein sta-

bility on mutation (as a classification task) or the actual free

energy value (��G) as a regression task. Machine learning-

based methods have been combined with structure-based

computational mutagenesis as a four-body statistical contact po-

tential in Masso and Vaisman (2008). Support vector machines

have been used to predict changes in stability from either protein

sequence or structure descriptors (Capriotti et al., 2005a, b;

Cheng et al., 2005) and more recently to predict disease-related

mutations (Capriotti and Altman,2011). There have also been

recent attempts to predict the stability changes on multisite

mutations (Tian et al., 2010). Machine learning methods have

proven to be powerful predictive tools, even when data on which

to train the methods have not been extensively available.*To whom correspondence should be addressed.
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The second set of methods is based on potential energy func-

tions. Environment-specific substitution tables, which describe the

propensities of residues tomutate in a certain protein-structural en-

vironment during evolutionary time, have been used to derive a

statistical potential energy function used by the method SDM

(Topham et al., 1997; Worth et al., 2011). In the PoPMuSiC

method (Dehouck et al., 2009), the estimated stability change on

mutation is expressed as a linear combination of 26 different

energy functions, whose parameters were trained using an artificial

neural network. Empirical energy functions have also been used in

a method that performedMonte Carlo optimization (Bordner and

Abagyan, 2004), which has also been used to study the role of

conformational sampling as a way to assess the impact of single-

point mutations in protein structures (Kellogg et al., 2011).
Although there have been attempts to predict the affinities of

particular protein–protein complexes (Moal et al., 2011; Yan

et al., 2013), there has been much less attention to the challenge

of predicting the impact of mutations on affinity in large sets of

protein–protein and protein–DNA complexes. A significant ex-

ception has been the report of Guerois et al. (2002) on predicting

the effects of mutations in a set of 82 protein–protein complexes.

Another important study refers to the identification of binding

energy hot spots in protein complexes by predicting the impact of

mutations to alanine in4200 mutations (Kortemme and Baker,

2002). More recently, a method derived from PoPMuSiC, called

BeAtMuSiC (Dehouck et al., 2013), has been developed to pre-

dict the impacts of mutations on protein–protein affinities for a

set of 81 proteins.
An alternative approach to study mutations is to represent

residue environments as graphs where nodes are the atoms and

the edges are the physicochemical interactions established among

them. For instance, the method Bongo (Cheng et al., 2008)

attempts to predict structural effects of nsSNPs by evaluating

graph theoretic metrics and identifying key residues using a

vertex cover algorithm. From these graphs, distance patterns

can also be extracted and summarized in a structural signature,

which may then be used as evidence to train predictive models.

Da Silveira et al. (2009) first reported the use of inter-residue

distance patterns or signatures to define protein contacts,

demonstrating that they are conserved across protein folds.

The Cutoff Scanning Matrix (CSM) is a protein structural sig-

nature (Pires et al., 2011) successfully used in large-scale protein

function prediction and structural classification tasks. Pires et al.

(2013) extended the inter-residue signature to an atomic level

(aCSM) and successfully applied it in large-scale receptor-based

protein ligand prediction.
Here, we use the concept of graph-based structural signatures

to study and predict the impact of single-point mutations on

protein stability and protein–protein and protein–nucleic acid

affinity. The approach, called mutation Cutoff Scanning

Matrix (henceforth called mCSM), encodes distance patterns

between atoms to represent protein residue environments.

1.2 Method outline

The mCSM signatures are calculated in two steps:

� For a given mutation site, we define the wild-type residue

environment by the atoms within a distance r from its

geometric centre. A pairwise distance calculation between

the atoms of the environment generates an atom distance

matrix, which accounts for a wide spectrum of distances,

from short to long range. From this matrix, distance pat-

terns are then extracted and summarized as a feature vector;

� To account for the atom changes induced by the mutation,

we introduce a ‘pharmacophore count’ vector. Each one of

the 20 amino acid residues is represented by a different

vector, where each position denotes the frequency of a cer-

tain pharmacophore in that residue. The difference vector

between the wild-type and mutant pharmacophore vectors is

then appended to the signature.

Thus, each mutation is represented as a signature vector that is

used to train and test predictive machine learning methods in

regression and classification tasks. In Section 2, we describe in

detail how the signatures are calculated and the data sets used

in this study.

1.3 Summary of results

We show that the mCSM signatures can be used successfully to

tackle different tasks related to the prediction of the impacts of

mutations in proteins. We have conducted a series of compara-

tive experiments that indicate that mCSM performs as well as or

better than several other widely used methods. mCSM is able

to predict not only the direction of the change in stability of

proteins and affinity of protein–protein and protein–DNA com-

plexes but also the actual numerical experimental value, with

correlation coefficients up to 0.824 for a large data set of muta-

tions. We have also applied our methodology to predict changes

of stability resulting from mutations occurring in the tumour

suppressor protein p53. mCSM outperforms other methods,

demonstrating its applicability to understanding mutations that
lead to disease.

2 MATERIALS AND METHODS

2.1 mCSM: graph-based signatures

Here, we extend the concept of the inter-atomic distance patterns to a

residue environment called mCSM. mCSM signatures can be divided into

three major components:

� Graph-based atom distance patterns: The major components of

the signatures are distance patterns in the vicinity of the wild-type

residue encoded as a cumulative distribution. The wild-type residue

environment, which here is defined as the set of atoms within a dis-

tance r from its geometric centre, can be modelled as a contact graph,

where the atoms are the nodes and the edges are defined by a cutoff

distance. In this way, the signatures encode distance patterns by

varying the edge-defining cutoff distance, used in computing the

number of edges of the resulting atomic contact graph. A cumulative

distribution is obtained from an atom distance matrix, which is a

pairwise distance calculation between atoms of the environment.

Here, as in a previous study (Pires et al., 2013), we use three types

of atom classification to segment the cumulative distribution: one

class (no distinction between atoms), a binary classification (atoms

labelled as polar or hydrophobic) and using the Pmapper pharma-

cophoric classification, which classifies atoms into eight possible

categories: hydrophobic, positive, negative, hydrogen acceptor,

hydrogen donor, aromatic, sulphur and neutral. mCSM considers

336

D.E.V. Pires et al.

up
-
-
-
-
over 
in order 
-
-
-
-
-
In order t
``
''
twenty
-
-
,
-
;


only the residue environment in the wild-type protein. In this way,

our method is applicable even when no mutant structures are avail-

able. Furthermore, it does not require the generation of homology

models.

� Pharmacophore changes: To take into account the changes in atom

types due to the mutation, a ‘pharmacophore count’ vector is intro-

duced. Wild-type and mutant residues are represented as pharmaco-

phore frequency vectors as shown in the lower part of Figure 1a and

calculated as follows. Let L be a set of pharmacophore types and f a

labelling function that assigns a pharmacophore l 2 L to a given

atom x: fðxÞ ¼ l. The frequency of each type of pharmacophore in

a residue is then summarized in a vector p. The difference pchange
between pharmacophore count for mutant (pmt) and wild-type (pwt)

residue is calculated (pchange ¼ pmt � pwt) and appended to the signa-

ture. The atom pharmacophores are characteristics described by

PMapper and belong to eight possible classes: hydrophobic, positive,

negative, hydrogen acceptor, hydrogen donor, aromatic, sulphur and

neutral.

� Experimental conditions: The experimental conditions, in which the

thermodynamic data, such as pH and temperature are collected, are

also appended to the signatures when available. Relative solvent

accessibility of the residue is also included.

Figure 1b summarizes the mCSM prediction workflow as follows:

preprocessing the thermodynamic and structural data, extracting the resi-

due environments, signature calculation and noise reduction, supervised

learning and mutation impact prediction and validation.

Algorithm 1 shows the function that calculates the proposed mCSM

signature, which requires the following input parameters: a set of

Fig. 1. Predicting the impact of mutations with mCSM. (a) Highlights important steps in the methodology and how the main components of the

signatures are computed. Here, we use as an example the published crystal structure of p53 (PDB ID: 2OCJ), considering the mutation site R282W,

further discussed in Section 3.3. Given a mutation site in a wild-type protein, its structural environment is extracted and the distance patterns among the

atoms summarized in the mCSM signature. To take into account the change in atom types due to the mutation, a pharmacophore count is performed for

the wild-type and mutant residue. The changes in pharmacophore count are then appended into the signature, which is used to train/test predictive

models. The considered pharmacophore types are eight: hydrophobic (green), positive (blue), negative (red), hydrogen acceptor (red), hydrogen donor

(blue), aromatic (green), sulphur (yellow) and neutral (white). (b) Summarizes the mCSM predictive workflow that can be divided into the following

steps: gathering and preprocessing the thermodynamic and structural data, extracting the residue environments, signature calculation and noise reduc-

tion, supervised learning and mutation impact prediction and validation
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mutations, wild-type structure and the atomic categories (or pharmaco-

phore) to be considered, a cutoff range (DMIN and DMAX) and a cutoff

step (DSTEP) in which each cutoff is discretized. For each mutation the

residue environment is calculated based on a cutoff distance, selecting all

interacting atoms in the residue vicinity. The pairwise distances between

all pairs of atoms of the residue environment are then calculated and

stored in a distance matrix. The distance matrix is scanned considering

the cutoff range and cutoff step generating a cumulative distribution of

the distances by atomic category. Finally, the pharmacophoric changes

between wild-type and mutant residue are appended to the signature as

well as the experimental conditions (pH and temperature) and residue

relative solvent accessibility. The generated signatures are then used as

evidence to train predictive classification and regression models.

Algorithm 1: Mutation Cutoff Scanning Matrix Calculation.

1: function mCSM(MutationSet,AtomClass,DMIN,DMAX,DSTEP)

2: for all mutation i 2 ðMutationSetÞ do

3: residue_environment¼ extractResidueEnvironment(mutation)

4: j ¼ 0

5: distMatrix calculateAtomicPairwiseDist(residue_environment)

6: for dist DMIN; to DMAX; step DSTEP do

7: for all class 2 ðAtomClassÞ do

8: mCSM½i�½j�  getFrequency(distMatrix, dist, class)

9: jþþ

10: add_pH_RSA_Temperature(mCSM½i�)

11: add_pharmacophores_changes(mCSM½i�)

12: return mCSM

The main goal of the mCSM signatures is to encode and concisely

summarize atomic-distance patterns in the vicinity of a residue that can

be correlated to the impact of a mutation. Even though interference with

short-distance interactions (e.g. the creation or disruption of hydrogen

bonds) is the most direct effect of mutations, mCSM signatures also take

into account long-range distance patterns, in contrast with the majority of

other approaches described in the literature.

It is important to note that mCSM does not define any explicit penal-

ties, for instance when burying hydrophobic or exposing polar residues.

The pharmacophore vector is used to reflect the changes in residue char-

acter and size due to the mutation, and its impact is learned without the

definition of an explicit threshold. On the other hand, the perception of

residue accessibility or residue depth is implicitly obtained by mCSM

atomic distance patterns.

A detailed description of the evaluation methodology, supervised

learning algorithms used in classification and regression tasks as well as

the quality metrics used to evaluate the performance of mCSM are avail-

able as Supplementary Material.

2.2 Data sets

The data sets used in this work can be divided into four groups by pre-

dictive task: prediction of protein stability change on mutation, prediction

of protein–protein and protein–DNA affinity change on mutation. We

also describe in the Supplementary Material a dataset used to assess

the ability of mCSM in predicting disease-related mutations. Table 1

summarizes the conducted experiments, the data sets and validation

procedures used.

2.2.1 Protein stability change To assess the applicability of mCSM

signatures in predicting the impact of mutations in protein stability, sev-

eral data sets derived from the ProTherm (Kumar et al., 2006) database

were considered. ProTherm is a collection of experimental thermo-

dynamic parameters for wild-type and mutant proteins, including the

change in Gibbs free energy (��G). Only single-point mutations were

considered. The data sets were used in comparative experiments with

other methods, in regression and classification tasks, which consist of

predicting the numerical value and the direction of change in ��G,

respectively.

S2648: The first data set, S2648, was used in comparative regression

tasks where the aim is to predict the change in Gibbs free energy (��G)

between wild-type and mutant protein. The data set comprises 2648

single-point mutations in 131 different globular proteins. For experiments

with these data, we used 5-fold cross-validation, the same validation

procedure use by the authors of the PoPMuSiC (Dehouck et al., 2009)

algorithm.

S350: The second data set, S350, comprised 350 mutations in 67 dif-

ferent proteins. It is a randomly selected subset of the S2648 data set, also

used in comparative regression experiments. In this case, the remaining

2298 mutations from the S2648 data set were used to train the predictive

model, whereas the S350 data set was used as a test set. This data set is

widely used in the literature to compare the performance of different

methods.

S1925: The data set S1925 was used in both regression and classifica-

tion experiments. It comprises 1925 mutations in 55 proteins, which are

uniformly distributed across the four major SCOP classes (Murzin et al.,

1995). Twenty-fold cross-validation protocol was used, the same protocol

used in by the AUTOMUTE method Masso and Vaisman, 2008).

p53: Finally, as a study case, we assembled a data set of 42 mutations

within the DNA binding domain of the tumour suppressor protein p53,

whose thermodynamic effects have previously been experimentally

characterized (Ang et al., 2006; Bullock et al. 2000; Joerger et al., 2006;

Nikolova et al. 1998, 2000). The full data set description is available as

Supplementary Material.

2.2.2 Protein–protein affinity change The second set of experiments

aims to assess the performance of mCSM signatures in predicting the

impact of mutations on affinity of protein–protein complexes, in both

regression and classification tasks (i.e. prediction of the numerical change

or its direction). Affinities of protein–protein complexes were converted

from molar (M) to Kcal/mol using the formulation of the Gibbs free

energy (�G):

�G ¼ RTlnðKDÞ

Table 1. Summary of data sets used, the experiments performed and validation process used

Experiment Data set Task Validation References

Protein stability change S2648 Regression 5-fold cross-validation (Dehouck et al., 2009)

Protein stability change S1925 Regression and classification 20-fold cross-validation (Masso and Vaisman, 2008)

Protein stability change S350/S309/S87 Regression Train (S2298) (Worth et al., 2011)

Protein–nucleic acid affinity ProNIT Regression and classification 10-fold cross-validation (Ahmad et al., 2008)

Protein–protein affinity SKEMPI Regression and classification 10-fold cross-validation (Moal and Fernandez-Recio, 2012)

Protein–protein affinity BeAtMuSiC Regression 10-fold cross-validation (Dehouck et al., 2013)

Disease-related mutations KIN Classification 20-fold cross-validation (Capriotti and Altman, 2011)
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where R ¼ 8:314JK�1mol�1 is the ideal gas constant, T is the temperature

(in Kelvin) and KD is the affinity of the protein–protein complex. The

affinity change between wild-type and mutant forms (��G) is calculated

as follows:

��G ¼ �Gwild ��Gmutant

SKEMPI: The data set used is derived from the SKEMPI database

(Moal and Fernandez-Recio, 2012). SKEMPI is a curated database

that compiles changes in thermodynamic and kinetic parameters on mu-

tation for protein–protein complexes for which a structure is available in

the Protein Data Bank. From this database, which includes data for

43000 mutations, we filter only single-point mutations with available

experimental affinities for both wild-type and mutant forms. This resulted

in the data set that comprises 2317 mutations in 150 different proteins

with available PDB structures. The SKEMPI data set used is available via

Supplementary Material. Ten-fold cross-validation was used for experi-

ments on this data set.

BeAtMuSiC: The data set comprises 2007 mutations used in a recent

study (Dehouck et al., 2013). It corresponds to a subset of the SKEMPI

database, comprising mutations in 81 PDB structures. This data set was

used in comparative experiments in 10-fold cross-validation as well as in a

blind test, as described in Section 4 in Supplementary Material.

2.2.3 Protein–nucleic acid affinity change The third set of experi-

ments was designed to demonstrate the capability of mCSM to predict

changes in affinity in protein–DNA complexes, for both regression and

classification tasks. For this purpose, we used a data set that was derived

from the ProNIT database (Kumar et al., 2006). ProNIT comprises ex-

perimentally determined thermodynamic interaction data between pro-

teins and nucleic acids. In this case, we considered the change in Gibbs

free energy (��G). Only single-point mutations were taken into account.

ProNIT: The data set comprises 511 single mutations in 21 different

proteins for which structures are available, and which were used in a

protein–DNA interaction study that aimed to explore the relationship

between free energy, sequence conservation and structural cooperativity

(Ahmad et al., 2008). We used 10-fold cross-validation for all experiments

carried out on this data set.

3 RESULTS

To assess the ability of the signatures to encode the impact of

mutations on protein structures, we designed an extensive series

of comparative experiments with other state-of-the-art methods.

In the first set of experiments, we predict the impact of single-

point mutations on protein stability via regression and classifi-

cation tasks. We then assess the adequacy of the signatures in

predicting affinity changes on mutation at protein–protein and

protein–DNA interfaces. We also perform experiments that aim

to predict disease-related mutations. Finally, as a case study, we

apply our methodology to predict stability changes of 42 muta-

tions occurring in the tumour suppressor protein p53.

3.1 Predicting protein stability change on mutation

As summarized in Table 1, three different stability data sets were

used. The left graph of Figure 2 presents the regression results for

the S1925 data set. The mCSM signatures were used to train a

Gaussian process regression model that achieved a correlation of

� ¼ 0:824 with a standard error of � ¼ 1:026ðkcal=molÞ. For this

data set, comparing with the AUTOMUTE method (Masso and

Vaisman, 2008), mCSM presented a performance equivalent or

even better for both regression and classification tasks as showed

in Supplementary Tables S3 and S7.

When compared with the largest available data set of

mutants, S2648, used by the method PoPMuSiC (Dehouck

et al., 2009), mCSM presented a better performance achieving

a correlation coefficient of � ¼ 0:69 with standard error of

� ¼ 1:06ðkcal=molÞ, compared with a correlation of � ¼ 0:63
with � ¼ 1:15ðkcal=molÞ reported by the original authors. Even

after 10% outlier removal, mCSM maintains its efficacy

(� ¼ 0:79 with � ¼ 0:78ðkcal=molÞ for mCSM and

� ¼ 0:79; � ¼ 0:86ðkcal=molÞ for PoPMuSiC).
The data set S350 is a subset of S2648 and was used as test set

for predictive models trained with the remaining 2298 mutations.

Table 2 summarizes the results obtained and shows that mCSM

outperforms other approaches, some by a large margin. Because

some other methods were not able to predict the stability changes

for all 350 mutations, the table also shows the results for the 309

mutations for which all methods were capable of estimating a

��G value. The performance is also shown when only muta-

tions with ��G 42kcal/mol are considered. For all cases,

mCSM was the best performing method.

Fig. 2. Regression results for mCSM signature predictive model trained using Gaussian processes regression for different tasks. From left to right:

stability change prediction (S1925 dataset), protein–protein affinity change (SKEMPI dataset) and protein–DNA affinity change (ProNIT data set). For

each data set the Pearson’s correlation coefficient (�) and standard error (�) are also shown in the top-left part of each graph
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3.2 Predicting affinity change in protein–protein and

protein–DNA complexes on mutation

The central and right graphs of Figure 2 present the regression

results for the SKEMPI protein–protein data set and for the

ProNIT protein–DNA data set. For the SKEMPI data set,

mCSM was able to achieve a correlation of � ¼ 0:801 with

� ¼ 1:251ðkcal=molÞ, whereas for the ProNIT data set the results

were � ¼ 0:673 with � ¼ 1:042ðkcal=molÞ. In classification tasks,

for both data sets the predictive models trained with the mCSM

signatures were able to achieve accuracies of 482% and Area

Under ROC Curves (AUCs) of 0.826 and 0.853, respectively, as

described in Supplementary Table S1.
Supplementary Table S4 shows the mCSM performance in

comparison with the program BeAtMuSiC. mCSM achieves a

correlation of � ¼ 0:58 with � ¼ 1:55ðkcal=molÞ, in comparison

with � ¼ 0:40 with � ¼ 1:80ðkcal=molÞ achieved by the

BeAtMuSiC method. mCSM also achieves a correlation of

� ¼ 0:56 with � ¼ 1:38ðkcal=molÞ in a blind test as described in

Supplementary Section S4.
We also evaluate our approach by using it to identify disease-

related mutations, comparing it with well-established sequence-

based methods. Supplementary Table S2 summarizes the

obtained results. mCSM achieves a comparable level of accuracy,

whereas presenting much better Matthews Correlation

Coefficient (MCC) and AUC values.
In addition, we performed experiments on low-redundancy

data sets where all mutations in a protein (or position) are

either in the test or training set exclusively, as described in

Supplementary Section S4. As shown in Supplementary Tables

S8 and S9, at the protein level the performance tended to be

slightly inferior. The distribution of mutations per protein in

the data sets is unequal, meaning that information about hun-

dreds of mutations may be available for a single protein, which

may be a significant source of bias when defining the folds in

cross-validation.

3.3 Case study: predicting stability changes for

p53 mutants

Cancer is a complex disease that arises from a combination of

genetic and epigenetic changes accumulated over many years.

Although there is large variability in the genes implicated in

tumorigenesis,450% of human cancers carry loss of function

mutations in the transcription factor p53 (Beroud and Soussi,

2003; Olivier et al. 2002). In response to DNA damage, p53

transactivates a range of genes to induce cell cycle arrest, DNA

repair, senescence and apoptosis, depending on the extent and

types of DNA damage (Sionov et al., 1999; Vousden et al., 2002).

p53 is composed of three main domains: an N-terminal trans-

activation domain (amino acid residues 1–45), a DNA binding

domain (residues 102–292) and a C-terminal oligomerization

domain (residues 319–359) (Sionov et al., 1999; Vousden et al.,

2002). Unlike most tumour suppressors that are inactivated by

deletion or truncation mutations, mutations in p53 most often

result in a protein with a single nucleotide substitution. The ma-

jority of these mutations (95%) are located in the DNA binding

domain; they either directly interfere with residues involved in

DNA binding or disrupt the wild-type conformation and stabil-

ity of p53 (Olivier et al., 2002). Both of these classes of mutations

prevent the transcriptional activation of p53 target genes in a

dominant-negative fashion (Vousden et al., 2002).
A new approach in cancer therapy is to find drugs that can

rescue the activity of mutant p53. This has primarily focused on

trying to enhance the stability p53, potentially reducing the ef-

fect of destabilizing mutations and restoring wild-type activity.

Several approaches have identified stabilizing molecules that also

show a stimulatory effect on p53 DNA binding. These have

included antibodies (Hupp et al., 1995), peptides (Selivanova

et al., 1999) and small molecules identified via structure-guided

design (Boeckler et al., 2008) and screening approaches (Bykov

et al., 2002). The most advanced of these is the small molecule

PRIMA-1MET (APR-246) that has successfully completed

Phase I/II clinical trials, where it was observed that it could

induce p53-dependent biological effects in tumour cells in vivo

(Lehmann et al., 2012).
We have used mCSM to predict the effect of mutations on the

stability of p53. We used the published crystal structure of p53

(PDB ID: 2OCJ), and predicted the change in stability of442

single mutations within the DNA binding domain of p53 whose

thermodynamic effects have previously been experimentally char-

acterized. None of these mutations was present in the training set.

In addition to mCSM, we also used SDM and PoPMuSiC to

predict the stability changes of these mutations. These predictions

were compared directly with the experimentally determined

thermodynamic effects (Supplementary Table S6).
mCSM predicted stability changes correlated strongly with the

experimentally observed thermodynamic effects (� ¼ 0:68), as

shown in Supplementary Table S5. In addition, mCSM was a

much better predictor of stability changes in p53 than either

SDM (� ¼ 0:29) or PoPMuSiC (� ¼ 0:56), consistent with our

larger analysis. In Supplementary Figure S1, we can see that

compared with the experimental observations, mCSM predic-

tions did not have a large variation. Significantly, the interquar-

tile range and 95% confidence interval from mCSM predictions

were tighter than either SDM or PoPMuSiC.

Table 2. Comparative regression experiments using the S350 data set

Method Number of

predictions

Pearson’s

coefficienta
Standard

error(kcal/mol)a

Automute 315 0.46/0.45/0.45 1.43/1.46/1.99

Cupsat 346 0.37/0.35/0.50 1.91/1.96/2.14

Dmutant 350 0.48/0.47/0.57 1.81/1.87/2.31

Eris 334 0.35/0.34/0.49 4.12/4.28/3.91

I-Mutant-2.0 346 0.29/0.27/0.27 1.65/1.69/2.39

PoPMuSiC-1.0 350 0.62/0.63/0.70 1.24/1.25/1.66

PoPMuSiC-2.0 350 0.67/0.67/0.71 1.16/1.19/1.67

SDM 350 0.52/0.53/0.63 1.80/1.81/2.11

mCSM 350 0.73/0.74/0.82 1.08/1.10/1.48

Note: Results directly obtained from Worth et al. (2011). Bold values highlight are

the best performing metrics.
aThe three values given per column correspond, respectively, to the whole validation

set of 350 mutants, the 309 mutants for which a prediction was available for all

predictors. Finally, in the third column are the results for 87 mutants, a subset of the

309 mutants, which the experimental ��G is42kcal/mol.
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In general there was good agreement between the algorithms
in predicting the direction of change when compared with the
experimental data. One interesting deviation, however, was the

mutation of arginine 282 to tryptophan, clinically a commonly
observed p53 mutation. Arginine 282, shown in Figure 1a and
Supplementary Figure S2, is involved in a network of inter-

actions underpinning the loop-sheet-helix major groove DNA
binding motif. Mutation to tryptophan results in large structural
perturbations, resulting in p53 being largely unfolded, and hence

inactive, under physiological conditions (Bullock et al., 2000).
mCSM was able to predict accurately the effect of this mutation
on the overall stability of p53. Interestingly, both SDM and

PoPMuSiC predicted that the R282W mutation would be stabi-
lizing, with SDM predicting that it would actually be stabilizing

(Supplementary Table S1). In the case of SDM, the version used
in the comparison considers only side chain H-bonds to main
chain residues (Worth et al., 2011), which tend to be less critical;

however in this case the arginine side chain makes three hdydro-
gen bonds to other buried or partially buried side chains. This
highlights the power of mCSM using the local environment to

predict the effects of mutations.
In summary, we have shown that mCSM can predict the

effects of mutations on the stability of p53, and can identify

disease-associated destabilizing mutations. mCSM provides a
reliable way to quickly assess the impact of mutations within
the p53 gene, and hence the likelihood of success of stabilizing

molecules, which is important within a clinical setting.

4 DISCUSSION AND CONCLUSIONS

We present a new approach, mCSM, for studying the impact of
missense mutations in proteins. mCSM, which relies on graph-

based signatures, was successfully applied and evaluated in dif-
ferent predictive tasks and was shown to outperform earlier
methods. We have successfully applied this methodology to pre-

dict stability changes of mutations occurring in p53, demonstrat-
ing the applicability of mCSM in a challenging disease scenario.
The results achieved by mCSM support the idea that the

impact of a mutation can be correlated with the atomic distance
patterns surrounding an amino acid residue. The distant patterns
describe the nature of the environment of the residue in the wild-

type protein. They contrast with amino acid substitution patterns
as used in SDM, which define the environment as a function of
the residues immediately surrounding the residue. Thus, a solvent

inaccessible residue in SDM will have the same defined environ-
ment whether it is on the core of the protein or close to the

surface. On the other hand, the distance matrix of mCSM will
differ according to the depth of the residue and the curvature of
the protein surface that lies within a large radius, in this work, up

to 10 Å. This is reminiscent of the focus on ‘depth’ championed
by Chakravarty and Varadarajan (1999). The mCSM distance
matrix will also be sensitive to the nature of the electrostatic

environment, which appears to be less well described in
PoPMuSiC. These advantages are evidenced in the feature selec-
tion analysis (Supplementary Fig. S3), which shows that long-

range distances are the most discriminative attributes of the
signatures, usually polar–polar and hydrophobic–hydrophobic
atom frequencies for distances beyond 6 Å for the SKEMPI

data set. A latent semantic analysis (Supplementary Fig. S4)

shows that the majority of the variability of the signatures can

be explained with atom frequencies for long-range distances.

In this way, mCSM perceives residue environment density and

depth implicitly, without relying on direct calculations or thresh-

olds. A similar analysis was done for the other data sets

(Supplementary Figs. S5 and S6).
The mCSM approach shows that a good description of the

effect of mutations on the wild-type structure can be achieved

using the pharmacophore count. This contrasts with use of the

immediate environment of the residue to define a pharmaco-

phore, which is de-emphasized in mCSM. Although in mCSM

the pharmacophore is not described in terms of a defined struc-

ture of the mutant protein, there may still be further gains in the

quality of the prediction if this could be incorporated into

mCSM. A further difference from many previous methods is

the omission of an assessment of the effect of the mutation on

the unfolded state. This is explicitly described in perturbation

methods and in programs like SDM. It appears this is either

less important to the estimation of the change of stability that

arises from the majority of mutations or the unfolded state is

insufficiently well described in methods such as SDM.
mCSM does not depend on the observation of mutations that

have occurred in evolution of proteins. These have generally been

selected over long evolutionary times for minor positive or nega-

tive changes on stability that were selectively advantageous to the

organism. Mutations that occur in cancer, such as those in p53

described here, are often deleterious to the function of the pro-

tein and may not be sampled in a statistically significant manner

in evolution when information on residue structural environment

is required in the calculation. Therefore, they may not be prop-

erly accounted for in SDM environment-specific substitution

tables. This is almost certainly the case for the mutation of

arginine 282 to tryptophan in p53, which has significant effects

on the stability of the protein. This underlines the importance of

understanding theoretically the effects of various parameters that

influence stability a major focus of both mCSM and PoPMuSiC.

In future works we intend to apply our methodology for

predicting affinity changes to protein-ligand complexes, to

understand the affects of mutations that occur in drug resistance

in cancer and other diseases. We believe our machine learning

approach is complementary to those based on potential energy

functions like SDM and PoPMuSiC. This way, we intend to

combine them into a hybrid method.
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