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Gene expression levels are determined by the balance between rates of mRNA transcription and decay, and genetic
variation in either of these processes can result in heritable differences in transcript abundance. Although the genetics of
gene expression has been a subject of intense interest, the contribution of heritable variation in mRNA decay rates to gene
expression variation has received far less attention. To this end, we developed a novel statistical framework and measured
allele-specific differences in mRNA decay rates in a diploid yeast hybrid created by mating two genetically diverse
parental strains. We estimate that 31% of genes exhibit allelic differences in mRNA decay rates, of which 350 can be
identified at a false discovery rate of 10%. Genes with significant allele-specific differences in mRNA decay rates have
higher levels of polymorphism compared to other genes, with all gene regions contributing to allelic differences in mRNA
decay rates. Strikingly, we find widespread evidence for compensatory evolution, such that variants influencing tran-
scriptional initiation and decay have opposite effects, suggesting that steady-state gene expression levels are subject to
pervasive stabilizing selection. Our results demonstrate that heritable differences in mRNA decay rates are widespread
and are an important target for natural selection to maintain or fine-tune steady-state gene expression levels.

[Supplemental material is available for this article.]

Variation in gene expression levels constitutes a significant source

of phenotypic diversity among individualswithin populations and

contributes to the evolutionary divergence between species (Skelly

et al. 2009; Jones et al. 2012). In humans, regulatory variants af-

fecting gene expression influence susceptibility to autoimmune,

infectious, neoplastic, neurodegenerative, and psychiatric diseases

(Skelly et al. 2009). In Darwin’s finches, regulatory variation af-

fecting beak morphology likely played a role in their speciation

(Abzhanov et al. 2004). Likewise, gene expression variation un-

derlies the skeletal morphology differences in stickleback fish that

distinguish saltwater from freshwater species (Jones et al. 2012).

Heritable regulatory variation can broadly be classified as ei-

ther acting in cis or trans (Skelly et al. 2009).While trans-regulatory

effects on gene expression are undoubtedly important, studies in

several eukaryotic organisms, including yeast, fruit flies, mice, rats,

and humans, suggest that cis-regulatory effects constitute a sub-

stantially higher proportion of the genetic variance in gene ex-

pression within species than do trans effects (Schadt et al. 2003;

Hughes et al. 2006; Petretto et al. 2006; Emilsson et al. 2008;

Pickrell et al. 2010; Skelly et al. 2011). In the budding yeast Sac-

charomyces cerevisiae, for example, nearly 80% of the genes that

have transcribed polymorphisms between two diverse strains ex-

hibit allele-specific expression differences (Skelly et al. 2011). In

humans, it has been estimated that ;90% of single nucleotide

polymorphisms influencing gene expression levels are due to

cis-regulatory mechanisms (Pickrell et al. 2010). Furthermore,

cis-regulatory differences accumulate at a faster rate than trans-

regulatory differences between closely related species (Wittkopp

et al. 2008; Tirosh et al. 2009; Romero et al. 2012).

The balance between mRNA synthesis and decay determines

steady-state levels of transcript abundance, and genetic variation

affecting either of these processes can contribute to heritable dif-

ferences in transcript abundance. However, to date, most research

has concentrated on genetic variation affecting steady-statemRNA

levels, failing to distinguish regulatory variation affecting tran-

scription from that affecting decay (Skelly et al. 2009). Studies that

have explored different classes of heritable variation underlying

differences in steady-state gene expression focus primarily on

transcription initiation, cataloging variation both within and be-

tween species in transcription factor binding sites, chromatin

structure, and DNA methylation sites (Gerstein et al. 2010; The

modENCODE Consortium et al. 2010; The ENCODE Project Con-

sortium 2012; Connelly et al. 2014). In contrast, regulatory variants

underlying differences in mRNA decay rate have received consid-

erably less attention (Dori-Bachash et al. 2011; Pai et al. 2012).

To better delimit the contribution of cis-regulatory variation

to heritable differences inmRNAdecay rates, we developed a novel

statistical framework and measured allele-specific differences in

decay in a diploid hybrid created from two genetically diverse

strains of the budding yeast, S. cerevisiae. We demonstrate that

allelic differences in mRNA decay rates are widespread, affecting

the expression levels of nearly 31% of measurable genes. In-

terestingly, we observe that a significant proportion of changes

in decay rate are coupled to opposing changes in transcriptional

initiation, suggesting pervasive compensatory evolution to sta-

bilize or fine-tune steady-state gene expression levels. Our re-

sults also provide insights into the mechanisms through which

cis-regulatory variation acts to influence mRNA decay rates,

highlighting an important role for variants that affect mRNA

secondary structure.

Results

Overview of experimental design

We measured rates of allele-specific mRNA decay (ASD) in a dip-

loid yeast produced by mating two genetically diverse haploid
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Saccharomyces cerevisiae strains: the laboratory strain BY4716 (BY),

which is isogenic to the reference sequence strain S288C, and the

wild Californian vineyard strain RM11-1a (RM) (Liti et al. 2009). A

schematic of the experimental design is shown in Figure 1. Briefly,

we introduced rpb1-1, a temperature-sensitivemutation in an RNA

polymerase II subunit encoded by the gene RPO21, to each of the

haploid yeast strains, mated the strains, and grew the resulting

hybrid diploid tomid-log phase at 24°C, before rapidly shifting the
culture to 37°C to inhibit transcription (Fig. 1A; Nonet et al. 1987).

RNA-seqwas performedon culture samples taken at 0, 6, 12, 18, 24,

and 42 min subsequent to the temperature shift (Fig. 1A). To

identify ASD, we used transcribed polymorphisms to distinguish

between parental transcripts and compared the relative levels of

transcript abundance over the time course (Fig. 1B). Note, this

experimental design internally controls for trans-acting regulatory

variation as well as environmental factors. Under the null hy-

pothesis of no ASD, the proportion of reads from the BY transcript

(pBY = NBY

NBY +NRM
) observed over the time course remains unchanged

(Fig. 1B). However, genes with ASD will exhibit an increasing or

decreasingproportionofBYreadsas a functionof time (Fig. 1B). In total,

we measured ASD from three independent biological replicates.

Statistical modeling of allele-specific mRNA decay

We developed a novel statistical framework to identify ASD. In

brief, we use a linear logistic model to measure the change in the

proportion, pBY, of reads derived from the BY transcript as a func-

tion of time. To assess statistical significance, we use a Bayesian

hierarchical Markov chain Monte Carlo model (see Methods). In

this model, the prior probability of the alternative hypothesis (i.e.,

that a gene exhibits ASD) is determined from the totality of data.

We also estimate the mean and variance of the decay rate differ-

ences under the alternative hypothesis from the data (see

Methods). The primary motivation for developing this more so-

phisticated framework is that it accounts for genes that exhibit

small departures from nonconstancy due to high read counts in

a more principled manner than alternative approaches (Dori-

Bachash et al. 2011). We evaluated the power and operating

characteristics of our statistical framework through extensive

simulations and found that it generally has higher power andmore

accurately estimates p0 (the proportion of genes consistent with

the null hypothesis of no allelic differences in mRNA decay)

compared to alternative approaches under a wide variety of pa-

rameters (see Supplemental Methods and Results; Supplemental

Fig. S1; Supplemental Table S1).

Pervasive influence of cis-regulatory variation on mRNA
decay rates

Through a careful filtering pipeline, which included whole-ge-

nome sequencing of RM to mitigate read mapping bias (Degner

et al. 2009; see Methods), we identified 27,569 transcribed single

nucleotide variants (SNVs) in 4381 genes that could be used to

assign whether individual RNA-seq reads derived from the BY or

the RM allele of each gene. Of the;222 million RNA-seq reads we

obtained across all replicates and all time points in our study, 13.57

million reads, averaging 2.26 6 0.65 million reads per time point,

were informative, such that they mapped to a variant site and

could unambiguously be assigned as originating from BY or RM.

We applied the statistical inference framework described

above to 3544 genes that passed our filtering criteria (seeMethods).

From the Bayesian hierarchical MCMC model, we estimated

1� p0, the proportion of genes that exhibit ASD, to be 0.31. Thus,

;31% of all measured genes are inferred to be inconsistent with

the null hypothesis and exhibit allelic differences in decay rates.

Of these, we can identify 350 genes at a false discovery rate of 10%

(Fig. 2A). Note, this corresponds to a false nondiscovery rate of

24%. The set of genes called significant agrees well with a simpler

approach of correcting for multiple testing by the QVALUE soft-

ware (Storey 2002; Storey and Tibshirani 2003; Storey et al. 2004)

and imposing a threshold on the magnitude of effect sizes needed

to be called as significant (see Supplemental Methods and Results;

Supplemental Fig. S2). We note that, in order to inhibit tran-

scription, we subjected the yeast to mild heat shock. The decay

rates observed in our data set are specific to the environmental

condition that they were measured in and, thus, may be different

in other states, such as log phase growth (Sun et al. 2012). Addi-

tionally, in theory, some of the differences in decay rate that we

measured could be due to allele-specific transcriptional responses

to heat shock, since there can be small amounts of leaky tran-

scription in the first 5–15 min following the temperature shift

(Nonet et al. 1987); however, such heat shock-induced differences

Figure 1. Overview of experimental design. (A) We replaced thewild-type allele of the RPO21 (also known as RPB1) gene with the temperature-sensitive
rpb1-1 allele in both the BY4716 (BY) and the RM11-1a (RM) strains of S. cerevisiae (Nonet et al. 1987). We mated these two haploid strains to produce
a diploid hybrid and grew the diploid to mid-log phase at the permissive temperature of 24°C. We rapidly shifted the temperature of the culture to 37°C,
halting transcription. Immediately following the temperature shift, and at 6, 12, 18, 24, and 42min after the shift, we isolatedmRNA and performed RNA-
seq. (B) By quantifying the relative levels of the BY and RM alleles for each gene, we estimated pBY, the proportion of transcripts derived from BY, at each
time point. Under the null hypothesis (H0; dashed line) of no allele-specific differences in mRNA decay rates, pBY remains constant. Under the alternative
hypothesis (HA; solid line) of allelic differences in mRNA decay, we expect pBY to change as a function of time. For the gene represented by the solid line in
the example pictured, pBY decreases significantly over time, indicating that the BY allele is decaying more quickly than the RM allele of this gene.
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in allele-specific transcription are unlikely to comprise most of the

differences we observe.

The exponential of the slope of the linear logistic model fit to

each gene is a direct estimate of the difference in mRNA decay rate

between the BYand RM alleles of that gene (see Methods). Among

the genes with significant ASD, the effect size of the decay rate

difference ranges froma 1.813 10�3 to a 5.623 10�2 change in the

odds of observing an mRNA allele of the BY strain given a 1-min

increase in time, with a median difference of 1.013 10�2 (Fig. 2B).

This median difference corresponds to an;83% increase over 1 hr

in the odds of observing an mRNA allele of

the BY strain. The BY allele decays more

quickly than the RM allele in 161 genes,

while the RMallele decaysmore quickly than

the BY allele in 189 genes. Genes with allelic

differences in mRNA decay rates spanned

a broad range of gene ontology terms, andwe

did not detect significant enrichment for

particular functions or biological processes

after correcting for multiple comparisons.

Allelic differences in mRNA decay reveal
widespread compensatory evolution

To investigate the relationship between ASD

and steady-state gene expression levels, we

first inferred allele-specific expression (ASE)

at the 0-min time point in our time course,

which is a reasonable proxy for steady-state

levels of transcript abundance. Using the

method developed by Connelly et al. (2014),

we find that 1137 genes exhibit ASE (poste-

rior probability > 0.95) (Fig. 3). Five hundred

and ninety-five of the 1137 genes (52.3%)

that exhibit steady-state ASE have higher

levels of the RM transcript, and 542 genes

(47.7%) have higher levels of the BY tran-

script. The median log2-fold change for all

genes with allele-specific steady-state ex-

pression differences is 0.43.

Of the 350 genes with significant ASD,

182 (52.0%) also exhibit ASE (Fig. 3). Strikingly,

of the 182 genes with both ASD and ASE, 129

(70.9%) have increased decay rates in the allele

with higher levels of steady-state expression,

suggesting that there are variants influencing

rates of transcriptional initiationwith opposite

effects to those influencing decay (Fig. 3).

Similarly, the 168 genes that exhibit ASD but

not ASE (Fig. 3) are also likely enriched for

variants with opposing effects on transcrip-

tional initiation and decay, since the difference

indecay rate doesnot produce a corresponding

difference in steady state levels. Thus, these

data suggest that changes inmRNAdecay rates

in yeast are often coupled with opposite

changes in transcription, consistent with per-

vasive compensatory evolution to stabilize or

fine-tune steady-state gene expression levels.

Patterns of genetic diversity across
transcripts with allelic differences
in mRNA decay

Previous studies in yeast have found that

genes with ASE exhibited higher levels of

genetic diversity compared to those withoutFigure 2. (Legend on next page)
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such differences (Ronald et al. 2005). To explore patterns of

diversity in our data set, we first compared overall levels of

variation among four classes of genes: those with only ASD,

those with only ASE in steady-state levels, those with both ASD

and ASE, and those with no allele-specific differences. Limiting

our analysis to the 2954 genes with reliable UTR annotations

(Nagalakshmi et al. 2008), we found that genes with any type

of allele-specific difference have 1.4-fold more variants than

genes without ASD or ASE (4.62 and 3.32 variants/kb, re-

spectively; Mann-Whitney U test, P-value < 2.20 3 10�16) (Fig.

4). Moreover, genes with ASD have 1.3-fold higher levels of

variation compared to genes with only ASE (5.48 variants/kb

compared to 4.31 variants/kb, respectively; Mann-Whitney U

test, P-value = 2.26 3 10�10) (Fig. 4). One complication in

interpreting these findings is that genes with larger numbers of

variants tend to have more informative reads, and, therefore,

there is greater power to detect allelic differences in expression

and decay. Indeed, variant density is significantly correlated

with the number of informative reads (r2 = 0.158, P-value < 2.20 3

10�16). To more formally explore whether differences in SNV

density are simply related to power, we performed logistic re-

gression where the predictor variables were coded as zero if a gene

did not show ASD and one if it did. We found that a model that

included both the number of variants/kb and the number of in-

formative reads as covariates fits the data significantly better than

a model using just the number of informative reads alone (ANOVA

P-value < 2.20 3 10�16), suggesting that the increased levels of

variation in genes with ASD and ASE are

not simply a consequence of discovery

bias.

To identify regions that may be

enriched for variants that influence decay

rates, we compared levels of genetic vari-

ation in the 59UTR, coding region, and 39

UTR among the four classes of genes de-

scribed above. Levels of variation are sig-

nificantly elevated across all genic regions

for genes with ASD compared to genes

with no allelic differences (Fig. 4). Genes

with both ASD and ASE have 1.46-fold,

1.68-fold, and 1.74-fold higher levels of

variation than genes with no allelic dif-

ferences in the 59 UTR, coding region,

and 39 UTR, respectively (Mann-Whitney

U test, P-value = 1.43 3 10�2, < 2.20 3

10�16, and 1.473 10�4). Genes with ASD

only have 1.88-fold, 1.64-fold, and 2.12-

fold higher levels of variation than genes

with no allelic differences in the 59 UTR,

coding region, and 39 UTR, respectively (Mann-Whitney U test,

P-value = 1.58 3 10�7, 1.12 3 10�15, and 6.77 3 10�4). Thus,

allele-specific differences in mRNA decay rate are likely driven by

variants positioned throughout the transcript. Consistent with this

hypothesis, genes that only contain SNVs in either their coding region

or UTR are less likely to exhibit ASD compared to genes with variants

in both their coding region and UTR (Fisher’s exact test, P-value =

1.35 3 10�10 and 1.55 3 10�4, respectively).

Genes with ASD are enriched for variants that influence
mRNA structure

To test the hypothesis that variation in mRNA secondary structure

contributes to allelic differences in mRNA decay rates, we com-

pared the minimum Gibb’s free energy (DG) associated with the

predicted secondary structures of the BY and RM alleles for each

mRNA transcript. Specifically, following standard practices (Tuller

et al. 2010), we computed the DG of the predicted secondary

structures for each of the 27,569 variants that we identified be-

tween BY and RM (Fig. 5A). We then calculated the absolute value

of the difference in free energy between alleles, |DDG| = |DGBY –

DGRM|, and for each gene, we recorded the maximum |DDG| of all

its variants. Variants with larger values of |DDG| are predicted to

have more severe structural consequences (Fig. 5A). Genes that

exhibit ASD are enriched for variants with larger predicted effects

on mRNA secondary structure as compared to genes without any

allelic differences in decay or steady-state expression (1.32-fold

increase in the maximum |DDG| observed

in genes with ASD; Mann-Whitney U test,

P-value = 5.483 10�15) (Fig. 5B). Although in

silico predictions of differences in mRNA

secondary structure are not perfect proxies

for structures that occur in vivo, our obser-

vations are consistent with the hypothesis

that allelic variation in mRNA secondary

structure contributes to heritable variation

in mRNA decay rates. Interestingly, the

gene HSP78, which encodes a mitochon-

drial matrix chaperone, exhibits ASD and

only contains a single variant (Supplemen-

Figure 3. mRNA decay rates in yeast are often coupled to opposite changes in transcription initiation.
(Left) Venn diagram showing the overlap of genes with significant allelic differences in steady-state gene
expression (ASE) and decay (ASD). (Right) Scatter plot showing estimates of differences in decay rates
between BY and RM (x-axis) versus the proportion of transcripts from the BY allele (pBY) inferred from the
0-min time point for genes with both ASE and ASD. The shaded gray rectangles represent quadrants
where magnitudes of ASD and ASE are discordant, suggesting compensatory evolution.

Figure 2. Characteristics of genes that exhibit allele-specific mRNA decay. (A) Posterior proba-
bility that a gene exhibits allele-specific mRNA decay rates, as calculated from our Bayesian hierar-
chical Markov chainMonte Carlomodel. The dashed line at posterior probability = 0.67 corresponds
to the threshold we used to call genes as exhibiting significant allele-specific mRNA decay rates. (B)
Histogram of the slope calculated from the linear logistic model for the 350 genes with significant
(FDR = 10%) allele-specific mRNA decay rates. The exponential of the slope, which estimates lBY –
lRM, is the change in the odds of observing a BY mRNA allele given a 1-min increase in time. (C )
Decay rate time courses of all genes in which the RM allele decays significantly faster than the BY
allele (left) and the BY allele decays significantly faster than the RM allele (right). The gray lines
represent the decay rate time courses of each of the individual genes. The black lines represent the
mean decay rate time courses for all of the genes included in each plot. (D) Correspondence of lBY –
lRM to half-life differences between the BY and RM alleles of a gene. The dashed black lines represent
the positive and negative of the median effect size, where effect size is defined as |lBY – lRM|, ob-
served among the genes we identified with significant allele-specific differences in decay rates.
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tal Table S2), which has a large predicted effect on mRNA sec-

ondary structure (Fig. 5C), suggesting that allelic differences in

decay of this gene are likely mediated by structural differences.

No widespread evidence for coupling between decay rates
and translational efficiency

Previous reports measuring mRNA decay rate in one or a few genes

have suggested that the translation efficiency of an mRNA might

be directly coupled to mRNA decay rate (for review, see Garneau

et al. 2007 and Schoenberg and Maquat 2012). To evaluate

whether such coupling is common, we compared the types of

codon changes occurring between BY and RM in genes with and

without decay rate differences. If mRNA decay rate is coupled to

translation efficiency, we would expect that genes with ASD

would have higher proportions of codon changes that impact

translation efficiency, as compared to genes without such dif-

ferences. To this end, we compared the proportion of preferred to

unpreferred synonymous codon changes in genes with and

without ASD and found that genes with ASD have a slightly lower

proportion of codon preference changes, although this is not

statistically significant (68.1%versus 68.7%;Mann-WhitneyU test,

P-value = 8.60 3 10�2). Thus, we do not find widespread evidence

that mRNA translation efficiency is directly coupled to mRNA de-

cay rate. A caveat of this analysis is that more sensitive measures of

translational efficiency may be needed to detect coupling. More-

over, these findings do not preclude the possibility that coupling

exists for a subset of genes, whichwemay not have power to detect.

Discussion
We developed a novel statistical framework to measure allele-

specific differences in mRNA decay rate in a diploid yeast hybrid

created by mating two genetically diverse parental strains. A par-

ticular strength of our statistical approach is its ability to deal with

genes that exhibit small departures from nonconstancy due to

high read counts in a more principled manner than alternative

approaches (Dori-Bachash et al. 2011). Using our statistical frame-

work, we demonstrate the pervasive in-

fluence of cis-regulatory variation on

mRNA decay rates, estimating that >30%

of measurable genes exhibit ASD. Our re-

sults suggest that variation inmRNAdecay

rate is widespread across the genome, as

well as among individuals within a spe-

cies. Overall, our study provides further

evidence of the importance of post-tran-

scriptional processes in determining heri-

table differences in gene expression levels,

which, in turn, impact phenotypic di-

versity among individuals within pop-

ulations. Additionally, the novel statistical

framework we developed has broad ap-

plications for future work in testing hy-

potheses of differential expression.

A striking feature of the data is that

differences inmRNA decay rates are often

coupled with opposite changes in tran-

scription. It is difficult to precisely esti-

mate the proportion of genes with sig-

nificant ASD that is in the opposite

direction of steady-state expression levels

because of differences in the statistical power of detecting ASE and

ASD. However, a na€ıve estimate suggests that up to 85% of genes

with significant ASD are coupled with opposing effects on tran-

scription (Fig. 3). These findings agreewith previous studies, which

observed that roughly 80% of differences between yeast species

and 50% of differences among humans in mRNA decay rate are

coupled to opposing differences in transcription (Dori-Bachash

et al. 2011; Pai et al. 2012). Interestingly, in the remaining 15% of

genes with significant ASD, there is no significant correlation

(r2 = 0.255, P-value = 6.53 3 10�2) between the magnitude of the

decay rate difference and the magnitude of the gene expression

difference between the alleles. Collectively, these results suggest

that steady-state gene expression levels are subject to strong

stabilizing selection, and that heritable differences in mRNA

decay rates are an important target for natural selection to

maintain or fine-tune steady-state gene expression levels.

To explore which regions of the mRNA transcript are most

important in determining mRNA decay rate differences, we com-

pared the levels of genetic variation in the 59 UTR, coding region,

and 39 UTR in genes with and without ASD. We hypothesized that

the 39 UTR would be the most important region governing ASD,

and therefore, that genes exhibiting ASD would be especially

enriched for polymorphisms between BY and RM in the 39 UTR

compared to genes without ASD or ASE. Instead, we observed that

all three regions exhibited significantly more variation in genes

with ASD compared to genes without ASD or ASE (Fig. 4). One

explanation for these results is that the 39 UTR contains the

lowest overall amount of variation, suggesting that it is under

significant functional constraint. If the 39 UTR contains the

highest density of cis-elements affecting mRNA decay rate, then

changes to this region perhaps have a larger effect on mRNA

decay rate, and therefore, are more likely to be removed by pu-

rifying selection. Conversely, changes in the 59 UTR or coding

region may cause differences in mRNA decay rates of a smaller

effect size, and therefore be subject to less intense purifying se-

lection. Thus, all three gene regions may be important de-

terminants to within-species differences in mRNA decay rate.

Our observation that genes with SNVs only in the coding region

Figure 4. Levels of genetic diversity in genes with and without allele-specific differences in mRNA
decay rates and steady-state expression levels. Bar plots show the mean number of single nucleotide
variants (SNVs) between BY and RM per kilobase across the whole gene (left) or across each gene region
separately (right). Error bars correspond to the 95% confidence interval of the mean. ASE and ASD
denote allele-specific expression and allele-specific decay, respectively.
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or, alternatively, only in the UTRs are less likely to exhibit ASD,

also suggests that variation in all parts of the transcript can po-

tentially impact decay rate.

Identifying allelic differences in mRNA decay rate is only the

first step in the ultimate goal of identifying causal regulatory alleles

and the mechanisms that they act through. To this end, it is in-

teresting to note that 13 genes with ASD possess a single variant

between the BY and RM alleles of the transcript (11 in coding re-

gions and two inUTRs) (see Supplemental Table S2). These variants

are strong candidate causal alleles, and as shown for HSP78

(Fig. 5C), enable mechanistic hypotheses to be formulated and

ultimately tested. Furthermore, it will be important to consider

additional processes that could influence allele-specific decay. For

example, nonsense-mediated decay (NMD) can be triggered by

AUG codons in the 59 UTR, and if a SNV introduced or disrupted

a 59 UTR AUG, it could influence mRNA decay rates between the

two alleles. In the 2954 genes that have reliable UTR annotations,

34 contain SNVs in the 59 UTR that introduce or disrupt an AUG

codon. Of these 34 genes, nine exhibit significant ASD, which is

significantly more than we would expect by chance (Fisher’s exact

test, P-value = 5.163 10�3); however, only three of the nine genes

show decay rate differences in the direction expected if allelic

differences in mRNA decay rate were mediated by nonsense-

mediated decay. Thus, this process likelymakes aminor contribution

to patterns of ASD in our data. More generally, dissecting the mech-

anistic basis of allelic variation inmRNA decay rates will facilitate the

robust prediction of causal regulatory alleles from sequence data.

Another critical area of research will be exploring the in-

teractions of genetic variation with the environment. Our study

was conducted in yeast undergoing exponential growth in a rich

medium that underwent mild heat shock at the time of tran-

scriptional shut-off; however, we would expect that patterns of

ASD would differ markedly under differing growth conditions,

such as nutrient-limited media or the presence of high concen-

trations of chemicals like ethanol or the various heavy metals.

Additionally, the effects of cis-regulatory variation onmRNAdecay

are also likely to vary between different stages of the yeast life

cycle, including during meiosis and during vegetative growth.

Another important limitation of our study is that it only examines

allele-specific differences in mRNA decay rate between two diverse

yeast strains. Nonetheless, our results highlight the important

contribution that heritable variation inmRNA decay rates make to

buffer steady-state differences in gene expression and suggest

that additional post-transcriptional processes should be studied

in greater detail for a more comprehensive understanding of

mechanisms contributing to transcriptional diversity within and

between species.

Methods

Yeast strains
For the purposes of this study, we replaced the wild-type copy of
the RPO21 (also known as RPB1) gene in the haploid S. cerevisiae
strains BY4716 (BY) andRM11-1a (RM) (for detailed descriptions of
these two strains, see Brem et al. 2002) with the rpb1-1 mutant
allele (Nonet et al. 1987). We began by identifying the mutations
that make rpb1-1 differ from wild-type RPO21 via standard Sanger
sequencing of the RP021 locus in the strain Y262 (described in
Herrick et al. 1990). We identified two mutations: a C to T sub-
stitution 206 bp after the translation start site, and a G to A sub-
stitution 4310 bp after the translation start site; bothmutations are

nonsynonymous. To substitute RPO21with rpb1-1 in RM, we used
a ‘‘pop-in, pop-out’’ strategy (Rothstein 1995; Duff and Huxley
1996). Specifically, in the ‘‘pop-in’’ step, we linearized a plasmid
containing the URA3 selectable marker and the rpb1-1 mutant al-
lele with a restriction enzyme that cut in the rpb1-1 sequence
segment. We then transformed the linearized plasmid into RM
cells and selected for cells in which the plasmid had recombined
into the genome using uracil prototrophy. At the completion of
the ‘‘pop-in’’ step, RM carried a duplication of the target genomic
sequence segment, in which one duplicate contained the RPO21
wild-type allele and one duplicate contained the rpb1-1 mutant
allele; the plasmid sequences and URA3 lay between the two du-
plicates. In the ‘‘pop-out’’ step, we added uracil back to themedium
so that theURA3 genewas no longer required for viability, allowing
spontaneous recombination events to occur between the dupli-
cated target sequences. To select for recombination events, we used
5-fluororotic acid (5-FOA), which is metabolized by URA3 into
a toxic compound. A recombination event will result in either re-
tention of the mutant rpb1-1 allele or reversion to the wild-type
RPO21 allele. Using this strategy, we first replaced the C located
206 bp after the translation start site in RPO21 with a T, and then,
subsequently, we replaced the G located 4310 bp after the trans-
lation start site in RPO21 with an A. To confirm successful sub-
stitution of the wild-type allele with themutant allele at both sites,
we used standard Sanger sequencing.

To replace RPO21 with rpb1-1 in BY, we employed a back-
crossing strategy. We could not use the ‘‘pop-in, pop-out’’ strategy
because BY already contained the URA3 selectable marker. More
specifically, we crossed BY to Y262, sporulated the hybrid diploid,
and screened the resultant offspring for inability to grow at 37°C
(Note: rpb1-1 mutants do not replicate at this temperature). We
then performed four more rounds of backcrossing between the
hybrid offspring and BY, such that the resulting yeast strain carried
the rpb1-1 allele on an ;97% BY genetic background. We con-
firmed that the final product of our backcross carried the two single
nucleotide variants thatmake rpb1-1mutants different from thewild-
typeRPO21 by standard Sanger sequencing.Wemated the BYandRM
rpb1-1 temperature-sensitive mutant strains and selected for the dip-
loid hybrid by visually screening for BYand RM cells that hadmated.
We confirmed that our candidate diploid hybrids identified in our
screen were, in fact, diploid using a standard HaloMating Type Assay.

Measuring mRNA decay rates

mRNA decay rate time course sample collection

The BY 3 RM hybrid diploid we generated was grown at 24°C to
mid-log phase (OD600 0.8–1.0) in 60 mL of yeast extract peptone
dextrose (YEPD). We abruptly shifted the culture to 37°C via ad-
dition of 60mLof 50°CYEPD. Immediately following, and at 6, 12,
18, 24, and 42min after addition of the 50°Cmedium,we collected
20-mL aliquots of the culture using vacuum filtration. Tomaintain
the increased temperature of the culture, we housed it in a 37°C
shaking incubator between collection time points. The collected
yeast cells from each time point were flash-frozen in liquid
nitrogen and then stored at �80°C for no more than 2 d before
we extracted total RNA from the cells using a standard phenol-
chloroform preparation. In total, we collected three replicates of
our time course.

RNA sequencing

We used a TruSeq RNA Sample Prep v2 Kit (Illumina) to create
a sequencing library from the total RNA collected for each decay
rate time course time point from each replicate. Per the protocol
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for the kit, we isolated mRNA from the total RNA using two
rounds of poly(A) selection, then fragmented the isolated mRNA
into ;150 base pair (bp) fragments, and finally, used random
hexamer primers to produce cDNA. Poly(A) selection, by defi-
nition, retains only mRNA with intact poly(A) tails in the re-
sultant RNA pool. The most commonly used pathway of mRNA
decay, referred to as deadenylation-dependent decapping, be-
gins with shortening of the poly(A) tail by deadenylases, fol-
lowed by removal of the 59 cap structure by decapping enzymes,
and, finally, 59 to 39 exonucleolytic degradation of the decapped
intermediate (for review, seeWilusz et al. 2001 andGarneau et al.
2007). Thus, our experimental design is unable to detect allelic
differences that affect the decapping rate or rate of exonucleolytic
degradation. We chose to use poly(A) selection to isolate mRNA
despite its inability to detect differences in the later stages of mRNA
decay because previous studies of deadenylation-dependent
decapping have demonstrated that mRNA decay proceeds very
rapidly following deadenylation, and that deadenylation, as op-
posed to decapping or exonucleolytic degradation, is the rate-lim-
iting step in the mRNA decay process (for review, see Wilusz et al.
2001 and Garneau et al. 2007). We created barcoded sequencing
libraries from the cDNA from each sample and, in an effort to min-
imize technical variation between the data acquired from different
decay rate time points, all samples from all replicates were sequenced
in the same lane on an IlluminaHiSeq 2000 (50-bp paired-end reads).

Whole-genome sequencing of RM

For whole genome sequencing of the S. cerevisiae strain RM, we
inoculated the strain from�80°C freezer stock into 5mLYEPD and
grew the culture at 30°C to saturation. We pelleted the cells from
the culture by centrifugation, decanted the supernatant, and froze
the cells at �80°C. We extracted DNA using a Genomic-tip 100/G
Kit (Qiagen) and then concentrated the sample using a standard
ethanol precipitation. We prepared a DNA sequencing library
using a TruSeqDNA Sample Prep v2 Kit (Illumina). Per the protocol
for the kit, we used a Covaris sonicator to shear the DNA into
;300- to 400-bp fragments, and, after ligating adaptors onto the
DNA fragments, we additionally size-selected for 300- to 400-bp
fragments by running the ligation products out on an agarose gel and
gel-extracting the appropriate band. We performed whole-genome
sequencing using an Illumina MiSeq (151-bp paired-end reads).

Read mapping

We obtained complete genome sequences for BY from the Sac-
charomyces Genome Database (version R64-1-1, released February
3, 2011; http://www.yeastgenome.org) (Engel et al. 2013) and for
RM from the Broad Institute (http://www.broadinstitute.org). We
used BWA version 0.5.9 (Li and Durbin 2009) to map both the
DNA and RNA sequence reads to the BY genome and, separately,
the RM genome. After mapping reads, we sorted BAM files and
marked duplicate reads using Picard version 1.43 (http://picard.
sourceforge.net).

Identification of variant sites for assigning the allele
of individual RNA-seq reads

To obtain a set of variants for allele-specific read calling in the BY3
RM diploid, we used LASTZ (http://www.bx.psu.edu/ miller_lab)
to infer alignment scoring parameters appropriate for aligning the
BYand RM genomes and to generate pairwise alignments between
all chromosomes of the two strains. We then used threaded
blockset aligner (TBA) (Blanchette et al. 2004) to compute a whole-

genome alignment that is not biased in favor of a particular
reference genome. We cataloged all SNVs, as well as all indels,
identified in the alignment. As we were only interested in tran-
scribed differences between the BY and RM genomes, we removed
from our variant list all sites not within annotated BYopen reading
frames (obtained from the Saccharomyces Genome Database;
http://www.yeastgenome.org) and their corresponding un-
translated regions (UTRs) (UTR lengths were determined from
Nagalakshmi et al. 2008). Manual review of the remaining variant
sites using the program Integrated Genome Viewer (http://www.
broadinstitute.org/igv/) revealed thatmany of the indels identified
from the BY and RM alignment produced by TBA, as well as the
SNVs closely flanking these indels, were miscalled. Therefore,
we removed all indels and all SNVs within 10 bp of an indel from
our variant list. Likewise, because we suspected that most or all
of the SNVs we identified in genes with unusually high numbers
of variants per kb were artifacts of alignment errors, we dis-
carded all SNVs located in genes that exhibited greater than
fivefold the average variant density of all genes across the ge-
nome. Due to the difficulty in distinguishing which gene an
RNA-sequencing read that aligns to a location in which two
yeast genes overlap derives from, we also threw out any variants
that overlapped more than one annotated yeast gene. Finally,
we removed any variants to which reads obtained from whole
genome sequencing of RM were assigned more often to the BY
allele of the variant than to the RM allele by the method de-
veloped by Skelly et al. (2011) (briefly described below) to as-
sign whether individual RNA-seq reads derived from the BY or
the RM allele of each gene.

Assignment of the allele of individual RNA sequencing reads

We performed assignment of individual RNA-seq reads as origi-
nating from either the BYor the RM allele of each gene as described
in Skelly et al. (2011), with the following two changes. First, any
read with an alignment to one genome that scores higher had to
overlap one of the SNVs between BYand RM that were identified as
described above. Second, we did not perform a correction for GC
content.

Measuring allele-specific differences in mRNA decay rate

To determine whether a gene exhibited allele-specific mRNA
decay rate differences, we developed a novel linear logistic
model that we applied in conjunction with a quasi-likelihood
ratio test to measure the change across our time course in the
calculated proportion of reads deriving from the BY allele as
compared to the total number of informative reads at each gene.
Specifically, in our model, we let Nj(t) be the number of mRNA
transcripts for strain j, j = 1, 2 (representing BYand RM) at time t.
We then assumed that the rate of decay is dNj/dt =�ljt, with lj >

0, so that Nj(t) = N0j exp(�ljt), where N0j is the count at time
0 for strain j. For each time point, t, the number of RNA-seq
reads that we can assign to a strain, nj(t), is a fraction, ft, of
the total number of mRNA transcripts for that strain, such that
nj(t) = ft Nj(t).

We then assumed the model

njðtÞ;Poisson
�
ftN0jexp

��ljt
��
:

Under this model, the distribution of the counts for strain 1
(BY) given the total is binomial [we could make a binomial ap-
proximation since n(t) ! N(t)] with denominator n1(t) + n2(t) and
probability (of strain 1):
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pðtÞ= ftN01expð�l1tÞ
ftN01expð�l1tÞ+ ftN02expð�l2tÞ

=

N01

N02
expð � ½l1 � l2�tÞ

N01

N02
expð � ½l1 � l2�tÞ+1

:

Taking the logit gives:

log

�
pðtÞ

1� pðtÞ
�
= log

�
N01

N02

�
� ½l1 � l2�t =a+bt:

Although different fractions of the total mRNA transcript
pool are sampled at each time point, these fractions cancel in the
above calculation, so that we compute the relative proportion of
strain 1 (BY) alleles in the pool from which we have sampled at
each time point. The exp(a) is the odds that we observe an mRNA
allele of strain 1 at time t = 0. In our linear logistic model, we es-
timate a; however, from the above derivation we know that these
odds areN01/N02, but this proportion is unobserved. The parameter
exp(b) is the change in the odds of observing an mRNA allele of
the strain 1 type given a 1-min increase in time. Thus, exp(603 b)
is the change in the odds of observing an mRNA allele of strain
1 given a 1-hr increase in time. For example, if exp(603 b) = 2, then
the odds of observing anmRNA allele of strain 1, when compared to
the odds of observing anmRNA allele of strain 2 (RM), doubles over 1
hr. If decay rates are the same in both strains, then l1 = l2, which is
equivalent to b = 0 in the logistic model. The parameter estimate bbi,
along with the associated standard error, are subsequently used
within a hierarchical model, as detailed shortly.

The null can be rejected with small departures from non-
constancy due to high counts, if a frequentist test (such as a quasi-
likelihood test) is used. This is a recognized problemwith frequentist
testing in which power is not accounted for in the setting of signif-
icance thresholds. Hence, to determine if b was significantly differ-
ent from 0, and therefore, whether a gene exhibited allele specific
differences in mRNA decay rate, we used a Bayesian hierarchical
model. In our model, we let Yi be the estimate of the slope bbi for the
ith gene, ands2

i be the variance of this estimate.We thenassumedYi|
mi ; ind N(mi, s

2
i ), i = 1, . . ., m, where m is the number of genes. We

specified a mixture model for the collection [m1, . . ., mm], with

mi =

�
0 with probability p0

;N
�
d; t2

�
with probability p1 =1� p0

:

The secondmixture component contains the non-null genes.
We integrated out overmi to obtain a three-stagemodel, andwe use
mixture component indicators Hi = 0/1 to denote the zero/normal
membership model for transcript i. The model is:

Stage 1:

YijHi; d; t;p0;ind

�
N
�
0;s2

i

�
if Hi =0

N
�
d;s2

i + t
2
�

if Hi =1
:

Stage 2:

Hijp1;iidBernoulliðp1Þ; i=1; . . . ;m:

Stage 3:

Independent priors on the common parameters :

pðd; t;p0Þ = pðdÞpðtÞpðp0Þ

with

pðdÞ}1;

pðtÞ}1=t;

pðp0Þ =1;

so that we had improper priors for d and t2. Thismodel is appealing
since we deal with overdispersion in the data using a reliable and
distribution-free frequentist method and then take the in-
formation on the parameter of interest only (the differences),
namely the estimate and its associated standard error, to model
within the hierarchy. By only concentrating on the key parame-
ters, we avoid having to make model assumptions concerning
parameters of no interest.

We implemented this model via a Markov chainMonte Carlo
algorithm in which we introduced indicator variable vi to denote
themixture component of gene i. For our analysis, weonly evaluated
the 3544 genes that had at least 10 informative reads at each of the
six time points, as well as less than a 50-fold difference in expression
of the twoalleles at the 0-min timepoint.General backgroundof this
testing framework can be found in Wakefield (2013).

To formally determinewhether gene i exhibited allele-specific
mRNA decay rate differences, we placed a threshold of 0.67 on the
posterior probability ri = Pr(Hi = 1| data) of being non-null. At this
threshold, the false discovery rate (FDR) is 0.099 and the false
nondiscovery rate (FNDR) is 0.244. The FDR and FNDR are model-
based estimates and are calculated as follows. For the list of R (say)
genes i that pass the threshold, we calculate the sum of 1 – ri (i.e.,
the posterior probability of no difference in mRNA decay rate) and
divide by the total number of ‘‘noteworthy’’ genes, R, to give the
FDR. For all the remaining (3544 – R) non-noteworthy genes, we
sum the ri (i.e., the posterior probability of a difference in mRNA
decay rate) and then divide by (3544 – R) to give the FNDR.

Gene Ontology analysis

To assess whether there was any significant enrichment for genes
involved in a particular molecular function, cellular component,
or biological process in the set of genes we identified with allelic
differences in mRNA decay, or in the two smaller subsets of genes
in which one allele or the other decayed more quickly, we
submitted each set of genes to AmiGO’s GO Term Enrichment
Tool (http://amigo1.geneontology.org/cgi-bin/amigo/term_
enrichment). We co-submitted all 3544 genes we analyzed for
allele-specific mRNA decay rate differences as the input back-
ground set and selected SGD as the database filter. We chose 0.01
as our maximum P-value threshold and two as the minimum
number of gene products.

Measuring allele-specific differences in mRNA steady-state levels

Using the numbers of mRNA transcripts from BYand RM for each
gene at time point t = 0 min as a proxy for steady-state expression
levels, we determined whether a gene exhibited allele-specific
steady-state expression differences by performing the cis test ex-
actly as described in Connelly et al. (2014), with the following
modification: The test was performedwith three, rather than two,
replicates. Our primary motivation for choosing this method, as
opposed to alternative approaches (Skelly et al. 2011), is that its
statistical framework is most closely related to the framework we
implemented for identifying allele-specific mRNA decay rate
differences.
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Classification of genes by type of allele-specific differences

For comparison between genes with allele-specific mRNA decay
rate differences, allele-specific steady-state expression differences,
and no allele-specific differences, we divided the genes into four
classes: those with allele-specific differences in mRNA decay rate
only, those with allele-specific differences in steady-state levels
only, those with allele-specific differences in both mRNA decay
rate and steady-state levels, and those with no allele-specific dif-
ferences. Specifically, we categorized genes with a posterior prob-
ability greater than 0.67 in our Bayesian hierarchicalMarkov chain
Monte Carlo model, but with a posterior probability less than 0.95
in our test for allele-specific steady-state expression differences as
only having allele-specific differences in mRNA decay rate. We
considered genes with a posterior probability greater than 0.67 in
our Bayesian hierarchical Markov chain Monte Carlo model and
a posterior probability greater than 0.95 in our test for allele-specific
steady-state expression differences as exhibiting both allele-specific
differences in mRNA decay rate and allele-specific differences in
steady-state expression levels. Genes with a posterior probability
greater than 0.95 in our test for allele-specific steady-state expres-
sion differences, but which did not have a posterior probability
greater than 0.67 in our Bayesian hierarchical Markov chainMonte
Carlomodel, were classified as onlyhaving allele-specific differences
in steady-state expression levels. For our final category of genes with
no allelic differences, we grouped together genes with a posterior
probability less than 0.30 in our Bayesian hierarchical Markov chain
Monte Carlo model and a posterior probability less than 0.95 in our
test for allele-specific steady-state expression differences. We choose
0.30 rather than 0.67 as the cut-off for the posterior probability in
our Bayesian hierarchical Markov chainMonte Carlo model for this
groupof genes in aneffort tominimize thenumberof false negatives
(for allele-specific differences in mRNA decay rate) in this group.

Secondary structure analysis

To evaluate the differences in mRNA secondary structure between
the BY and RM alleles of each gene, we began by determining the
mRNA sequence for both the BYand RM alleles of each gene using
the set of 27,569 variants we identified between BY and RM, the
BY genome sequence (from the Saccharomyces Genome Database,
versionR64-1-1, released February3, 2011; http://www.yeastgenome.
org) (Engel et al. 2013), annotations of the BY open reading
frames (from the Saccharomyces Genome Database; http://www.
yeastgenome.org), and the predicted untranslated region lengths
(UTRs) for the BY open reading frames (Nagalakshmi et al. 2008).
We then used the UNAFold software package’s hybrid-ss-min tool
to compute the predicted minimum Gibb’s free energy (DG) asso-
ciated with the mRNA secondary structures of each allele of each
transcript at 30°C (we chose to use 30°C because this is the stan-
dard temperature at which yeast are grown in the laboratory)
(Markham and Zuker 2005, 2008). More specifically, following
standard practices (Tuller et al. 2010), we calculated the DGof a 41-
bp mRNA region surrounding each of the 27,569 SNVs in our data
set (Markham and Zuker 2005, 2008). The variant of interest was
placed at the center of each 41-bp window; however, if the variant
was <20 bp from the end of the mRNA transcript, the 41-bp win-
dowwas shifted such that the beginning or the end coincidedwith
the beginning or the end of the mRNA transcript, as appropriate.
The difference in DG (DDG) between the BYand RM alleles for each
41-bp window was measured by simply subtracting the DG calcu-
lated for the RM allele from the DG calculated for the BYallele. We
then calculated the absolute value of the difference in free energy
between alleles,|DDG|=|DGBY –DGRM|, for each variant. For each gene,
we recorded themaximum|DDG|we observed among all its variants.

Data access
Sequencing data from this study have been submitted to the NCBI
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo/) under accession number GSE60617.
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